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EQUILIBRIUM AND STABILITY ASPECTS OF A SCREW-PINCH 

BASED ON THE SHARP-BOUNDARY MODEL OF A HIGH-BETA TOKAMAK 

by 

J. Rem 

Association Euratom-FOM 

FOM-Instituut voor Plasmafysica 

Rijnhuizen, Nieuwegein, The Netherlands 

ABSTRACT 

The bharp-boundary model of a high-beta tokamak surrounded 

by force-free currents (FFC) should yield a good description of the 

magnetohydrodynamic stability of a screw-pinch: a tokamak with uni

form q-profile. To arrive at the relationship between the equilib

rium parameters giving rise to such a q-profile in the FFC region 

the poloidal field outside the plasma (with a prescribed cross-

section) must be determined. An analytical solution has been deriv

ed for this field from which the desired relationship can be ob

tained by numerical means. From the results of a number of cross-

sections it is evident that an approximation can be made that leads 

to this relationship more readily. Based on the latter the stability 

of a screw-pinch with a number of different cross-sections has been 

analyzed. 
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1 . INTRODUCTION 

The stability analysis of a toroidal sharp-boundary, high-beta 

tokamak plasma 111 surrounded by force-free currents is much simpler 

than that of a diffuse plasma because it involves relatively few param

eters. It was exactly this feature that made the study of this model 

so attractive for it permitted a complete scan of the parameter space. 

Apart from its dependence on the equilibrium parameters: beta, the 

safety factor q on the plasma surface S, and the strength of the force-

free currents (FFC), the stability depends only on the poloidal field 

on S. In other words the equilibrium fields outside the plasma do not 

enter the stability problem. Of course these fields are in principle 

fully determined by the equilibrium parameters. 

The screw-pinch "Spica" [2] has been so designed that optimal 

use is made of FFC. The experiment is axisymmetric and the plasma is 

created in a quartz vacuum vessel. This vessel is surrounded by a thick 

copper shell into which toroidal and poloidal field components are fed 

at equal rates during the formation phase of the plasma. In the low 

density region behind the shock this process gives rise to large FFC 

and an almost uniform q-profile. A crowbar system effectively closes 

the shell for the poloidal field so that a plasrra - surrounded by FFC -

is confined whereby the outermost magnetic surface coincides with the 

copper shell. The result is that the FFC affect both the equilibrium 

and the stability. The effect on the first one lies in its effect on 

the shape of the plasma cross-section S and the position of S with re

spect to the copper shell. Its effect on stability lies mainly in tut: 

contribution of the FFC region to the potential energy of a perturba

tion (6W). 

The sharp-boundary high-beta tokamak with FFC should yield a 

good description of the stability of the screw-pinch in which plasmas 

with high betas are confined. However, in the stability analysis the 

shape of the plasma cross-section is assumed and the equilibrium param

eters are independent. This is not true in the screw-pinch because the 

manner of creation leads to a uniform q-profile. Consequently, to apply 

the high-beta tokamak results to the screw-pinch we must determine 

which combination of equilibrium parameters yields such a q-profile. 

To answer this question it is necessary to determine the fields in the 

force-free field region surrounding the plasma of which the cross-

section is given. In this paper we show that in the high-beta tokamak 

ordering this problem can be solved by analytic means. However, to ob

tain from these fields the desired relationship between the equilibrium 

parameters that give rise to a screw-pinch is cumbersome. Fortunately, 

a good approximation to this has been found that consists of a simple 

integral condition involving the field on the plasma surface only. 
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The analysis of the equilibrium of the sharp-boundary model of 

a high-beta tokamak (Section 2) shows that the poloidal magnetic field 

in the FFC region is described by a flux function that must satisfy 

a simple Poisson equation in the plane of the cross-section. However, 

due to the manner in which the problem is posed: determine the equilib

rium fields outside a given plasma surface, this problem is ill-posed. 

In other words, the elliptic problem has the wrong boundary conditions: 

they are Cauchy boundary conditions. In the following section (Section 

3) it is shown how the method developed in Ref. 3 for the case of a 

vacuum region can be extended to include a region with FFC. The method 

consists essentially of an analytic continuation of the boundary data 

on S and results in an analytic expression for the poloidal field in 

the FFC region. In section 4 this solution is employed to evaluate the 

fields in the FFC region for a number of specific cross-sections: the 

circle, the ellipse, and the D-shape. 

Based on the results of section 4 we conclude that, as far as 

the equilibrium parameters are concerned, the screw-pinch mode can well 

be found from the simple condition on the safety factor q on S: dq/dy = 

0. For any cross-section given in a parametric form this condition 

leads to a simple integral condition on the poloidal field from which 

the relationship between the equilibrium parameters corresponding to 

the screw-pinch mode can easily be determined. For a number of cross-

sections this has been done (Section 5) and the corresponding marginal 

stability points indicated in the stability diagram for the high-beta 

tokamak with FFC. 

The conclusions are presented in section 6. Here we point out 

that some of the properties of the fields in the FFC region can be a-

scribed to the sharp-boundary model of the plasma. Furthermore, a com

parison between those fields, evaluated on the basis of the treatment 

given here, with those from a free-boundary analysis shows that the 

first method should be used with care. 
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2. THE EQUILIBRIUM OF THE SHARP-BOUNDARY MODEL OF A HIGH-BETA TOKAMAK 

WITH FORCE-FREE CURRENTS 

In the sharp-boundary model of a tokanak a plasma (V*j with a 

uniform pressure is confined by surface currents. The form oi the model 

that we are interested in is characterized by force-free currents, i.e., 

the usual vacuum region surrounding the plasma is replaced by a region 

carrying force-free currents. 

-1 

The variables describing the plasma are: 

p = constant, p = constant 

B "= BA êA = R B /Rê. , — $ <J> o o $ B = B (R = R ) , 
o <f> c 

( 1 ) 

where the coordinate system (R,e,<i>) is that shown above and P. stands 

for the major radius of the plasma. The geometry of the cross-section S 

is given in the dimensionless coordinate system (x,y) that is centred 

at R ; it is given by: 

xs - xg(t) = (R - Ro)/a , 

y s
 = y s

{ t ) = z / a * 
(2) 

S will be restricted to convex curves and to curves that are symmetric 

with respect to the x-axis; t is an angle-like variable along f that 
ff 

takes on values between 0 and 2ÏÏ. The region V is characterized by 
the presence of force-free currents and its physical variables are: 
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p - o , P » o , 

£ * B = aB , u = constant . 

Like in the stability studies we restrict ourselves to a uniform a. The 

confinement by surface currents leads to the pressure balance relation 

across S: 

p + \*\ = (B2 + B-n/2 , (4) 

where hats indicate that the variables are to be taken on the force-free 

field side. Since S is a flux surface the poloidal variation of the to

roidal fields on S is given by: 

VBo = Vêo = l/(* + E Xs ( t )) ' <5) 

where e refers to the inverse aspect ratio a/R . 

The equilibrium is completely described by the above equations. 

Since the poloidal field B depends only on the plasma parameters and 

not on o (see Eq. 4), the force-free currents do not affect the equi

librium fields on S • Consequently, the surface current model has re

duced the equilibrium problem to determining the solution of (3) with a 

boundary condition that is independent of a. 

At this point we introduce the high-beta tokamak ordering. The 

various quantities are ordered as follows: 

B /B * Ê /§ - 1 , 
(J> O <p O 

B /B - e , 
P o 

(6) 
3 = 2p/BQ ~ e , 

aa ~ e . 

This ordering imposes a certain restriction on V and a. For too large 

a value of a the first condition of (6) will be violated near the outer 

boundary of V . Application of the ordering to (4) yields: 

(B. - B . ) /eB r t = 6/2e + 0 (e ) 
$ $ o 

v2 
(7) 

B ( t ) / e B = /4B/Uk 2 > |~1 - V2k
2 ( l - x <t)) p o [_ s 

where k i s a f r ee pa ramete r of u n i t range (0 <. k <. 1 ) . The f i r s t equa-
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tion shows that the confinement is 6 pinch-like, i.e., the pressure is 

balanced by the toroidal field. The parameter k can be related to the 

safety factor q (on S) or to the plasma current. In Ref. 1 we decided 

to relate it to the current and introduced another safety factor q#: 

q* = a L B 7 R r = eB /<§ > , (8) 
$ 9 O p 

where L refers to the circumference of the cross-section and the aver

age of a quantity Along S is defined by: 

<*>=± aiA , (9) 

d£ being an infinitesimal length along S. The introduction of q* as an 

equilibrium parameter instead of q not only eliminates the undesirable 

behaviour of the safety factor q going to infinity when the separatrix 

approaches the plasma surface but has the additional advantage that the 

stability boundary at low-beta becomes insensitive to the shape of the 

cross-section. Obviously, we can write down an explicit relationship 

between k, 6 and q*. However, it is better to employ the relationship 

between k and the poloidal beta instead. At this point it is useful to 

introduce a poloidal field normalized with respect to q*: 

q*B (t) [1 - V2k
2(l-xs(t))l

1/2 . 0 ) 
b (t) = 2 = _ _ _ _ _ _ _ , uuj 
p eBo <[1 - y2k

2(l-xs(t))]V2> 

so that < b (t) > = 1. From (7), (8), (9) and (10) we see that the usual 

poloidal beta depends in a simple way on 6 and q* and is directly relat

ed to k: 

eg _ 2E£. = (B/e)q»
2 = y„k2/< |1 - V 2k

2(l-x (t))]1/2>2 . (11) 
P <B > 2 S 

The meaning of the range of k is seen to be: k = 0 corresponds to small 

e8 and in practice to a small S, while the limit k = 1 corresponds to 

the equilibrium limit, i.e., when the separatrix has moved onto S at 

xs = -1' 

eB. p,cnt 2</mr>2 - (12) 

s 

Since we are interested in the q-profile in V we need q on S in terms 

of the plasma parameters. From the definition of q it is clear that the 
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ordering together with (10) leads to the expression: 

q/q* = e< |1- l/2k
2(l-x <t))]^> < |1 - l£k2(l-x (t))]" 1^ , (13) 

S d 

where e = L/2iTa. 

The parameter describing the force-free field o will be replaced 

by a quantity normalized with respect to q*. 

r = «R 0q* > <14> 

so that the parameters that determine the equilibrium state of the plas

ma are : 6/e, q* and r. 

The effect of the ordering on the differential equation (3) is 

readily seen by writing it out in components; to leading order B is con

stant and B , B are cf 0(e). Introducing a flux function for the po-

loidal field, 

£ = -i. x v5 = -ë Ü • a. |£ , (15) 

—p (}> - Z 3R R 3z 

the ^-component of (3) in the dimensionless coordinate system yields, 

where i> = •"•••jf-- . 
aeB 

o 

The boundary conditions to be imposed are (Eqs. (10) and (15)): 

n • Vtjy = -b (t) 

l!» = 0 , (17) 

on S. 

The solution to the equilibrium problem has been reduced to a 

Poisson equation but with Cauchy boundary conditions, thus resulting in

to an ill-posed problem (see e.g. Ref. 4 ) . Physically this means that 

the solution becomes sensitive to the boundary data, the more so the 

further one is removed from the surface on which these data are pre

scribed. 
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In the next section it is shown that for a large class of cross-

sections this problem has an analytical solution. However, as we shall 

see this does not mean that the ill-posed character of the solution has 

removed. 
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3. SOLUTION TO THE ILL-POSET PROBLEM 

In the proceeding section is was shown that the equation de

scribing the field in the fore*-free current region is a simple Poisson 

equation with Cauchy boundary conditions on S. In this section we show 

that an analytic continuation of the boundary d#ta enables us to obtain 

the solution in an analytic for*. This meti. >S was employed in Ref. 3 

to arrive at the solution in a vacuus region. 

First we reformulate the problem so that the equation reduces to 

the Laplace equation. This is accomplished by the introduction of an

other flux function: 

*H « * - *p t *p - - £ (x2 + y2) . i 18) 

so that in terms of this function the problem reads: 

?2»H - 0 

on S ' 

n • ï$ - n * 7? - n - 7i,P (19) 

iH - -*P 

» v 

To * there correspondents a magnetic field given by 

u 

Because v is a solution to Laplace's equation it is harmonic and there 
U 

exists a conjugate potential x related to it by the Riemann conditions: 

H _ , H _ H . . H 

4̂ - = &- and *±- = - if- . (21) 
3x Jy 3y 3x ' 

As is well known from the theory of complex variables we can express B 

in terms of a complex potential. 

(z) = x • 1* » 

i - . B« - 1BJ - as 
* dz 

(22) 

The notation A designates the complex conjugate of A. 
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The method of Kerner et al. [3] is based on the fact that when S is 

given in a parametric form the conformal mapping - which maps the region 

outside S i'l the z-plane onto a semi-infinite strip in the ui-plane - is 

known (see figures). 

S' 

u plane 
-»-u 

Let S be given by 

f (t) y = 9(t) (23) 

where t takes on the values between zero and 2TT. The desired mapping is: 

z = h(oj) = f (oo) + ig(u>) , (24) 

where t is replaced by u = u + iv. By putting v = 0 we see t-hat h(oo) 

maps S onto S'. Clearly f and g must be well-behaved otherwise h(w) is 

not analytic and consequently the mapping not conformal. The theory of 

conformal transformations teaches that *(z(w)) is also a solution to 

Laplace's equation and that we can define a field quantity B in the id-

plane that is related to B through: 

B = £* = § — i — 
z dz w h' (ID) 

(25) 

Another consequence of the mapping is that u = u(x,y) and v = v(x,y) 

correspond to an orthogonal coordinate system in the z-plane except at 

those points where h'(w) = 0, i.e., at the points where the mapping is 

not conformal, and that they satisfy the Cauchy-Riemann relations. 

It will be advantageous to replace B by a complex field quantity 

composed of the field components along the u,v-coordinates in the z-

plane: 

- 10 -



where (26) 

' a l In I / l 3ul2
 A f3ul2 /[*A 

2
 f f3vl

2 

I ay J 
/h' (u>)h' (Ü) 

g(u#v) 

The notation h(a>) stands for h(w) = f(w) - ig(w) and is different from 

the complex conjugate of h {<*>): h U ) = h(w). 

From (24) it is seen that (26) reduces to 

B -./EH 
u * v VRM«) 

B (27) 

Combining (25) and (27) we obtain the following relationship between 

B and B : 
U,V ü) 

§ = /h' <u>) h'(ü) B„ „ 
Ut U, V 

(28) 

Since B is known on S (v = 0) and B is an analytic function of w it 
U f v til 

is clear that the solution of B in the w-plane can simply be obtained 

by a straightforward analytical continuation of the boundary data. On 

S' we have 

B(u,v=0) = v'h' (u,v= 0) h' (u,v = 0) 5 (u,v = 0) , (29) 

so that by an analytical continuation we obtain 

Bu(w) = • h' (w,v= 0) fi' (w,v = 0) B u v(to,v= 0) . (30) 

Applying (28) in the reverse direction we arrive at the solution of 

B in the original plane: u / v 

/h'UJhMÜ) 



or t a k i n g t h e complex c o n j u g a t e : 

B +iB = .>S5. 
u v VhMw) 

B ( u , v = 0) + i B (UJ,V = 0) 
u v (31) 

Thus by a conformal transformation and an analytic continuation of the 

boundary data in the co-plane we hav^ obtained an analytic expression 

for the field outside a curve S in terms of the field on S. 

The problem at hand, to determine the field outside S in the 

presence of force-free currents, has been reduced to a form to which 

the above method can be directly applied (19). In terms of the complex 

field quantity the homogeneous part of the solution on S is: 

BH(u) + iBH(u) = b (u)-ê «^Pj +iê 'V^p u v p v -r I 0 u - (32) 
v=0 

Substituting ^p and making use of the Cauchy-Riemann relations we see 

that the contribution of the particular solution can be put in the form: 

-e 
v — 

V*? + ie -V^ = -i £ / H 3 Z h(u) . (33) 
u Z V h*(u) 

The homogeneous field on S is thus: 

BJJ(U) +iB"(u) = b(u) - i L / ^ - h(u) . (34) 
u v p £ V h' (u) 

To arrive at the total field in the physical plane outside S (V ) we 

substitute (34) into (31), replacing u by w, and add to it the complex 

field arising from the particular solution, i.e., (33) with a minus 

sign. The resulting expression is: 

B+iBv - » / E n n b (ü) - i i / m H [ h u ) - h(U>i. <35) 
u V V h' (w) p z V h' (u) 

Based on the form of this solution several observations can be made: 

a. it is independent of the equilibrium problem inside S, it de

pends only on the field along S and on V; 

b. the force-free currents lead to a term proportional to r that 

has the required property of being zero on S; 

c. the first term - the vacuum contribution - can give rise to two 
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classes of stagnation points (zeros in B) that can be branch 

points. The first class is formed by the zeros due to the shape 

only: h'((o) being zero or h' (w) being °°. The other class, the 

zeros originating from b (u>) depend on the shape and the distrib

ution of b (öJ) along S, i.e., in our model on k. Whether the 
P 

stagnation points are simple zeros or branch points obviously 

depends on whether the functions are single- or multi-valued. 

An odd zero in h' (w) will lead to a singularity (branch point) , 

while an even zero will lead to a simple zero in the field. An

other possibility of creating a simple zero is to have an odd 

zero due to h' (w) coincide with an odd zero from b (oo) . This 
XT 

might seen» an unusual coincidence but in Appendix A it is shown 

to be more normal than would appear on the basis of this expres

sion. The branchcuts starting at the singular points are not 

just mathematical entities to make the solution single-valued 

but are physical in the sense that currents run along then;, i.e., 

the branchcut is a current surface. The solution might have 

other singularities, namely where h'(u) is zero. In the cases 

that we shall consider such singularities do not play a role. 

Our object was to evaluate the ^-surfaces in V .In the case of a vac

uum the simplest way to arrive at such an expression was to make use of 

(25) and (28), i.e., B is an analytic function of u. Since the addition 

of force-free currents invalidates this we must make use of B and B : 
u v 

1 9iLr 

u v -r i —— 3v 
Vh' (ui)h' (ü) 

(36) 

» , - - s u - ! * - - 7 = = 15-
Vh' M h ' U) 

The value of \\i at u,v can thus be obtained by a simple integration along 

u = constant: 

v 

<|i(u,v)*J dv [Re{Vn' (ü)h' (Ü) b (w)}+ £lm{h' (ü) (h(ü) - h(w)) }] (37) 
o 

Near the stagnation points such a single integration is often not pos

sible. There one must be aware on which side of the branchcut ty is 

sought and an extra integration along v = constant may be needed. 
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4. FLUX SURFACES OUTSIDE A CIRCULAR, ELLIPTICAL AND A D-SHAPED CROSS-

SECTION 

For a number of different plasma cross-sections and for various 

conditions the solution for the fields in the force-free field region, 

obtained in the previous section, is here employed to evaluate the flux 

surfaces. 

From the pressure balance relation across S we have found (10) 

that the poloidal field on S has the form: 

b (t) = -n • Vifr = C /I - k2/2(l - x (t)) 
P P s 

(38) 

where C = 1/ < /l - k2/2(l - x (t)) > 

The shapes of S that are of primary interest are those that were 

considered in the stability analysis [1,6]. These shapes are described 

by the parametric form: 

x = cos(t + c sin t + dsin2t) , 

(39) 

y = b sin t , 

where the parameter t is an angle-like variable with values between zero 

and 2TT. Since all shapes are symmetric with respect to the x-axis the 

range of t can be restricted to 0 - n. The coefficients b, c and d have 

the following physical meaning: b corresponds to the height or elonga

tion of the cross-section, c to the D-shape character and d to the race

track shape of S. By means of Eqs. (24), (35), (38) and (39) we are now 

in a position to evaluate the flux at any desired point outside the 

plasma surface S. Since every shape has its own complications we shall 

discuss the results by starting with the most simple shape, the circle, 

and then consider the ellipse and the D-shape. 

THE CIRCLE 

The parametric representation for the circle leads to the mapping 

z = h(w) = cosüi + isincü = em = e"v(cos u + isin u) , (40) 

so that in terms of the u,v coordinates a point in the z-plane is given 

by: 
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x = e cos u , 

-v . y = e sin u 

From (35) and (38) the components of the poloidal field along the u,v 

coordinates given by (40) are seen to be: 

B +iB. = C /h' (OS) / v2~ ~, . r /h' (tc) ,, ,-. , . ., ,.1X u v p / i—i- /l - Ĵ -d -cos w) - i x / !—-|h<w) - h ( OJ ) J. (41) 
V h' (w)V ^ V h'(u) 

Note that the unit vector along the v-coordinate is in the negative re

direction (32), i.e., points outside S correspond to negative values of v. 

The napping is so simple that it is immediately clear that the 

only stagnation point arising from it is at infinity and does not affect 

the fields near S. The only stagnation point that plays a role arises 

from b (ui) being zero: p 

- - / k2 ~ 
b UO = C , / l - -~-U - oosu) = 0 , 

p p V 2. 
(42) 

= C 
P 

Y A 2 + B2 exp j a r c t a n (B/A) , 

k2 k2 

where A = 1 - -=- ( 1 - c o s u c o s h v ) , B = - y s i n u s i n h v . , and i s l o c a t e d a t : 

u = TT c o s h v = 2 / k 2 - 1 , (43) 

where v should be taken negative. The interpretation of this stagnation 

point is straightforward. Without force-free currents, F = 0, there 

should be a stagnation point on the inside of the cross-section due to 

the toroidal character of the problem, i.e., y = 0 and negative x . 
P P 

When u and v given by (43) are converted into x and y by means of the 
mapping this point is found to lie at: 

y =0, x = 1 - X - X J\ - k2 . (44) 
*P P k2 kT V 

The behaviour of the stagnation point with k is as it should be: for 

low values of k, 0 = 0(e 2), the point lies at x = -°° , while for k = 1 

it moves onto the plasma surface x = -1 so that the equilibrium limit 

is reached. 
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The stagnation point is not simply a zero point in the poloidal 

field, but a branchpoint as is seen from (41). How do the flux surfaces 

behave in the neighbourhood of this point? Nearx the vacuum fields are 

given by: 

3u + i B = C*yi& + B2 exp j a rc tan (B/A , (45) 

«* / if (w) at this point has been absorbed in C*. where the value 
h'(u) 

From the expressions for A and B it is seen that B is negative for pos

itive y and positive for negative y, while A is positive for x > x and 

negative for x < x . The above expression can thus be simplified to: 

B + i 
u v V 4 { x^J i/s* 

-ie/2 
S << 1 (46) 

where s and 9 are indicated in figure a. 

Figure a. Figure b. 

Keeping in mind that u is something like an angle around the origin and 

v is negative outside s,this equation shows that the distribution of 

the fields along the x-axis near x is as indicated in figure b. For x 

larger than x the field component parallel to the x-axis goes tc zero 

on this axis, as it should because the flux surfaces should be symmet

ric with respect to the x-axis. Beyond the stagnation point, however, 

this is not true anymore; there the field component B is not zero and 

changes sign when going from y = +e to y = -e. Consequently, there must 

be a current layer from x = x to x = -<*>. The other field component B 

is finite and proportional to /s when 9 = 0 out for x < x this com

ponent is zero. Thus, flux lines do not cross the x-axis when x < x . 
P 

Since x is a zero point of the field, the current in the layer along 

- 16 -



the x-axis must have the same dependence on s as B , i.e., in the neigh-
v 

bourhood of x it is proportional to /s. Another point that should be 
observed is that although B goes to zero when * -+ x (x > x ) the deriv-

3 u P P 

ative of the field with respect to x goes to infinity. The current in 

the layer has the same direction as the surface current in the plasma, 

it creates the vertical field needed to keep the plasma as a whole in 

equilibrium. Figure la shows the flux surfaces for a plasma with k= .9. 

The replacement of the vacuum by force-free currents does not 

give rise to extra singularities. The contribution from these currents 

to the field is something like an extra poloidal field: 

BF +iB F = -l£ ,h' (u>) , lh(u) -h(io)l = -Tsinhv , (47) 
u v 2 |h'(w) ) 

namely everywhere a positive contribution to B . Consequently, is does 

affect the stagnation point: the field at x is not zero anymore but it 

does not move the sigular point to larger negative values of x as it 

would have had the zero point be a simple zero. Now the field on the 

-x-axis has everywhere a vertical component so that the stagnation 

point has disappeared and the field lines cross the x-axis. Together 

with the jump in the horizontal field component due to the current lay

er this results in a field structure along the x-axis as shown in Fig. 

lb. 

The influence of 6 and r on the field structure is now clear. 

With increasing 0 the stagnation point moves from x = -°° towards x = -1, 

and addition of force-free currents removes the stagnation point but 

does not remove the current layer along the branchcut of the correspond

ing vacuum case. 

THE ELLIPSE 

The ellipse in parametric form is 

x = cost , y = b sin t , (48a) 

so that the corresponding mapping and poloidal fields are 

z - h(to) = cost*) + ibsinnj , (48b) 



The difference in the fields in relation to the ones for the circle 

lies only in the mapping and thus in a different u,v-coordinate sys

tem in the z-plane. 

Like in the case of the circle we first consider the vacuum so

lution (T = 0). The location of stagnation points due to the mapping 

is given by 

h' (u>) = - sin u(cosh v + b sinh v) - i cos u(-sinh v - b cosh v) = 0 

which results in the following possibilities for u and v: 

a) u = 0 or it , sinh v + b cosh v = 0 , 

b) u = | or y , cosh v + b sinh v = 0 

(49) 

The first one must be disregarded because the condition on v cannot be 

satisfied. The second class leads to two zero points on the y-axis, 

symmetric with respect to the axis, above and below S. In terms of y 

these points are located at: 

- ± [ b cosh v - sinh v = + 
b^ + 1 

/b2 - l 
(50) 

outside S v is negative. These two points move in along the y-axis 

from ±°° toward y = ±b with increasing ellipticity. With an elongation 

b = 2 these points are located at y = ±5//I = +2.89. 

The square root dependence of thr: field on h'(uj) means that the 

stagnation points are also branchpoints. The corresponding branchcuts 

are entirely determined by (48c). The dependence on h' (w) implies that 

the difference B + iB on the two sides 

of the branchcut is just a change in sig.. 

(r=0). As across a current layer only 

the parallel field component can change 

sign this means that there is no field 

component normal to the branchcut and 

that it is a flux surface. To understand 

the behaviour of the branchcut with 8 we 

expand (48c) around the stagnation point 

In terms of s and 6 that are related to 

the u,v-coordinates by: 

u = IT/2 + s sin 6 , v = v + s cos ft , 

~z 
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the vacuui.1 field in. the neighbourhood of Q is 

B + iB u v = C 
sinh v 

I ! 
+ b cosh v 

3 9 
p coshv -b sinh v 
L 3 SJ 

v2 
/s e i0/2 /(I - ^ + i ^ s i n h v„) , 

q 

(52a) 

= C /s e i(9-A)/2 

where the angle A is related to the value of k, 

A = -arctan 
k2/2 sinh v 

' c 
I -k2/2 

(52b) 

and all other factors are absorbed in C . The condition that B should 

be parallel to the branchcut is: 

B cos 6 - B sin 6 = 0, u v (52c) 

or by use of (52), cos(30/2 - A/2) = 0. 

This condition is satisfied by four angles, 

6j = TT/3+A/3, 92 = -TT/3+A/3, 93 = TT + A/3, 94 = -ir + A/3 . (53) 

The reason for finding so many angles is that (53) only represents the 

condition that at an angle 9, B should be directed toward or from Q. 

For the branchcut we have the additional requirement that on both 

sides this direction should be opposite. 

branchcut 

separatrices 

J 
120° r \ 
/ ƒ 120" 

branchcut 

P = 0 p * 0 
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Clearly, 9̂  and 8. correspond to the two sides of the branchcut and 

the other angles refer to the separatrices that originate from this 

stagnation point. Thus the two separatrices make an angle of 120 with 

each other no matter the value of k or the elongation IS1. At low-B, 

(k *» 0), the toroidal effects are then negligible, the branchcut is 

vertical while with increasing values of k it undergoes a right-

handed rotation (Figs. 2a,b). 

The stagnation point from the analytical continuation of the po-

loidal field lies obviously at the same position in terms of u and v as 

in the case of the circle: 

u = IT , and cosh v = 2/k2 - 1 . (54) 

However, because of the mapping, this is at a different point in the z-

plane. It is now located at: 

y = 0 , x = l - 4 - - ^ T /l - k2 , (55) 
JP P k7 k7 

which agrees with (44) for b = 1. The position of this point is a func

tion of the elongation, the larger b the further away it is from the 

surface. Like for the circle this stagnation point is a branchpoint and 

the beginning of a current layer along the -x-axis, and it moves to

wards x = -1 with increasing k. Also the behaviour of the flux surfaces 

is the same (Fig. 2b). 

The effect of the force-free currents is similar to that in the 

case of the circle. The extra term does not give rise to extra sin

gularities and in a global way it means that in every point an extra po-

loidal field is added to the vacuum field. The branchcuts stay wtî re 

they were at r = 0 and remain current surfaces through which t;ie flux 

surfaces now pass (Fig. 2c). 

D-SHAPED CROSS-SECTIONS 

The parameter representation of S given by (39) is very well 

suited to describe a D-shaped surface. With d = 0, b scill describes 

the height of the cross-section while c is directly related to the 

shift of the top of the D in the - or + x-axis direction (Fig. 3). The 

mapping corresponding to this representation is: 

z = h (OJ) = cos (ui + c s i n c i ) ) + i b s i n w . (56) 
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In the previous cases the stagnation points have complicated the 

numerical analysis of the flux surfaces but the location was readily 

determined analytically. For the circle there was only one, the one that 

arose fro,m the analytical continuation of b , while the ellipse had 

three such points: two from the mapping and one from b (ID). In the case 

of the D-shape the number of stagnation points originating from the map

ping has increased so much that a full analysis of the flux surfaces is 

useless. However, many of these lie far from S and affect the flux sur

faces in a region which is of no interest. Therefore, we restrict our

selves to those stagnation points that only affect the fields near S. 

Table I contains a list of stagnation points that arise from 

zeros of the mapping function for various D-shapes. From this table, 

together with the results for the circle and the ellipse, emerges the 

picture that the position of the points nearest to S are closely related 

to the curvature of S. The larger the curvature in a region, the closer 

a stagnation point. 

The number of stagnation points arising from the analytic con

tinuation of 6 (to) increases also and their behaviour with beta becomes 
P 

more complex. The position of these points must satisfy: 

1 - ^- I 1 - cos (to + c sin ID) J = 0 . (57) 

Assuming that there will be a point on the -x-axis, we look for solu

tions to (57) at u = IT , i.e., v should be a solution to: 

2 
cosh(v - c sinh v) = —^ - 1 . (58) 

kz 

While with c = 0 this equation can have only one solution for v, when 

c is finite the curve always changes its character and has a minimum 

and a maximum. The number of zeros can then be one or three depending 

on the value of k (Fig. 4). This would seem a strange behaviour and up

on close examination is found not to be true; there are always three 

roots. For small values of k there is indeed one zero on the axis but 

there are also two roots off the axis, one above and one below. With 

increasing k the latter move towards the surface S ami towards the axis. 

At that value of k for which (58) has exactly two solutions these roots 

coalesce on the x-axis. and move apart along this axis upon further in

crease of k. 

The influence of the D-shape on the root (from b ) nearest to S 

is seen to be as follows. Equation (58) shows that a positive value of 

c - an inward leaning D - results in a larger negative value of v. As 
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the x-coordinate of this point is given by: 

x = Real fh(u = TT + iv)) - -cosh(v - c sinh v) + b sinh v , 
P *• ' 

(59) 
2 

= 1 - -r-z + b sinh v , 
kz 

we have the same expression as for the ellipse. However, the value of v 

that belongs to this point is larger (negative) than the one for the 

ellipse (58) and thus results in a point further removed from S. In a 

sense this stagnation point behaves like the ones related to h'(w), it 

is further removed from the surface the smaller the curvature. 

The behaviour of the flux surfaces near the stagnation points 

with and without force-free currents is similar to that in the case of 

the ellipse (Figs. 5a,b). 
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5. THE STABILITY OF THE SCREW-PINCH 

The previous sections All dealt with the determination of the 

magnetic fields outside a high-beta tokamak plasma. In this section 

the original question will be addressed: which combination cf equilib

rium parameters (?. q* and D gives rise to q-profiles that correspond 

to those of a screw-pinch. 

In terms of the dimer.sionless poloi«c; field b_, the safety 
P 

factor q on a flux surface is, 

q/q* « J- f «*• * <*0> 
* - J b 

P 

where dl* is an infinitesimal length along the y s constant surface in 

the dimensionless coordinates of the cross-section. Since the .-surface 

depends only on k (through the boundary condition) and 7, the q/q* ver

sus v-profile has a similar dependence. The stabi'ity results [1,6 I 

were displayed in (p/*,q*) plots. In such a figur the line k = const 

(11) corresponds to a hyperbola S/c q*" * constant. The dependence of 

q/q* on k and f thus implies that on each ?/e q*' = const line q/q* 

do^s not vary. 

In the figures 6a,b and 7a,b the q/q* dependence or. the flux sur

face has been plotted for the ellipse and the D-shape, that were ana

lyzed in the previous section, for various values of k and .; the de

pendence on the flux has been replaced by the intersection points of 

these surfaces with the +x-axis. What do these figures tell us? Essen

tially two things. First, -r̂  decreases with increasing I" and with in

creasing k. More important is the observation that almost uniform q-

profiles do exist so that the condition for having a screw-pinch can 

well be put in the form: 

3? K n S S ° ' (bU 

This condition is much simpler to implement than to evaluate q through 

the solution of the ill-posed problem as was carried out in the pre

vious section. In fact, by employing the theory of section 3, wa shall 

see that this condition can directly be transformed in a relationship 

between e 6 (or k) and T. 
P 

In terms of thp. (u,v) coordinate system (in the z-plane) intro
duced in section 3 (60), on S, reads: 

q/q* = •=- du -3— • -— ' du -3-

*v v=o 
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where g(u,v) is given by (26). Because S is a ma$netic surface coin

ciding with a coordinate surface (v = 0) differentiation with respect 

to vp yields : 

_d_ 
di[) q/q ' 2TT 

du 

"I 

3 I|I 

1 _3g_f_ _ q2 Z2<p 

3v w J 
(63) 

The second derivative of vp with respect to v, on S, can be obtained 

from (16): 

9v2 - r g
2 , (64) 

The equilibrium parameters, leading to a uniform q-profile, must thus 

satisfy 

f2ir 
d 

di|j q/q* l 
2TT 

o 
du 1 

a 2 b 2 

." P 

+ r _g_ 
b 3 

p 

= 0 , (65) 

h' (co) h' (uj) . Clearly this results in a relation between cQ where g2 = 

(or k) and r, because b depends only on k. Figure 8 shows the results 

of a calculation for an ellipse with an elongation of 1.5. The points 

on this curve correspond to equilibrium parameters of a screw-pinch 

while for points above -=̂  ^s negative and below it the derivative is 

positive. 

Let us now impose the above condition on the equilibrium param

eters for a high-beta tokamak and so arrive at the stability results 

for a screw-pinch. Pig. 9a depicts the marginal stability curves for an 

ellipse (b/a = 1.5) i.or various values of force-free currents. Since 

e6 (= 6/eq*2) is constant along the curve (0/e)q*2 = const, the radial 

q/q* profile and therefore g| on S do not vary either. A point of 

Fig. 8 corresponds to a curve (8/e)q*2 = const, in Fig. 9a, so that the 

intersection of this with the curve for marginal stability corresponds 

to the marginal stable point of the screw-pinch. For the ellipse these 

points are indicated in Fig, 9a by the squares 1 to 3. The curves a, b, 

d, f mark the boundary of the stable region for the values of the FFC: 

eT = 0, 1, 2 and 3. The points 1 to 3 are the marginal stable points 

for the screw-pinch with the following values of the FFCJ eT * 0.1, 

1, 1.5 and ~2 (e = L/2na, L is the circumference) . Above these points "rjj 

on S is negative while below them, on the curves of marginal stability 
£3 
dti» on S is positive. 
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In the same manner the stability of the "screw-pinch" mode can be 

determined for other cross-sections. Figures 9b and 9c show the results 

for two D-shapes (c = 0.3 and 0.5) with the same elongation as the el

lipse and the results for the same shapes but with an elongation b/a = 2 

are shown in Figs. 10a, b and c. In analyzing these figures we must keep 

in mind that the model only approximates the experiment so that the 

"screw-pinch" mode points should really be given error bars. The figure 

shows that a large part of the stability diagram for each of these cross-

sections is not available for the screw-pinch. The gain in beta due to 

the addition of FFC for a given cross-section is only slight although it 

permits one to increase the plasma current. The FFC should not be taken 

too large otherwise the marginal stable points for the screw-pinch mode 

of operation start to move to lower betas. Elongating the cross-section 

leads to an increase in beta. For the ellipse, however, one should not 

go further than b/a =* 2. The rapidly increasing curvature at the top of 

the ellipse leads to a decrease in beta for larger elongations. The fa

vourable effect of elongating the cross-section is best retained when 

the cross-section is given a D-shape together with the elongation. This 

is seen from Table II where the maximum values of 0/e, obtained from the 

Figs. 9 and 10, are listed. Shaping the cross-section can almost double 

the maximum value of B/e with respect to the one for the circle. 

In the experiment one might well obtain higher values of beta be

cause the q-profile might not be exactly uniform and the values obtained 

by the method employed in this report are quite sensitive to the values 

of 7^ on S. Furthermore, the effect of the wall on the stability might 

be quite appreciable. In the stability results presented in 11,6] this 

effect has been neglected. 
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6. CONCLUSIONS 

To determine the combination of equilibrium parameters of a high-

beta tokamak that gives rise to a screw-pinch equilibrium it was neces

sary to obtain the fields outside a plasma whose cross-section is pre

scribed. The high-beta tokamak ordering reduces this to a two-dimension-

il elliptic problem with Cauchy boundary conditions: an ill-posed problem. 

For a large class of plasma cross-sections this problem can be solved. 

By an analytic continuation of the boundary data one obtains an analytic 

expression for the poloidal field. The fields outside the plasma - in the 

surface current model of a high-beta tokamak - with various cross-sections 

have been determined by means of this solution. From these results it was 

concluded that the screw-pinch mode of operation of a high-beta tokamak 

- a uniform q-profile - can well be determined from the condition on the 

derivative of q on the plasma surface: - d£L di|; 
„ = 0. This leads to a simple 
S 

integral condition from which the combination of equilibrium parameters 

that correspond to a screw-pinch can readily be determined by numerical 

means. For a number of plasma cross-sections this has been carried out and 

leads to "screw-pinch" points on the marginal stability curves in the 

stability diagrams (Figs. 9, 10). These figures show that the stable re

gion in parameter space for the screw-pinch is much smaller than that for 

the high-beta tokamak with FFC. The effect of adding FFC is reduced be

cause although it enlarges the stability region its effect through the 

equilibrium leads to smaller eB , thus to smaller 0's unless the first 

effect dominates. The best results are obtained for elongated cross-

sections with a D-shape. A plasma with a D-shape: b/a = 2, c = 0.3 reaches 

a maximum stable beta of .63 e. 

The form of the analytic solution for the magnetic field in the re

gion surrounding the plasma suggests that a classification of the stagna

tion points in two groups - one arising from the shape of the cross-sec

tion (S) alone and one based on the distribution of the poloidal field 

over S (b ) - is useful. The analysis in Appendix A serves to point 

out the special nature of the surface current model in this respect. It is 

shown that for the case of a cylindrical plasma with a uniform current 

these two groups interact: the stagnation points from S coincide with 

those arising from £ . Therefore, it may not be concluded that the stag

nation points - as is the case for the surface current model - are usually 

branch points and thus accompanied by surface currents. Were that the case 

they would impose a serious restriction on the shape of the cross-section 

and the beta of a plasma confined and held in equilibrium by a conducting 

shell. The plasma surface S would then not be permitted to take on a shape 

so that a corresponding stagnation point would lie within the shell. A 
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similar requirement on the stagnation point from b would lead to a limit 

on the plasma beta. Not only would this be true for a plasma surround

ed by a vacuum but also in the presence of FFC. In the case of simple 

stagnation points this reasoning does not apply because these points are 

not accompanied by a branchcut carrying surface currents. Furthermore, 

FFC can always move such points to a location outside the shell. 

The ill-posed problem appeared only because the plasma cross-

section was .specified. It could have been prevented by considering the 

free-boundary problem. This problem has been investigated in [71. How 

do these two approaches compare? This has been investigated in Appendix 

B by approximating the plasma shape obtained from the free-boundary anal

ysis by an analytic form that could serve as an input for the ill-posed 

problem. The magnetic fields surrounding the plasma thus obtained, do not 

agree with the ones from the free-boundary analysis. The treatment in 

Appendix B shows that the ill-posed character of tha solution to the prob

lem of the prescribed plasma shape has to do with the fact that the so

lution is sensitive to the higher harmonic content of the boundary con

ditions. Consequently, the analytical solution is useful for such pur

poses as encountered in this paper but otherwise should be used with care, 

in particular in the region where stagnation points occur. Only in the 

neighbourhood of the plasma surface is the solution insensitive to the 

higher harmonics of the boundary data. Obviously, the same comment ap

plies to all analytic solutions, e.g., by means of expansions in a 

small parameter, of similar "ill-posed" problems. 
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A P P E N D I X A 

SKIN CURRENT MODEL VERSUS DIFFUSE PLASMA CURRENTS 

The method of finding the field distribution outside a given 

cross-section - developed in Sec. 3 - has been applied to the surface 

current model only. Below, it shall be investigated to what extent the 

observed features of the fields can be attributed to this special model. 

As we have pointed out the method for determining the fields out

side S is independent of the plasma equilibrium inside S. Therefore it 

applies to a diffuse equilibrium as well. However, to be of any use, the 

field on S as well as the surface S itself must be in an analytical form 

and the high-beta ordering must be applicable. The first two require

ments are unfortunately not easily satisfied. Not surprisingly because 

the equilibrium of a diffuse plasma is a problem in its own right. 

A model that is sufficiently different from the skin current 

model and meets the requirements mentioned above is that of a cylindri

cal plasma with a uniform current, zero beta and arbitrary cross-section, 

embedded in a strong parallel magnetic field. The fields inside and out

side S again are described by flux functions that must satisfy: 

VP V2^P = rP |la) 

S -n*V>P = -n/V* ; ij>p = ty = const (lb) 

vff V2^tf a rff (lc) 

Before concluding that we must consider a special shape - even this 

simple problem is not tractable by analytic means for a gtneral S - let 

us proceed as far as possible. 

To determine the flux surfaces in V we do not necessarily need 

tji in Vp but only b on S, i.e., n*V_yp on S. From (lb) and S in the form 

y = y (x ) we derive 

p V dxj s 3y j x (2) 

In terms of the mapping introduced before t h i s i s 

A - ~/h ' (u)f i ' (u) d^p) ... b
P gp 5FJ X

 (3) 

9u ; v =o 
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Is this a useful expression or does it only hide a dependence of -r̂ j or 
3xï y i x 

^— on h'lu)? Is after all the following expression: 
dU v=0 

(4) b = 
P 

- n .V i j j p = 

/ h ' 

1 

(u)E' <u) 
3 * P 

3v 

not better? Substitution in (35) clearly leads to different conclusions 

about the presence and the nature of the stagnation points arising from 

the mapping. The last expression (4) even suggests that there is no 

stagnation point due to h*(w). The surface current model has shown that 

such points do exist, and on that basis we can disregard (4). However, 

also the first expression for b suggests something different. On the 

basis of this we might conclude that the stagnation points due to h'(u>) 

are simple, i.e., not accompanied by branchcuts carrying currents. Al

though this is not true for the skin current model it is true for the 

cylinder with an elliptic cross-section and a uniform current distribu

tion [5] . 

To proceed further we consider a shape related to the ellipse 

with a uniform current but one that is more general. The cross-section 

S given by 

C xx
2 + C 2 y

2 + C3(x
4 - 6x2y2 + yt*) = 1 (5) 

was used in [ 1 ] to describe a racetrack and permits an analytic solu

tion of (la): 

r p iip = (C x2 + C_y2 + C.tx1» - 6x2y2 + y1*) - 1] . (6) 
2{C1 + C2) 

This solution is obtained by employing the requirement that a solution 

to (la) must be of the form: 

r p 

i|»p = f (z) f f (zj + V zz . (7) 
4 

To obtain from this the solution of the fields in V is straight

forward. Through (3) we obtain £ along S and the fields in V are ob-
P 

tained by the same method as before: an analytic continuation of the 

boundary data. In writing b in (3) we left the point open what u stood 

for. In the case of the surface current model it was an angle-like param

eter. Here, S is not in a parameter form. The simplest way to bring it 

in such a form is to write (5) in polar coordinates; 
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Cjr1* cos 46 + r2 ((^ cos2 e + C 2 sin
2 6) - 1 = 0 . (8) 

The solution of r in terms of 6 can be carried out so that r = r(9) is 

known explicitly. A suitable mapping is thus: 

x + iy = h(u)) = r(üj) eluJ . (9) 

Making use of (6), (8) and (9) b from (3) can be shown to reduce to: 

p 
6 (6) = /n' (6)R' (9) - (C^r* cos 48 + 1) . (10) 
P (C1 + C2)x

1 J 

Analytical continuation of this field yields the following expression 

for the vacuum field outside S (35): 

B + I B = I?l , ^ n ' (">)""' <<*>> [C-.r'UÜ) c o s 4Ü + 1] . (11) 
U V n ( w ) ((C1+C2)r

2(w)) 3 

Since the zeros of h'(ü>) do not coincide with those of r2(o]) this ex

pression proves that these points correspond to simple stagnation points 

and not to branch points. In the case of the surface current model the 

zeros would be at the same points but would be branch points. The field 

on S for this model is namely a constant so that 

(B + IB ) -JÜLÜÏL (12) 
u v' V h'(u) 

To complete this section we consider the ellipse with a uniform 

current. This is a special case of the one just treated that has the ad

vantage of leading to a simple expression for the fields in V . Instead 

of using (11) - which leads to complicated expressions - we use the map

ping employed in Sec. 3: 

b p = /h'(u)R*(u) ^ L j , (13) 

so that the field in V takes on the simple form 

This expression confirms the conclusions reached before. The stagnation 
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points from the mapping coincide 

el but are now only simple zeros, 

we find that the two separatrices 

dicular and like in the surface c 

of the elongation. 

dth those for the surface current mod-

By expanding around a stagnation point 

intersect and cross each other perpen-

.rrervt model this angle is independent 
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A P P E N D I X B 

FIXED-BOUNDARY VERSUS FREE-BOUNDARY ANALYSIS 

The problem treated in this paper is ill-posed because the plas

ma cross-section is prescribed. In the toroidal screw-pinch "Spica" the 

equilibrium of the plasma is actually a free-boundary problem. A good 

conducting shell determines the shape of the outermost magnetic sur

face and the confined plasma - surrounded by force-free currents - takes 

on the shape needed for equilibrium. For the same plasma model as was 

considered here such a free-boundary analysis was carried out (7). A 

high-beta tokamak plasma surrounded by a vacuum region was confined by 

a circular conducting shell. The shape of the plasma and the position 

with respect to the shell were determined as function of beta. The fol

lowing question now arises: how do the two equilibrium analyses compare? 

A comparison was made as follows. A certain plasma shape and beta were 

taken from the free-boundary analysis and used as input for the method 

developed in section 3 to evaluate the field outside (Fig. 11}. The fact 

that we considered only shapes representable by (39) means that an ac

curate representation cf S in this form is not really possible. The pa

rameter combination: 

b = 1.38 c = .1268 d = 0.04 and k = .955 

is found to lead to an S close to the one given. When the stagnation 

points corresponding to this solution are plotted (P,Q) we see immedi

ately that both points fall within the shell (Fig. 11). In terms of the 

dimensionless coordinates of S these points are located at: 

stagnation point shape: x~ = -1.2 y_ = ±2.25 

„ „ „ „ beta: xp = -2.47 yp = 0.0 . 

Clearly the two methods do not give the same result. How must this be 

understood? Although the approximation to the surface looks good it is 

rather poor when the corresponding Fourier representations are consid

ered. The difference lies in the higher order components. It is exact

ly this difference that plays a role in the ill-posed problem. The so

lution is sensitive to the higher harmonics. This can be shown very 

simply by first Fourier analysing S: 

x = r (6) cos 9 ' y = r (8) sin 9 

(1) 
r (ö) = I °«<9) cos m9 

miO m 

and then applying the method of section 3 with the mapping 
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h(io) = r(u) e (2) 

to obtain the fields outside S. Applied to the ellipse we observe: the 

original stagnation point is further away from the surface when only a 

few harmonics are taken and other spurious stagnation points appear. 

The latter are more numerous and closer to S when more harmonics are 

taken into account (Table III). Based on this observation we must con

clude that our method of determining the fields outside a cross-section 

S on which the poloidal field is given cannot claim to yield "the" 

solution. The ill-posed character of the problem makes that the solu

tion is sensitive to the higher harmonics of the surface, especially 

far away from S. All that can be said is that the analytic solution is 

close to the "correct" solution in the neighbourhood of the surface. 
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Table I 

stagnation points arising from h' (ÜJ) = 0 for various D-shapes 

elongation D-shape stagnation points 

b/a c 

1.5 0 X = 0 y = ±2.9 

1.5 0.3 x = 3.31 y = 0.C 

X = -37.1 y = 0.0 

x - -.816 y = ±2.10 

2.0 0 x = 0 y = ±2.887 

2 0.1 x = 13.43 y = 0.0 

x = -.289 y = ±2.82 

2 0.2 x = 7.27 y = 0.0 

x = -.494 y = ±2.69 

X = -7.25 y = ±24.11 

2 0.3 x = 5.28 y = 0.0 

X = -.625 y = ±2.56 

X = -51.5 y = 0.0 
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Table II 

maximum betas for the screw-pinch 

c r o s s - s e c t i o n e longat ion b/a D-shape ih 

c i r c l e 1 0.38 

e l l i p s e 1.5 0.52 

n 2 0.58 

•t 3 0.53 

D-shape 1.5 c = 0 .3 0.52 

Vf 2 c = 0 .3 0 . 6 3 

» 

Table III 

Stagnation points for ellipse b/a =1.5 with S given by a Fourier series 

yQ -13.95 

y Q = ±3.io 

y n = o.o 

yTII = ±1.07 

m <. 5 
xQ = 0.0 

x = ±2.66 

m < 10 

xQ = 0.0 

x = ±2.19 

XIII " t2-29 
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y 

Cfi = . 36J9 Ik * . 9 1 ; no f o r c e - f r e e currents 
P 

y 

i 

- 4 - 3 - 2 - 1 

eB - .3639 (It * . 9 ) ; I* - I. 
P 

Figs, 1: Flux surfaces around a high-beta tokaaak pias 
with a circuia- cross-section. 
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»• X 

F i g s . 2 : Flux s u r f a c e s around a h i g h - b e t a tokamak plasma wi th an e l l i p t i c a l c r o s s -
s e c t i o n (b/a = 1.5, e * L/2ir = 1 .262) . 

a) f.B = 0,0 (k = 0 ) ; e r = 0 . 0 , b) f.fi = .366 <k = . 9 ) ; e r = 0 . 0 , 

c) eg = .366 (k = . 9 ) ; eT - 1. 



Fig. 3: D-shaped cross-sec t ions given by the parameter 
representat ion (39) for two values of c and 
two elongat ions . 

Fig. 4: Function y = cosh(v - c s inh v) , for c = . 3 . 
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4 -

3 -

2 -

1 I -

1 
1 

1 
! \ \ 

1 1 

1 . t L i l 
3 - 2 

£0 = .392 (k = .9) ; eT = Q. 
P 

y 
4 -

3 -

2 -

- » * • x 

£B = .392 (k = . 9 ) ; e f = 1.0 . 

F i g s . 5: Flux s u r f a c e around a h i g h - b e t a tokamak plasma 
wi th a D-shaped c r o s s - s e c t i o n (b/a = 1 . 5 , c = 
. 3 , e = L/27T = 1.267) . 
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; e l l i p se b/a -^1.5 k =0.7 

eT = 1.5 eT = 2.0 
6h 

4 -
i 

2r 
i 

o|— 

6U 

i 
o|— 

6U 
er = 0 . 0 eT = 1.0 

4k 

2\- ____ 

ol 1 , , 
1 1.2 1.4 L 1.2 1.4 1.6 

— x 

e l l i p s e b / a = 1 . 5 k = 0 . 9 1 
i 

1 ' " T j 1 1 

q/q* 
4K 

2 -

ef = 1, e r = 2 .0 

Fiqs. 6: q -prof i les in the FFC region outs ide a high-beta tok.am.ak 
plasma with an e l l i p t i c a l c ross-sec t ion for various va l 
ues of T (b/a = 1.5, e = L/2ïï = 1.262} and for two v a l 
ues of Cgp: £.$„ = .165 (k = 0.7) and eS = .366 <k = . 9 ) . 
The x-coordinaie of a point corresponds to the i n t e r s e c 
t ion of a ^-surface with the x-axis (see Fig . 1 ) . 

ID shape b/a = 1.5 k=0 .7 
c = 0.3 

: i r T~T r ' i T" 

D shape b/a = 1.5 
c = 0.3 
T " ' 

q/q' 

Figs. 7: q-prof i les in the FFC region outs ide a high-beta tokamak 
plasma with a D-shaped cross-sect ion for various values 
of F (b/a = 1.5, c = . 3 , e = L/2TT = 1.267) and for two 
values of t;6 : £.6 = . 17 (k = .7) and eft = .392 (k = . 9 ) . 
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er 
4 

Fig. Ö: Relationship between i and 
egp for a high-beta tokamak 

plasma with an e l l i p t i c a l c ross -
section (b/a = 1.5, e = L/2TT = 1.262) 
for which dq/a^l = 0 . 
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Figs. 9: Marginal stability curves 
for a high-beta tokamak 

plasma with different cross-sections 
and for various values of eF: 
a) eT = 0, b) er = lp c) er = 1.5, 
d) ef = 2, f) eT = 3; the shaded side 
indicates the stable region. The mar
ginal stability points corresponding 
to the screw-pinch are indicated by 
U; the value of eT at the points 1,2, 
3 is respectively eT = .1, 1 and 1.5; 
the value of e for these cross-sec
tions is: ellipse e = 1.262, D-shape 
(c = 0.3) e = 1.267, D-shape (c = 0,5) 
e = 1.273. 
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E l l i p s e b/a = 2 
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equilibrium 
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Figs. 10: Marginal stability curves 
for a nigh-beta 1 okasiak 

plasma with different cross-sections 
and for various values of 'if: 
a) eï' = U, b) e r = 1, d> ef = 2, e) 
er = 2.5, f) el' = 3; the shaded side 
indicates the stable region. The mar
ginal stability points corresponding 
to the screw-pinch are indicated by i;; 
the value of et" at the points 1,2,3,4 
is respectively: t T = . l , .5, 1 and 
1.5; the value of e for these cross-
sections is: ellipse e - 1.542, D-
shape (c - 0.3) e = I -54f», D-shape 
{c = O.aJ e = 1.55. 

shell 

:'.g. 11: Equilib ium of a high-
beta tokamak plasma 

with respect to a cenducting 
wall, with a circular cross-
section, from a free-boundary 
analysis (ep> ~ .493 or k = 
.955). P 

-J. 5 1.0 1.0 1.5 
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