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ABSTRACT 

A simple model is presented for the production and absorption of 

ordinary and extraordinary mode energy in various regions of the ELMO 

Bumpy Torus plasma. The plasma is divided into two regions: (I) the 

low magnetic field side of the extraordinary mode cutoff and (II) the 

high field side of the cutoff. Energy balance equations are written for 

the sources (injection, mode conversion, and tunneling) and sinks (mode 

conversion, absorption, and tunneling) in each region, and simplified 

models are introduced to account for each of these processes. Since a 

typical ray makes several reflections from cavity wall surfaces before 

being absorbed, additional simplifying assumptions are made that the 

wave fields are an isotropic incoherent superposition of plane waves and 

that the energy density of each mode is uniform in a given region. 

It is found that conversion between eigenmodes upon wall reflection 

and absorption of the extraordinary mode at the fundamental cyclotron 

resonance are the most rapid processes. The relative fractions of the 

injected power that is deposited in the various plasma components are 

typically 25% to the annulus, 22% to the core plasma, and 53% to the 

surface plasma. The partitioning of energy between the three plasma 

components is determined largely by geometric characteristics of the 

walls, the plasma, and the fundamental cyclotron resonant surface. The 

results are comparatively insensitive to other parameters of the model 

and in rough agreement with estimates of power deposition based on 

experimental data. 

v 
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1. INTRODUCTION 

The importance of microwave propagation and absorption in ELMO 

Bumpy Torus (EBT) cannot be overemphasized in that plasma production, 

heating, and stabilization by means of the hot electron annuli a£i: 

dependent on these processes. A quantitative understanding of microwave 

energy deposition in the core plasma is, of course, necessary to inter-

pret experimental energy confinement studies in the current devices. 

Also, a knowledge of microwave propagation and absorption processes is 

necessary in order to extrapolate with any confidence to larger EBT 

devices such as EBT-P and an EBT reactor. 

In the present work we concentrate on modeling the EBT-I device. 

In the EBT-I experiment three different plasma components are observed 

(see Fig. 1): (1) an annular, high beta, relativistic electron com-

ponent, which is mirror-confined in each sector; (2) a toroidally 

circulating, isotropic core component of moderate density and temperature, 

which is radially confined inside the magnetic well produced by the 

annulus; and (3) a cold, low density surface plasma extending from the 

outer edge of the annulus to the cavity wall. A major result of the 

power balance model has been to provide estimates of the total microwave 

power deposited in each of the plasma components. 

A number of theoretical studies [1-3] have been undertaken to 

elucidate the role of various propagation and absorption processes in 

EBT, and a qualitative understanding has been obtained, at least of the 

core heating in EBT-I. For the complicated, asymmetrical geometry of EBT, 

details of the wave propagation characteristics and absorption must be 

determined by ray tracing. However, some general statements can be made: 
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A central feature of the propagation is the presence of the 

extraordinary mode, right-hand cutoff. This evanescent zone 

prevents extraordinary mode energy injected near the mirror 

midplane from propagating directly to the fundamental cyclotron 

resonance. 

Because of strong gradients in |§| along field lines, any 

extraordinary mode energy propagating from the high field side 

(mirror throat region) is totally absorbed at the fundamental 

resonance. This is true even for the low density surface plasma. 

The density and temperature of the core plasma in EBT-I are 

sufficiently small that heating of the core plasma by the 

ordinary mode is negligible at both the fundamental and second 

harmonic resonance. 

• Heating of the core plasma by the extraordinary mode is 

negligible at the second harmonic resonance. 

Both ordinary and extraordinary modes are absorbed by the hot 

electron annuli. Experimental measurements of the annulus 

energy lifetime indicate that one-fourth to one-third of the 

total injected power is absorbed by the annuli. 

• Plasma resonance occurs at the upper hybrid frequency only for 

perpendicularly stratified plasmas. Because of the geometry of 

EBT, the upper hybrid resonance plays no role. 

Since the core plasma in EBT-I is observed to be strongly heated, 

some mechanism must exist whereby extraordinary mode energy reaches the 

high magnetic field region, from which it can be efficiently absorbed 

at the fundamental cyclotron resonance. A number of mechanisms have 
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been considered in this regard, including Budden tunneling, destruction 

of the cutoff by finite temperature effects, and depolarization of 

ordinary mode energy into extraordinary mode in the high field region 

upon wall reflection. Of these, the dominant process appears to be 

conversion of ordinary mode energy to extraordinary mode in the high 

field region. In considering a low density, magnetized plasma having 

parameters characteristic of the surface plasma in EBT-I in contact with 

a perfectly conducting wall, it is found that a fraction of ordinary 

mode approaching 100% is converted to extraordinary mode for certain 

angles of incidence on the wall. Averaging over a uniform distribution 

in the angle of incidence gives average conversion efficiencies in the 

vicinity of 50% for parameters characteristc of the mirror throat region 

in EBT-I. 

The core heating of EBT-I can be summarized as follows. Extra-

ordinary mode energy injected at the midplane is partially absorbed by 

the annulus, partially depolarized into ordinary mode upon wall reflection, 

and weakly absorbed and transmitted to the high field region by Budden 

tunneling. Aside from these sinks, extraordinary mode energy is trapped 

in the region outside the right-hand cutoff. Ordinary mode energy 

launched from the midplane is partially absorbed by the annulus and 

partially depolarized into extraordinary mode at all wall surfaces, but 

it is only weakly absorbed by the core plasma. Any extraordinary mode 

energy produced in the high field mirror throat region or tunneling 

through to the high field region is strongly absorbed at the fundamental 

cyclotron resonance. 
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It has proved very difficult to make detailed calculations of the 

radial heat deposition profiles using geometrical optics. This is 

because the production of extraoi-dinary mode energy in the high field 

region is such an indirect process involving mode conversion and Budden 

tunneling (which are manifestations of a breakdown in the geometrical 

optics model) and because each ray (either ordinary or extraordinary 

mode) typically experiences several reflections and transits across the 

irregularly shaped EBT cavity before its energy is completely deposited. 

After a few reflections the direction of propagation and rate of energy 

absorption become a very sensitive, nearly random function of the ray's 

initial conditions. The calculation of heating profiles by detailed ray 

tracing therefore carries with it much of tue futility of doing sta-

tistical mechanics as an initial value problem. 

In the present model we do not attempt to calculate the complete 

radial heating profile. Ra ther, we divide the plasma in each EBT 

sector into two regions (see Fig. 1). Region I is that region near the 

midplane which is on the low magnetic field side (the propagating side) 

of the right-hand cutoff. Region II contains all plasma at a magnetic 

field higher than the cutoff. Considering the different propagation 

characteristics, energy sources, and energy sinks for ordinary and 

extraordinary mode in the two regions, we can estimate certain gross 

heating features, such as the power deposited in the core, the annulus 

and surface plasmas, the total electromagnetic stored energy in each 

mode, and cavity Q. 

Advantage is taken of the multiple reflections experienced by the 

rays to make the assumptions that the radiation in each mode is 



5 

isotropically propagating and that the energy density is uniform in each 

region. In order to make progress, we adopt highly simplified models 

for the wave absorption and mode conversion processes. Obviously, the 

results of the model are only approximate and should be viewed with the 

same degree of confidence as zero-dimensional transport models. However, 

we have found this model to be of value in exhibiting trends and in 

showing sensitivities to the various assumptions on propagation and 

absorption models. 

In Section 2 the power balance model is presented, and simplified 

equations are derived relating the energy density in the different wave 

modes to the input power and to rate coefficients for the various 

absorption and conversion processes. In Section 3, the various absorp-

tion models and absorption rate coefficients are discussed. The effects 

of Budden tunneling and absorption are discussed in Section 4. An 

extensive discussion of the process whereby one plasma eigenmode is 

converted to another upon wall reflection is presented in Section 5. 

The magnitudes of the various rate coefficients all depend on geometric 

characteristics of the device, such as the areas of the resonance 

surfaces. In Section 6, the geometric parameters used in the calcu-

lations are presented and estimates are given for the rate coefficients. 

In Section 7, results of calculations using the model are discussed. 



2. POWER BALANCE MODEL 

For any region V bounded by a surface S, energy conservation for 

the j th wave mode can be written 

P3 " AJ V '

 0 (2 'U 

where 

P. = / da I d 3k s (x,k) = jth mode power flowing into V 
3 JS ~ Jk incident 

A. = f d 3x f d 3k Ej(x,k)* • gH(x,k) • E.(x,k) = power 
2 JV \ incident = ~ ~J 

dissipated from j tli mode throughout V 

and 

T = f da f d 3k t., (x.^s 3 (x,k) = power in jth mode 
J k bC ~ Jk incident Jlc 

converted to kth mode at conversion surface Ŝ , with 

sJ(x,k) = Poynting flux 

JJ 

a (x,k) = Hermitian part of the plasma conductivity tensor and 

w... (x,t) « mode conversion coefficient ' j k ~ 

As written, the power absorption is a volume effect. In fact, for the 

cyclotron fundamental, the absorption takes place in a thin region near 

the resonant surface so that A^ can reasonably be modeled as 
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A. = I d.c f d3ka. (x,k)sJ (x,k) = power dissipated (2.2) 
^ J<> " J\r inpiMtan t- J ~ ~ "" 'S^ •'k incident J 

from jth mode at resonant absorption surface S R 

where o^.(x,k) = fractional absorption coefficient. 

All terms in Eq. (2.1) have now been related to the power flux 

incident on some surface. Since each ray undergoes a number of reflec-

tions on the average before being absorbed, we adopt the assumption that 

the microwave field consists of an isotropic superposition of plane 

waves. The Poynting flux, per unit solid angle about the group velocity 

v , can be related to the wave energy density in the jth mode, W., and 
S 3 

the group velocity y according to 
§ 

i i s j ( s ) | V (k) 
sJ(x,k) - 47r vg(fe) = - | _ W . ( x ) (2.3) 

where, for simplicity, we usually assume |v | = c and take the direction 
s 

of energy propagation v to be in the direction of k. By making the 
s 

further simplifying assumption that the energy density is constant 

throughout each of the plasma regions, W (x) = = constant, the 

energy density can be taken outside the integrals over dg and d k. 

For example, 

A^ = W^ f da f 4iraY''x,k)v = extraordinary mode (2.4) 
SR ~ incident * ~ ~ 

power dissipated in region I 

This can ultimately be written as the product of the energy density 

with the dissipation rate coefficient averaged over the resonant surface 
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and the angle of incidence 

4 = (2-5) 

where 

= f i d S [ z b ^ v (k)a ( x , k ) S_ •'k incident R ~ 

s-- S^ is all cyclotron resonant surfaces in region I. (In the case of 

region I, this is the second harmonic resonance.) 

Similar expressions can be written for the mode conversion terms; 

for example, 

TX0 • W x L da~ Xg(l6)cM(x,k) T ^ (2.6) 
S C 

= extraordinary mode power converted to ordinary mode 

I I in region I where S is the mode conversion surface in region I and t 

is the average (over the wall surface and the angle of incidence) rate 

of mode conversion. In this way we obtain equations for the ordinary 

and extraordinary mode power densities in each of the two regions. For 

example, the equation for extraordinary mode energy density in region I 

can be written 

P x - aXWX - TXOWX + - + V W X - 0 <2-7> 



where 

P = extraordinary mode power injected from the waveguide 
A 

W^ = extraordinary mode energy density in region I A 

WQ = ordinary mode energy density in region I 

a V = extraordinary mode power absorbed in region I (i.e., the 
A A 

annulus absorption in EBT-I) 

Tvn^v = extraordinary mode power converted to ordinary mode in region I 

TJvW =» ordinary mode power converted to extraordinary mode in region I 
U a U 

Y W* = extraordinary mode power absorbed by Budden tunneling A A 

y W^ = extraordinary mode power transmitted to region II by Budden Jl A 
tunneling 

For the extraordinary mode in region II we obtain 

v W 1 - o W 1 - x 1 ^ 1 1 + t 1 ^ 1 1 = 0 ( 2 8 ) YT WX x x Txowx oxwo u 

Since the ordinary mode is not cut off anywhere in the plasma, we expect 

that WQ = W ^ = WQ and obtain a single equation for ordinary mode power 

balance: 1 

po - Cao + aoX^o - (Tox + Tox)wo + 4 w x + 4 X 1 • 0 • ( 2 - 9 ) 
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where 

P^ = ordinary mode power injected from waveguide 

N 
O Q W Q = power dissipated directly from ordinary mode in region N 



1 1 

3. ABSORPTION MODELING 

In order to proceed, it is necessary to calculate the absorption, 

tunneling, and mode conversion coefficients a, t, and y. Absorption of 

extraordinary mode energy in the high field region can be modeled quite 

simply. Ray-tracing studies [1] show that in a plasma with strong 

gradients in |B| along field lines (when extraordinary mode waves 

approach cyclotron resonance from the high magnetic field side), kj| 

becomes large, and the damping is very strong, provided "'pg/^g x c / v
e ~ 

This condition is satisfied all along the = u> layer in EBT even for 

the low density surface plasma. We therefore assume that all extra-

ordinary mode energy incident on the resonance surface from the high 

field side is absorbed. Taking v = ck and a (::,k) = 1 and introducing 
-8 x ~ -

the unit normal to the resonant surface n, a^* can be expressed as [see 

Eq. (2.5)] 

i i a v = c 

where S ^ is the total area of the fundamental resonant surface. Later, 

it will be convenient to divide the fundamental resonance surface into 

two parts (see Fig. 1): S ^ = that part of the resonance surface which 

intercepts the core plasma component, and S** = the remainder of the 

resonant surface which intercepts the surface plasma. The extraordinary 

mode power deposited in the core plasma component from the high field 

side is therefore y whereas ^ ^ s ^ X ^ t*ie P o w e r deposited in 

the surface component. 
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Ray-tracing studies [1,4] have shown that the ordinary mode is only 

very weakly damped at the fundamental cyclotron resonance in EBT-I. 

Typical fractions of power absorbed for ordinary mode rays passing 

through resonance are less than a few percent. We can make this result 

more quantitative by averaging over an assumed isotropic distribution of 

incident ordinary mode rays. 

We consider the plasma near the fundamental resonance to be plane 

stratified in the direction parallel to the magnetic field lines; i.e., 

B(x) = [0,0,Bq(1 + z/L)]. Choosing the resonance at z = 0, the cyclotron 

frequency can be written = oi[l + (z/L)] where uj is the wave frequency. 

Using Eq. (29) of Ref. [3], the imaginary part of the refractive index 

n. in the direction of the group velocity can be written 

n^ = Im 
n 2(l - n 2 - 2P)2 |Ej| I 2 1 v 

Im 
+n!l 4 it | s | P c UK) 

(3.2) 

where 

ck 
n - — - refractive index a) 

s = Poynting vector 

P 
= -ES. 

n 2 e 

E|| = parallel component of the wave field 

Z(?) = plasma dispersion function 
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The real part of the refractive index is given by the zero-order dis-

persion relation 

n 2 = 
2(1 - P) + sin26 ± {[2(1 - P) + sin26]2 - 4(1 - P)(2 - P)ain2e}1/2 

2 sin29 

(3.3) 

where + and - refer to the extraordinary and ordinary modes, respectively. 

The fraction of power absorbed from a ray in passing through resonance 

f is given by 

f = exp[-2 o)/c / ds n.(s)] = exp(-2a) —oo X 
(3.4) 

where s is the arc length along the rayu For the parallel stratified 

geometry considered here we have 

ds 
J ds n^(s) = j dz — n^(z) = J dz -jp— n^(z) 

so that a as defined in Eq. (3.4) can be expressed 

u> n2(l - n2 - 2P)2 | E^ | 2 1 v g 
a I dz — — — Im 

c 4ii|| ^7rs
z
 p c 

( " i r e L ) -

(3.5) 

Using the equations 

1=1 a » (i _ n2 _ P ) ( 2 - nf - 2P) 
Z . o 1 

4n 
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and 

- c o 

oo 
dz Im 

1 
- i t 

" i r e 

2c 

we finally obtain 

nj* (1 - n 2 - 2P)2 
'1 a (3.6) 

(1 - n 2 - P)(2 - n 2 - 2P) 

To obtain the average fractional absorption we numerically compute 

the integral 

where <|> is the azimuthal and ip is the angle between v and B. 

Figure 2 shows f as a function of n^ for various values of P and 

for the case f = 18 GHz, L = 10 cm, which is appropriate for EBT-I. 

Also shown is <£> obtained from Eq. (3.7) for each value of P. It can 

be seen that even for the highest plausible densities in EBT-I the 

absorption is less than a few percent for most angles. There are very 

sharp peaks near the values of n^ for which the wave vector is perpen-

dicular to the magnetic field. Near perpendicular propagation the 

absorption exponent a diverges [n^ « (1 - n^ - P) so ^ / ( l - - P) -*• l/njj 

as tij| ->-0]. This is because in nonrelativistic theory the ordinary mode 

damping rate becomes large as ii|| + 0 and because the length of the ray 

lying in the resonant ^one becomes infinite as ip -*• ir/2. Since the 

0 
(3.7) 
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resonant zone in EBT is curved rather than straight (as in this plane 

stratified model) and is of finite extent, a ray cannot actually remain 

in the resonant zone for a distance larger than about L. In view of the 

approximate nature of the power balance model, we have not attempted to 

refine this analysis by including relativistic effects for propagation 

angles near 90° or by introducing a cutoff in ip to limit the length of 

the ray. We regard the results shown in Fig. 2 as very conservative 

overestimates of the ordinary mode absorption at the fundamental 

resonance. This therefore verifies, using a continuous distribution of 

rays, the findings of ray-tracing studies that the ordinary mode absorp-

tion is less than a few percent in EBT-I. 

The model we have adopted for ordinary mode absorption at the 

fundamental resonance takes the form 

where <f> is chosen in the range 0.0-0.05. The integral over the solid 

angle is taken as a full 4TT since both sides of the resonant zone are 

accessible to the ordinary mode. 

Modeling of wave absorption in region I (i.e., absorption at the 

second harmonic resonance by the hot electron annulus) is a much more 

difficult task. The calculation of wave absorption properties of the 

annulus requires the analysis of a fully relativistic dispersion relation. 

This analysis is in progress, but only preliminary results are available 

as yet. A concern in this regard arises from the annulus parameters: 

v£/c ~ 1, k^Pe ^ 1, and kj^L^ 'v- 1 where L A is a spatial scale length for 

(3.8) 
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variations in annulus parameters. The geometrical optics approach 

therefore may not be meaningful. In addition, the geometric and plasma 

parameters of the annulus are not yet accurately known. The best 

presently available information concerning the microwave power absorbed 

by the annulus is obtained from observations of the plasma stored energy 

and the energy lifetime in power turn-down experiments [5]. From these 

experiments one estimates that a fraction between 0.2 and 0.3 of the 

power deposited in the plasma goes into the annulus. 

We have adopted a model in which the extraordinary mode and ordinary 

mode absorption in region I are of the form 

aX = V A ' % " ( 1 ~ gX ) aA • 0 * 8X < 1 ( 3 ' 9 ) 

where a^ is an overall annulus absorption coefficient and g^ measures 

the relative opacity of the annulus to extraordinary mode waves compared 

to ordinary mode. The total power absorbed by the annulus is then 

PA = aA [&X WX + ( 1 " gX ) W0 ] ( 3 ' 1 0 ) 

At nonrelativistic temperatures the absorption of ordinary mode radiation 

at the second harmonic resonance is much weaker than extraordinary mode 

absorption. At higher temperatures the second harmonic absorption rates 

begin to equalize. However, for temperatures in the range 100-200 keV, 

which are relevant for EBT-I, the extraordinary mode absorption is still 

4-5 times as great as that for the ordinary mode. The most likely range 

for g^ is therefore 0.8 < g^ < 1.0. The widest conceivable range is 

0.5 < g x < 1.0. 
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We begin by treating a^ as an unknown to be determined by constrain-

ing P^ to be some fixed fraction of the total input power p
T Q T (typically 

P A ^ T O T = 0-25). We can then determine v sensitivity of the results 

to various values of the other modeling f. .irameters. In other cases we 

have fixed ctA such that ^ ^ M ^ u s = f o r o n e s e t P a r a m e t e r s and 

then determined the variation of ^JJJJULUS a s t*16 parameters changed. 

We have also used the initial results of the relativisitic absorption 

calculations to construct a simple a priori model for annulus absorption. 

The annulus in EBT-I is observed to form at the location o" the vacuum 

second harmonic cyclotron resonance (this is at a radius of 10-12 cm). 

The axial length of the annulus is estimated to be approximately equal 

to its radius. The thickness is about 4 cm. Fully relativistic calcu-

lations of absorption using a two-dimensional (2-D) finite-beta model 

for the annulus and using plasma parameters appropriate for EBT-I [6] 

have shown that a maximum of about 33% of the power in the extraordinary 

mode ray is absorbed in a single pass througu the annulus. Assuming an 

isotropic flux of rays incident on the edge of the annulus at the 

midplane, we find a rough average over the solid angle and axial position 

of power absorbed from a ray in a single pass is < f > ^ — 0.12-0.15. We 

treat the annulus as a cylindrical surface of radius r^ ^ 11 cm and 

length L^ ^ 11 cm and assume that a fraction <f >^ °f the power is 

absorbed when a ray intersects the surface. The overall absorption 

coefficient is then modeled: 

a A = 2ncrALA<f>A = 2.9 x 10 1 2 cm3/s 

where we have taken <f>A = 0.13. A 
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4. TUNNELING MODEL 

Since the evanescent zone between the extraordinary mode cutoff and 

the cyclotron resonance layer is thin in the low density surface plasma 

region, the possibility exists for extraordinary mode energy to tunnel 

through to the cyclotron resonance layer and to be partially transmitted 

to the high field region. An analysis of Budden tunneling of obliquely 

propagating extraordinary mode waves in parallel stratified plasmas 

shows [2] that for the case w/cLz « 1 and n 2 « 1 (Lz. is magnetic field 

gradient scale length and n^ is the refractive index perpendicular to 

B) the energy absorption coefficient |A(2 and the transmission coefficient 

are: 

= exp(-irK0X0) [1 - exp(-irK0X0) ] 
(4.1) 

| T | 2 = e x p (-TTKQXQ ) 

where 

(2 - P)n2 

2(1 - P) 

(1 - P)n2 1-1 
Xo = V 1 

2(1 - P) - n2. 

e 
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Expanding for small P appropriate to the surface plasma we find 

K 0X 0 - - L Z P 1 -
(ii 

(4.2) 4(1 - P) 

The first term is the limiting result for propagation parallel to the 

magnetic field, whereas the second term is a correction for oblique 

propagation. For the small values of P encountered in the surface 

plasma, P ^ 0.025-0.05 GW2ir = 18 GHz, n g ^ 1-2 x 10 n/cm 3), the 

correction is indeed small. Numerical integration of the field equations 

[2] shows that Eq. (4.1) is actually valid for comparatively large n^ 

(n^ ^ 0.5). For larger n^, even though the approximation n 2 « 1 breaks 

down, the expressions for |A|2 and |T|2 are approximately correct. The 

breakdown in the formalism is manifested in partial conversion of the 

incident extraordinary mode energy to ordinary mode. 

Assuming a magnetic field scale length L ^ 6.5 cm and P values as z 
mentioned above, one obtains for the lowest densities |Tj2 ^ 0.15, 

|A|2 ^ 0.125 and for the higher densities |T|2 ^ |A|2 ~ 0.01. To model 

the tunneling in the power balance equations we assume that any extra-

ordinary mode wave incident on the cutoff-resonance surface from region I 

is transmitted to region II with efficiency |T|2. Therefore, the total 

power transmitted to region II is Y TW^ where 

Similarly, the extraordinary mode power dissipated from region I by 

means of Budden tunneling is Y.W* where 

(4.3) 
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W 2 § s " 

and (4.4) 

|A|2 = |T|2(1 - |T|2) 

In the calculations we have examined the consequences of allowing \T|2 

to range from 0 to 0.15, which seems to be the credible range. 
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5. MODE CONVERSION 

Another process that is important in establishing the power balance 

in EBT is conversion of one wave mode to the other upon reflection or 

scattering by a conducting wall surface. When, for example, an ordinary 

mode wave in a magnetized plasma is incident on a perfectly conducting 

surface in contact with the plasma, a significant amount of power in the 

reflected wave is in the extraordinary mode, depending on plasma density, 

magnetic field, and angle of incidence. 

Consider the wave depolarization situation diagrammed in Fig. 3. A 

cold plasma of constant density is in contact with the conducting 

surface in the x-y plane, and a uniform magnetic field B is in the x-z 

plane making an angle xp with respect to the z-axis. A wave of pure charac-

teristic mode (for example, ordinary mode) is incident from above with 

refractive index n° where n x > n^ are specified and n^ is determined from 

the Booker quartic equation. As a result of Snell's law, nx, n^ are 
0 ' conserved for the reflected wave, but n = n is, in general, different 

z z 
from n^ of the incident wave. Also, the electric field eigenvector 
0 ' 

E is different from the electric field of the incident ordinary mode 

wave E^. In order to enforce the boundary condition that the transverse 

component of the electric field vanish at the surface, it is necessary X' 

that a component of the extraordinary mode E be included in the 

reflected wave. 

For the configuration diagrammed in Fig. 3, the electric fields 

are determined from the dielectric tensor D • E = 0 (5.1) 
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where 

D(nz) -

, P 1 _ b x 2 2 - i P b , * F b x b y , 1 - P n^ - nj + n n 7 + n n 
1 - b2 y Z 1 - b 2 X y 1 - b 2 X Z 

-iPb Z . . P 2 2 X + n n 1 n^ - n^ + n n 
1 - b 2 x y 1 - b2 x 2 1 - b 2 y z 

Pb b iPb 1 - b 2 
X Z , x . 1 „ z 2 2 + n n + n n 1 - P - n z 

1 - b 2 x z 1 - b 2 y 2 1 - b 2 X y 

where 

til2 
P = 

ai2 

\a | 
b = e 

ID 

n = — k ui -

B | 
b = b sin x B to 

B |a | 
bz = B 1 I T - = b C O S * 

For given n , n , and ip, the condition for Eq. (5.1) to have nontrivial x y 
solutions is that n satisfy the dispersion relation, which can be z 

expressed in the present notation as 

An1* + Bn3 + Cn2 + Dn + E - 0 (5.2) z z z z 

where 

A = 1 - P - b 2 + Pb 2 
z 

B = 2Pb b n X z X 
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C = -2(1 - P - b2)(l - n 2 - P) + p(b2 + b 2n 2 + b 2n 2) 
x z ^ X X 

D - -2(1 - n?)n Pb b 1 X X z 

E = (1 - P)(l - of - P) 2 - (1 - n 2)(1 - nf - P)b2 - (1 - n2)n2Pfc2 

This is equivalent to the Booker quartic equation [6]. We assume that 

all four roots of Eq. (5.2) are real. For the low densities of interest 

in the surface region of EBT (P « 1), this is satisfied for most values 

of n^, tty. It can then be shown that two of the roots are upgoing 

waves, n > 0 , while two are downgoing, n < 0 . Also, for P < 1 one of 
Z 2 

the upgoing and one of the downgoing waves can be associated with the 

ordinary mode and, similarly, for the extraordinary mode. We therefore 

enumerate the roots of Eq. (5.2), n 3, as follows: 

nl ** downgoing ordinary mode z 

n 2 downgoing exti-aordinary mode z 

n3 =* upgoing ordinary mode 
z 

n1* =*• upgoing extraordinary mode 

The correspondence between n 3 and ordinary/extraordinary modes is made 

by calculating 9, the angle between B and nJ = (n ,n ,n3), and by •• x y z 

comparing n 3 • n3 to the Appleton-Hartree dispersion relation. 

Once the correct roots have been determined, the associated polari-

zation eigenvectors E3 can be found from the dispersion tensor by solving 

D(n j) • Ej = 0 (5.3) 
s s Z -
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Assuming an incident downgoing ordinary mode wave j =* 1, the reflected 

wave is a linear combination of upgoing ordinary and extraordinary mode 

waves: E
r efi e c t ed = C00E3 + SDX^* T h e b o u n d a r^ condition at the 

conducting surface is that the tangential electric field vanish: 

E1 + H E 3 + C.̂ E*4 = 0 x 00 x OX x 
(5.4) 

Ej + C--E3 + C n v & = 0 y 00 y OX y 

Similarly, if the incident wave is a downgoing extraordinary mode j = 2, 

the reflected wave can be written as the linear combination E c, , = -reflected 
C„_E3 + n E \ and the boundary conditions give the equations 

E2 + CvnE3 + CvvEk = 0 x XO x XX x 
(5.5) 

E2 + C E3 + C E4* = 0 y XO y XX y 

Equations (5.4) and (5.5) are then solved for the amplitude conversion 

coefficients C... 
i j 

In order to calculate the power in each reflected mode, it is 

necessary to evaluate the Poynting flux s 1 carried by each eigenvector 
i x i* 

s = Re{E x B }/8ir. In particular, the power flux in the z direction 

is given by 

s ^ i - R e - C n t l E 1 ! 2 - ( n 1 • E ^ f } ( 5 . 6 ) 
8TT 

The power in the ith mode converted to jth mode upon reflection can 

therefore be conveniently expressed in matrix form as 
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S 3 

Ic I 2 — 

s1* 
I V 2 if 

and 

[C I2 — x o ' s2 

z 

s" 

z . 

(5.7) 

Numerical calculations of T for all angles of incidence have confirmed 

certain properties that were expected, such as symmetry = T ^ and 

T00 3 T x x } a n d e n e r g y conservation ( T Q 0 + T Q X = T ^ + T x o = 1 ) . 

We first briefly consider the much simplified case in which n^ = 0 

and if) = 90° [i.e., B = (B,0,0)]. With these assumptions the dispersion 

tensor reduces to 

D(n z) = 

1 - P 

n n x z 

- n 2 

1 - e - n 2 

ibe 

n n x z 
-ibe 
1 - e - n : 

(5.8) 

where £ = P/(l - b 2). The dispersion relation [Eq. (5.2)] reduces to a 

quadratic equation in n 2 whose roots at low density (P < 1) can be 

associated with the ordinary and extraordinary modes as follows: 

•4 
n ; 

vS" 
2E (5.9) 

where A is the discriminant of the quadratic equation obtained from 

Eq. (5.2) in the limit b^ -*• 0, n y ->• 0. Taking n x and n Q as positive 

square roots of the above expressions we have (according to the previous 

enumeration of roots) 
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J = 
n z = ~ n 0 • n z = " n X • n z = ' n z = 

3 _ -

The electric field eigenvectors Ê  can be obtained by direct 

inspection of Eq. (5.8) 

E* - -
n n^ z x be 

1 - P - n j 2 ' 1 - e - n2 
(5.10) 

valid for ^ 0, n^ ̂  0. Notice that the upgoing and downgoing eigen-

vectors of a given mode are identical except for the sign of E^. 

Obviously, the upgoing and downgoing eigenvectors are linearly inde-

pendent so that some coupling must occur unless n"̂  or n vanishes. In 
Z X 

this limit it is also easy to calculate the Poynting flux 

nj(|Ej|2 + |Ej|2) - n E E* 2 1 X l y ' ' v v 7 X X z (5.11) 

Solving Eq. (5.4) for C Q X and using E"' as given by Eq. (5.10), we obtain 

for the conversion coefficient 

n> T = 4 — i0X n. 

( 1 - P ) n l 2CZ b z e 

(1 - P - n2)2 (1 - e - nz - n2) - n 2 _ „ 2 N 2 

(1 " P)n x b 2 e 2 

(1 - P - n2)2 (1 - e - n2 - n 2)^ 

1 - P -
O 

1 - e - n2 - n 2 
x 0 

1 - P - n 2 l - e - n 2 - n 2 

- 2 

(5.12) 
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Figures 4a and 4b show TQX, T ^ , n2, and n 2 plotted as a function 

of n^ for b = 0.7 and b = 1.1, respectively. P was taken to be 0.1. In 

Fig. 4a TrtV is zero for n = 0, increases to a maximum, and, then, 
UA X 

decreases rapidly to zero at the point where n 2 = 0 (n^ = nx cutoff = 0.82). 

The value n x cutoff corresponds to the point at which the extraordinary 

mode right-hand cutoff occurs at density P. For larger values of n x the 

extraordinary mode is evanescent at this density, and T^x is purely 

imaginary. When b » |/w > 1 (see Fig. 4b), both modes propagate up 

to n x = [1 - P/(l + b)]l/2 - 0.97, at which point n 2 = 0 (the incident 

wave is parallel to the reflecting surface) and T^x = 0. 

Using the general expressions, we have calculated T^x as a function 

of the polar angles of n for the incident ordinary wave 4> = tan-1 (n^/nx), 

6 = tan-1 (nz/Vn2 + n2). Figure 5 shows three-dimensional (3-D) plots 

of T versus 0 and <p for various values of magnetic field strength 
UA 

b = fig/w- The plasma density chosen was appropriate for the surface 

plasma in EBT-I, n » 2 x 10n/cm3 (P = w2 /a>2 = 0.05, w/2ir = 18 GHz), e pe 
and ip was taken to be 90° (i.e., the magnetic field is parallel to the 

reflecting surface). Notice that in each example a fraction approaching 

1.0 of the energy in an incident wave can be mode converted at certain 

angles. Assuming an uncorrelated distribution of incident waves that is 

uniform in n over the solid angle for which both waves propagate, we 

obtain an average fraction of ordinary mode power converted to extra-

ordinary mode, <TQX>. AS seen in Fig. 5, ^ q ^ is very significant, 

being even larger than 0.5 for low magnetic field and in the range 

0.3-0.5 for b > 1. In order to demonstrate the effect of the magnetic 

field being oblique to the reflecting surface, we have included 



2 8 

in Fig. 6 a set of plots having identical parameters to those in Fig. S 

except that ij/ is now 60°. The surfaces in Fig. 6 are somewhat distorted 

from their counterparts in Fig. 5, and T Q X no longer vanishes at <)> = TT/2. 

The averages < T
0 x > t*ie °bliclue field are somewhat larger at low 

field (b < 1) and somewhat smaller at high field (b > 1) than the 

corresponding values for tp = 90°. However, the average conversion 

efficiencies remain in the range 0.3 < < T
0 x > ~ 0 , 7 * 

There are a number of factors which complicate the interpretation 

of these average results. First, let us consider the reflection/ 

mode conversion process for angles near the right-hand cutoff when the 

magnetic field is weak (b < 1). Assume that both ordinary and extra-

ordinary modes propagate but that nx» n^ are near values such that 

n 2 = 0 for the extraordinary mode. So far, the plasma density has been 

assumed spatially constant. However, if the plasma is plane stratified 

with the density increasing away from the reflecting surface, then the 

upgoing mode converted extraordinary wave soon reaches the density of 

the right-hand cutoff for the given n^, n^. The extraordinary wave is 

reflected from the cutoff back to the conducting surface, where it is 

reconverted to a mixture of upgoing ordinary and extraordinary modes. 

The process is repeated with the secondary upgoing extraordinary wave 

until, ultimately, only ordinary mode energy can emerge at large distances 

from the conducting surface. Actually, neither the density nor the 

magnetic field in GBT is plane stratified and, of course, the magnetic 

field lines are not straight, so the simple model discussed here cannot 

be used to predict the energy flow far from the wall surface. In fact, 
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ray-tracing studies have shown that extraordinary mode energy originating 

near the surface can penetrate deep into the plasma for all but the most 

grazing angles of injection. 

Another interesting situation arises when the angle of the incident 

ordinary wave is so large that the converted extraordinary mode is 

evanescent. Consider, for example, the case shown in Fig. 4a with 

n > n ^ Provided n is less than the ordinary mode cutoff, the x x cutoff x 3 ' 

ordinary mode can propagate to the surface and be partially reflected. 

The reflected ordinary wave cannot, however, carry away the total wave 

energy. The remaining energy goes to excite extraordinary polarization, 

which, being evanescent, does not transport energy. The oscillating 

field of the extraordinary mode must build up until ponderomotive 

effects push the plasma away from the wall, which leaves a thin layer 

where the extraordinary mode does propagate. With a density gradient 

established, the propagating extraordinary mode is reflected back to the 

surface (as in the previous discussion). The final result is therefore 

a modification of the density profile near the wall with all incident 

wave energy returning as ordinary mode. 

The two effects just described tend to reduce the conversion of 

ordinary to extraordinary mode for nearly grazing angles of incidence. 

This, however, is a quantitatively small effect, and we still expect 

average conversion efficiencies in the vicinity of 0.5 to prevail. In 

addition, there are other processes, not included in the simple wall 

reflection model, which tend to enhance conversion between modes. Most 

notable is the internal mode coupling produced by density and magnetic 

field variations. When the plasma frequency and cyclotron frequency are 
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small compared to the wave frequency, the ordinary mode and extraordinary 

mode are nearly degenerate. If the plasma is uniform, there is no 

coupling. Or, if the variations in equilibrium quantities are of a 

sufficiently large scale length, the fields are well described by 

geometrical optics, and coupling between modes is exponentially small 

despite the near degeneracy. However, if n (x) and B(x) have small e ~ ~ ~ 

scale length fluctuations, geometrical optics breaks down, and signifi-

cant conversion can occur. The details of this process are described by 

a complicated set of coupled mode equations [2,7] and depend sensitively 

on the difference between the refractive index of the two modes An = 

n Q - n̂ ., the scale length of equilibrium variations L, the angle between 

n and B, and the angle between B and the direction of the equilibrium 

gradients. A rough criterion [8] for the geometrical optics results to 

be valid is that the variation in local refractive index for one of the 

modes within one wavelength X (dn^/ds) must be small compared to the 

refractive index difference An: 

L N. J 

Probe measurements of the EBT surface plasma have indicated that the 

density is fairly flat, at least in the midplane region. However, 

unstable fluctuations have been observed in the surface plasma [9] for 

which Eq. (5.13) is certainly violated. Additional conversion between 

modes is therefore expected from this mechanism. 

Finally, it should be noted that the EBT wall has a very irregular 

shape with numerous edges, corners, and intrusions. Waves incident on 
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these edges are diffracted rather than specularly reflected, resulting in 

an additional randomization of wave polarization. 

As can be seen, significant conversion between ordinary mode and 

extraordinary mode occurs just due to specular reflection at the cavity 

walls. In addition, the above mentioned diffraction and fluctuation 

effects in the low density surface plasma tend to equipartition energy 

between the two modes. We therefore model the mode conversion rate 

coefficients ocurring in Eq. (2.6) as 

4 ' L ^ / I r i g ^ 
wall 

= C L = Hall <5""> 
wall 

where we have again approximated v = ck and f33 is a wall-surface and 
"" O 

angle-averaged conversion coefficient for region j. Inmost calculations 

we have chosen B^ = 0 . 5 although we have studied the effect of reducing 

3"1. Note that reciprocity ensures that B is the same for the 0 •* X 

process as for the X -*• 0 process. 
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6. GEOMETRICAL PARAMETERS AND NUMERICAL ESTIMATES 
OF RATE COEFFICIENTS 

Each of the rate coefficients discussed above depends upon the area 

of some resonant or wall surface. In order to obtain estimates of these 

geometrical quantities we made measurements from Fig. 7, which shows the 

cavity walls for EBT-I, as well as field lines and mod-B contours for a 

3-D, finite-beta equilibrium. The measurements were then scaled to the 

actual size for EBT-I. Table I shows the surface area values used in 

the numerical calculations. Estimates for the volume of regions I and 

II that are necessary to calculate the total wave energy in each mode 

are also shown in Table I. 

We are now able to obtain numerical estimates for the rate coeffi-

cients derived in the previous sections. These are presented in Table II 

It can be seen that by far the fastest decay process for the ordinary 

mode is conversion to extraordinary mode, r* + T** = 3.63 X 10 1 3 cm3/s. 
UA, UA 

X X 

The rates for absorption at the cyclotron resonance (ai < 6.6 x 1011 cm3 

and by the annulus (<XQ ̂  4 X 1011 cm3/s) are more than an order of 

magnitude lower. The principal decay process for the extraordinary mode 

in region I is conversion to ordinary mode, which is much faster than 

either absorption by the annulus or tunneling processes. The extra-

ordinary mode in region II is lost predominantly by absorption at the II 
fundamental cyclotron resonance (a^ = 2.25 x 10 1 3 cm3/s) although 

conversion to ordinary mode is competitive ( T ^ = 1.15 x 10 1 3 cm3/s). 
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Table I. Surface area and volume estimates 

Numerical 
Geometrical parameter estimates 

Area of fundamental resonance intersecting core, 
sj1 443 cm 2 

Area of fundamental resonance intersecting surface 

plasma, S* 1 1087 cm2 

Total area of fundamental resonance, S* 1 (S^1 + SjF) 1530 cm 2 

Area or conducting wall bounding region I, 3.3 x 103 cm 2 

Area of conducting wall bounding region II, S * * ^ 880 cm 2 

Volume of region I, V I 2.8 x 101* cm 3 

Volume of region II, V ^ 1.6 x 10** cm3 

Volume of region II with zone between the right-hand 
cutoff and cyclotron resonance excluded, V^j 8.6 x 103 cm3 



Table II. Numerical values for rate coefficients 

Rate coefficients Numerical values (cm3/s) 

II ot = X 
c qII 
2 bR 2.25 x 1013 

II 
a o = c<f>s j 1 <f>1.33 x 1013 

=» 0, where <f> = 0 

=» 6.6 x 1011, where <f> = 0.05 
I a — X V x 1.5 x 10 1 2 

I 
ao = 

V T = 

* 8x ) aA* 

W 2 2 SS J 

5.0 x 1011 

|T|21.63 x 1013 
' 0, where |T|2 = 0 

2.45 x 1012, where |T|2 = 0.15 

YA = |T|2(1 - |T | 2 ) f SG |T| 2d - |T|2)1.33 x 1013 • 
' •» 0, where |T|2 = 0 

2.08 x 1012, where |T|2 = 0.15 
I 

Tox = ^ 2 Swall 4.95 x lO 1 3^ 1 or 2.48 x 1013, where 0 1 = 0.5 

ft11 £ S 1 1 
3 2 wall 2.30 x 10133I1: or 1.15 x 1013, where g 1 1 = 0.5 

Using a = 2.0 x 1013 cm3/s, obtained from model with f. = 0.25, and g = 0.75. 
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7. RESULTS 

One of the primary objectives of this analysis is to obtain estimates 

of the microwave power deposited in each plasma component. The power 

absorbed by the core plasma P^ consists of the extraordinary mode power 

in region II absorbed along that portion of the resonant surface which 

intercepts the core plasma S ^ (see Fig. 1) as well as any ordinary mode 

absorbed at the fundamental resonance 

s 1 1 
°C IITTII . II-. ,, 

pc = 7 c T a x wx + c to wo ^ 
&R 

The power deposited in the surface plasma P g consists of the extra-

ordinary mode power in region II absorbed along that portion of the 

resonant surface which intercepts the surface plasma S ^ and any extra-

ordinary mode power absorbed from region I through Budden tunneling 

s 1 1 

*s - -ii * ( 7- 2 ) 

R 

Absorption of the ordinary mode in the surface plasma is entirely 

negligible. The power deposited in the annulus P is A 

PA = a X + aSW0 (7'3> 

For simplicity we have treated the annulus as lying entirely in region I 

(as drawn in Fig. 1). Undoubtedly, some hot electrons do pass through 

the fundamental cyclotron resonance, and some of the microwave power 
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that is absorbed at the fundamental resonance goes directly to the 

annulus. However, experiments in several hot electron ring devices have 

shown that the bulk of the annulus is confined to an axial segment whose 

length is roughly equal to the ring radius and which does not extend to 

the cyclotron resonance layer. 

Equations (7.1) and (7.2) give a simple but very important result. 

To the extent that absorption of ordinary mode and tunneling processes 

are negligible (a*1 = Y a = 0), the ratio of F c to P g is just S^/Sg 1. 

For the EBT-I case we have 

Pn s ? 
— = -rr- = 0.41 (7.4) 
P S SS 

Coupling this with the observation that P^ ^ 0.25P T Q T where ? T 0 T Is the 

total microwave power injected, we have 

p c - °-22PTOT 

P s = 0.53P T 0 T 

PA - °-25PT0T 

This approximate partitioning of microwave power is borne out in more 

detailed calculations presented below. In particular, we find that in 

each case large amounts of power are absorbed by the low density surface 

plasma despite its comparatively low density and temperature. It should 

be emphasized that the calculations assume that the flux of extraordinary 

mode energy is uniform over the fundamental resonant surface. Since the 

source of extraordinary mode energy is mode conversion at the cavity 
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wall, it is to be expected that any deviation from uniform illumination 

of the resonant surface will consist of a higher flux in the outer 

surface plasma than in the core plasma. The estimates obtained for 

P^/Pg can therefore be considered an upper bound. 

The power balance equations [Eqs (2.7)-(2.9)] determine the energy 

densities in terms of the rate coefficients and the injected power. 

Solving Eq. (2.7) for W* gives 

T * X + 

I . I , + <7'5> 
"v + T + Y* + Y-. 

Using this in Eq. (2.8) gives 

I 
T Y„ 

px 
TTII \ ~X ' " ' 'A ' 'T/ ~X ' W ' 'A • YT 
x ii ^ ii ( 7- 6 ) 

ax + T 

/ T n + I h \ w + Ii 
I . i . , o I , I , 

V ax + T + y A + V ax + T + Y A + 

Using these equations in Eq. (2.9) to eliminate W* and W* 1, we obtain 

P , v 1 1 
P + I T + 0 1 , 1 , V II . II otv + r + Y t \ a + r 

w Q — * x i; ( ? > 7 ) 

i . yT t 
T + 

I 4. II 4. M l ^ + t I T 1 . II /. a„ + a„ + T \ 1 - = I + T I I -0 0 \ I , I , , / \ 11 , II 
aX + T + > Y t ' \ ax + T 

The subscripts were dropped from and because- of assumed reciprocity 0 

in mode conversion. 
V 
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At this point only PQ and P x remain unspecified. In EBT-I the 

microwaves are injected at the midplane of each cavity by means of 

rectangular, dominant mode waveguides. It has been experimentally 

observed that plasma parameters are somewhat better and the power 

reflected back toward the klystrons is lower when the waveguides are 

oriented with the E plane (short dimension) along the magnetic field. 

Although the relative division between ordinary and extraordinary mode 

power has not been measured, we expect that in this configuration the 

ordinary mode is preferentially excited. We therefore model the injected 

power as 

P = f P X X TOT 

P0 = ( 1 ~ fX)PTOT 
(7.8) 

where the fraction of injected power going into the extraordinary mode 

fx is assumed small. The results are found to be only weakly dependent 

on fx for 0 < fx < 0.5, the widest credible range. 

We now consider the situation in which the fraction of injected 

power deposited in the annulus is constrained to be a fixed fraction f^ 

of the injected power by setting P A = f A
p
T 0 T* Using Eqs (3.9), (7.4), 

(7.7), and (7.8) in Eq. (7.3), we obtain a quadratic equation for the 

overall annulus absorption coefficient a^: 



39 

g^Cl - gyKl - fA)a2 + (1 - fA)rL + (1 - gx)(vA + Yt)(1 

II-

- f x " V 

ii &11 \ ( 1 ' ^ v 
+ % K ^ n , IIJ (fx - V + I I A II 

A X + T / A X 

a, 

- f. 
II II 

1 1 j. u. "X T 
T K + Y A + I I + II a x + T 

II II 
+ (Yx + Y j la? + X 

A T \ 0 II . II av + T X / 
= 0 (7.9) 

Because of the sign of the last term, only one of the solutions for a^ 

is positive (i.e., physical). 

Solving Eq. (7.9) and using the results in Eqs (7.1)-(7.7), we 

obtain the fraction of microwave power deposited in the core plasma 

PC/PT0T. In Fig. 8 f has been fixed at 0.25 and the variation of 
PC^PT0T t*ie Budden tunneling coefficient |T|2 is shown for various 

values of fx> g^, a**, and The extreme range of credible values is 

included for each or these parameters: the fraction of injected power 

going into the ordinary mode (fx = 0, 0.5), the relative opacity of the 

annulus to extraordinary versus ordinary mode [gx =0.5 (solid curves); 

g = 1.0 (dashed curves)], and the ordinary mode absorption by the core A 
plasma C^g1 = 0> 0.05). In Fig. 8a the mode conversion efficiencies 8*, 

B** are taken to be 0.5, which we consider the most plausible choice. 

We see that when a*1 is neglected increasing |T|2 from 0.0 to 0.15 

reduces the fraction of power deposited-in the core from 25% to about 

17%, a comparatively small change. The value |T|2 = 0.15 must be con-

sidered an extreme value obtainable only with very low surface plasma 
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density. The effect of increasing to 0.05 (also an extreme value 

for EBT-I) is to increase P C/ P
T 0 T fTo® about 22% to 25% at |T|2 = 0 and 

to increase t o a lesser extent at higher |T|2. It is clear that 

the results are very insensitive to the choice of fx and g^. This is 

indicative of the dominant role played by the equipartition between 

ordinary and extraordinary modes upon wall reflection. Even in the case 

f^ = 0 (i.e., no extraordinary mode energy injected), the extraordinary 

mode energy density W* is found to be nearly as large as the ordinary A 

mode energy density W^. 

In Fig. 8b the mode conversion efficiencies were reduced to = 

B** = 0.1. In this case the choice of f^ and g^ has a much larger 

influence, but the maximum effect on P^/P^^ is still only a few percent. 

Reducing B"̂  increases the number of passes of a ray through the plasma 

before it is mode converted. This in turn enhances the effect Oi." tun-

neling and ordinary mode absorption compared to extraordinary mode 

absorption at the fundamental cyclotron resonance. Nevertheless, a 

decrease in 8J by a factor of 5 results in an increase in Pq/p<jot a t 

|T|2 = 0 of only about 7% when the maximum credible value is used for 

a*1. Since p A/ p
T 0T i s c o n s t a n t i n FiS« c h e P°wer deposited in the 

surface plasma can be determined directly from ^S^TOT = 

1 - 0.25 - PC/PTQT. 

Some discussion is in order concerning the interpretation of these 

curves. We certainly do not suggest that the annulus adjusts itself as 

parameters are varied so as to absorb a constant fraction of the input 

power. However, the experiment indicates that there is an operating 

point such that fA is about 0.25. This point must therefore lie within 
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the bounds of the curves in Fig. 8. Since p
c / p

T 0 T i s insensitive to the 

other parameters of the model, we can say with reasonable certainty that 

18-25% of the injected microwave power is absorbed in the core plasma. 

Figures 9 and 10 show the fraction of power deposited in each 

plasma component when a rather than f A is fixed. We have set a^ = 

2.0 x 10 1 2 cm3/s, which gives p
A / p

T O x = °« 2 5 f o r a n intermediate choice 

of parameter values: f x = 0.25, g x = 0.75, |T|2 = 0.025, a* 1 = 0.025, 

and = 0.5. In Fig. 9 the fraction of power going into the core 

component is plotted as a function of |T|2 for the same ranges of g^, 

f^, and B used in Fig. 8a. It can be seen that the behavior of 

Pc/ PT0T e s s e n t i a l l y s a m e a s when f^ is fixed. 

Figure 10 shows how the partitioning of deposited energy changes 

with the overall annulus absorption coefficient a^. Figures lOa-lOd 

show the effect of a^ = 1, 2, 4, and 8 x 10 1 2 cm3/s, respectively. One 

sees a dramatic tradeoff of surface plasma heating to annulus heating 

but a much smaller effect on core heating. Although a i s varied by a 

factor of 7 and the power deposited in the annulus changes by almost a 

factor of 4, the power deposited in the core is decreased by less than a 

factor of 2. 

Using this model it is also possible to estimate a value for the 

microwave Q of EBT. The total stored electromagnetic wave energy can be 

expressed as 

WT0T - V A + V I I ^ + ( V I + VII ) W0 <7'10> 

so that the stored energy divided by the energy dissipated per cycle is 

Q - f X J W E ( 7 . u ) 
H TOT 
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where f is the microwave frequency. Using the volumes given in Table I 

and parameters similar to those used in Figs 5-7, one finds Q values in 

the range 125 < Q < 200. These values seem quite large for such a 

dissipative system as EBT. However, one must bear in mind that EBT is 

an extremely large device compared to the wavelength. Extraordinary 

mode energy is very rapidly absorbed at the fundamental resonance, but a 

typical wave must travel many wavelengths to be absorbed. There is 

therefore a large inventory of stored wave energy in the form of propa-

gating waves. It must be admitted that for a device such as EBT, Q is 

not experimentally measurable and hence not a very useful concept. 

Standing-wave-ratio measurements are difficult to make and are probably 

impossible to interpret, and since the absorbing nature of EBT changes 

with the wave frequency (i.e., the location of resonant zones, cutoffs, 

and plasma parameters), the measurement of the absorption line width in 

frequency would be meaningless. 
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8. CONCLUSIONS 

In this paper we have collected a number of previous results on the 

various sources and sinks of ordinary and extraordinary mode radiation 

and have developed a comprehensive, although very approximate, model for 

the propagation and absorption of microwaves in EBT devices. The model 

has been applied in detail to the EBT-I device. We find that the 

dominant processes are the conversion between plasma eigenmodes and the 

absorption of the extraordinary mode at the fundamental cyclotron 

resonance. Absorption by the relativistic electron annulus is a weaker 

process. The modifications due to Budden tunneling, ordinary mode 

absorption, and polarization of the injected waves are very minor. 

Perhaps the most significant result of the model is that in EBT-I 

a large fraction of the injected microwave power is deposited in the 

poorly confined surface plasma. This is so even though the density and 

temperature of the surface plasma are considerably less than those of 

the core plasma. The core plasma in EBT-I tends to absorb about 20% of 

the injected microwave power despite wide variations in the model 

parameters. The partitioning of energy between the surface and the core 

plasma is largely determined by the geometrical sizes of the fundamental 

resonant zone surfaces that intercept the surface and core plasmas, 

respectively. The partitioning of energy between the annulus and the 

other plasma components is determined by a competition for extraordinary 

mode energy to be absorbed by the annulus or to be mode converted to 

ordinary mode in the low magnetic field region. A result not at all 

obvious is that the amount of power deposited in the core plasma is 

largely independent of the core density and temperature. 
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There actually exists some experimental confirmation of the results 

of this model. Of course, the annulus absorption model used in the f^ = 

0.25 calculations is based on experimental data and does not constitute 

confirmation. However, the estimate for a^ of about 1.2 x 10 1 2 cm3/s 

predicted using preliminary results of the relativistic absorption code 

agrees well with the value of a^ obtained from the fixed f^ model 

(aA ^ 2 x 10 1 2 cm3/s). Also, the value of p
A / p

T 0 T predicted using the a 

priori model is in reasonable agreement with the experimental estimate 

(0.2 < p A / p
T 0 T t Recently, estimates of power balance in EBT-I 

and EBT-S have been made using experimental data [10]. For these 

estimates the particle confinement time xp, which can be measured with 

fair accuracy, was related to the energy confinement time r £ using 

neoclassical transport arguments. The power balance P = (3/2)nT /x L 6 1j 
then yielded p

c / p
T 0 T

 r a n S e 0.13-0.27, which just brackets the 

results of the theoretical power balance model. 

There are a number of conceivable experiments that could test the 

assumptions and results of this model. Most notably, measurements of 

the relative microwave field strengths at various points in the cavity 

could test the validity of assuming a uniform energy density and 

isotropic propagation. Measurements of the relative microwave field 

strength components parallel and perpendicular to the magnetic field 

would verify the ratios of W*/W Q and W ^ / W q P r e d i c t e d by t h e model. 

Measurement of the absolute microwave field strength could be used to 

determine the magnitudes of W*, W ? , and W^. A. A 0 

This power balance model can certainly be applied to EBT-S. As far 

as this power balance model is concerned there is little difference 
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between EBT-I and EBT-S. The annuli in EBT-S form at a slightly smaller 

radius, which affects P c/P g. The opacity of the annulus is also expected 

to be somewhat greater in EBT-S. We have not emphasized EBT-S in the 

present work pending further development of the fully relativistic 

annulus absorption modeling and experimental results on the annulus 

energy lifetime in EBT-S. It may also be possible to extend the analysis 

to EBT-P and larger devices although the strong absorption of the 

ordinary mode at the fundamental resonance in hotter, denser devices 

calls into question the assumption of uniform energy density and 

isotropy of wave propagation. Ideas developed here should also be 

applicable to propagation of short wavelength radiation in other large, 

intricately shaped devices. A very relevant problem to attack would be 

the generation, depolarization, and absorption of synchrotron radiation 

in tokamaks and mirrors. 
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FIGURE CAPTIONS 

Fig. 1. Cross section of a sector of EBT-I showing the three plasma 
components (core, surface, and annulus) and the two microwave propagation 
regions (I and II) defined for the power balance model. S^ and S ^ are 
the surface areas of the fundamental cyclotron resonance zone intercepting 
the core and surface plasma components, respectively. 

Fig. 2. Fraction of ordinary mode energy absorbed in a parallel 
stratified plasma versus injected value of n^. 

Fig. 3. Geometry for mode conversion upon reflection from a con-
ducting wall. 

Fig. 4. Mode conversion coefficients T , T and refractive indices 
U A U U 

n2, n2 as a function of n x for magnetic field in the plane of incidence. 

Fig. 5. Mode conversion coefficient T^x versus polar angles of 
incidence 9, (j> for various values of b = fi /to. The magnetic field is in 
the plane of the conducting wall. 

Fig. 6. Mode conversion coefficient T Q X versus polar angles of 
incidence 6, <J> for various values of b = Q /m. The magnetic field is at 
an angle i|i = 60° with respect to a normal to the wall surface. 

Fig. 7. Geometrical quantities used to estimate the power balance 
rate coefficients. 

Fig. 8. Fraction of total power absorbed in core plasma versus 
Budden tunneling efficiency. The fraction of power absorbed in the 
annulus is fixed: p

A/px0T = 

Fig. 9. Fraction of total power absorbed in core plasma versus 
Budden tunneling efficiency. The annulus absorption coefficient is 
fixed: a^ = 2.0 x 1012 cm3/s. 

Fig. 10. Partitioning of total absorbed power between surface core 
and annulus components versus Budden tunneling efficiency for various 
values of annulus absorption coefficient. 
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Fraction of Total Power Absorbed in Core 
Plasma vs Budden Tunneling Efficiency 
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Fig. 8 



57 

ORNL-DWG 8 1 - 2 2 7 6 F E D 

0 . 3 2 

0.28 

0 . 2 4 

0.20 

0.12 

1 1 1 1 

9 x = < - ° 

I 

g x = 0 . 5 

f x = ° \ f x = 0 . 5 _ 

< x = o -

— a A = 2 . 0 x 1 0 1 2 c m 3 / s 

I I I I 
0 . 0 7 5 

IT|2 
0.150 

Fig. 9 



58 

ORNL-DWG 8 1 - 2 2 7 7 F E D 

0.8 

0 . 7 

0.6 

0.5 

o 
c t 0.4 

0 .3 

0.2 

0.1 

0 
0.6 

0 .5 

0 .4 
t— o 

0.3 \ CL 

0.2 

OA 

0 

1 1 1 1 1 I I I I I 
SURFACE _ 

^ ANNULUS 

—— 

" " " * ^ • ^ — * _ _ —-

^ — — 

( a ) a A = 1 . 2 x 1 0 * 2 

I I I I I 

U ) a A = 2 x 1 0 1 2 

I I I I I 

( c ) a A = 4 x 1 0 1 2 (d) a A = 8x10 <2 

0 . 0 7 5 

I T I 2 

0.150 0 0 . 0 7 5 

I T I 2 

0.150 

Fig. 10 


