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Ml Transitions in Even-Even Deformed Nuclei and the IBA MASTE.1
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In the simplest form of collective vibrational and rotational models, Ml
transitions are forbidden because the leading term of the collective Ml j
operator is proportional to the total nuclear angular momentum, which is a'
good quantum number. Nevertheless, a considerable amount of data exists |
on Ml components in transitions between collective states in even-even j
deformed nuclei, and numerous efforts have been made to interpret their
origin. Two basic sources of such components can be postulated involving -
either admixtures of quasiparticle excitations, such as K1t=l̂ " bands, or a |
collective mechanism. Recent experimental studies (Schreckenbach and j
Gelletly, 1980) of the Ml components in intraband transitions in the gamma-
bands of several deformed nuclei have Indicated a remarkable constancy in j
the empirical E2/M1 mixing ratios. A further analysis of the transitions •
in l68Er (Warner et al., 1981) has indicated that this constancy applies I
also to the absolute Ml strengths involved, and that these strengths are I
•at the level of 8xlO~4 s.p.u. The existence of sucli small and constant Ml
strengths in several nuclei argues strongly against an interpretation ;
based on admixtures of a hypothetical K'"=l+ band, since the energy and j
interaction matrix elements of such a band would be expected to vary con- j
siderably from nucleus to nucleus, being dependent on the particular
Nilsson orbits available.

The adoption of a collective mechanism to explain the Ml transitions must
involve the inclusion of higher order terms in the Ml operator, coupled
with the assumption of a vectorial nature for the collective g-factor.
The study of Schreckenbach and Gelletly (1980) showed that the theory of
Greiner (1966), for example, which generates a dependence of the g-factor
on the axis of rotation by assuming different deformations for the proton
and neutron cores, reproduces the data for the gamma-band transitions
excellently. A collective mechanism also suggests that Ml transitions in
deformed nuclei should be describable within the framework of the Inter-
acting Boson Approximation.

In IBA-1, the leading order term of the Ml operator is proportional to
(d+d)d) which is in turn proportional to the angular momentum operator.
Hence, as in the pure collective picture, no Ml transitions can occur in
this order. Including the next order terms the operator becomes (Scholten
et al., 1978):

T(M1) (ttB + uN) 1 + B[T(E2) x L] + YndL. <D

Here gg is„the effective boson g-factor, N is the number of bosons, and
T(E2) and nj are the E2 and d-boson number operators respectively.
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The first term of eq. (1) is stiJl diagonal and does not contribute to
transitions. The Ml transition matrix element becomes:

< X l f | n d | X ' I . > 6 ^

where

-P f( l l t l f) <Xlf|T(E2)|X'Ii>

={^ (I.+If+3) (If-I.+2) (IrIf+2) (Ii+If-1) 1 / 2

(2)

(3)

Note that the third terra of eq. (1) is diagonal in L, and hence only gives
a contribution to transitions between states of the same spin. Thus, for
I+1-* I transitions, eq. (2) leads to a particularly simple expression for
the reduced E2/M1 mixing ratio, namely

A(E2/M1)= -

(5)

where A is related to the measured lnultipole mixing ratio 6 by

6(E2/M1) = 0.835 E (in MeV) A(E2/M1)

The spin dependence represented by eq. (3) is identical to that produced
by any of the geometrical models discussed above, including, in fact, the
assumption of AK=1 admixtures. Such a conclusion is hardly surprising,
since Greohukhin (1963) has derived the identical expression in the geo-
metrical framework, in a totally analogous way, by treating the nuclear
excitation spectrum as one of boson type quadrupole excit.it ions. The var-
ious approaches differ only in tin.' parameterization of th-> constant £•,
which depends on the specific assumptions made concerning the dynamics of
the nuclear collective motion. Tims, for example, the results of ;
Schreckenbach and Gelletly (1980) for intraband transitions in the y <
band, obtained with the model of Creiner (1966), can be reproduced exactly
in the IBA-1 basis by appropriate choice of the constant is. j

I
i In the IBA formalism, the inclusion of both s and d bosons, and the finite
'boson number, give rise to the additional contribution in eq. (2) for I-*I
1 transitions, which involves the matrix element of nj. The corresponding
Ml matrix element thus, in principle, depends on the relative sizes and
signs of the two terms of eq. (2). However, it can be noted that the nj
operator is proportional to the K0 operator in the IBA, and hence the
corresponding matrix elements will be vanishing small for y>g or f*y
transitions, but significant for R •g transitions. Conversely, the E2
matrix element will be considerably larger for y*y or -y->g transitions,
than for the B^g transitions. The absolute values of the constants of
eq. (2) have been determined from the data on 16^Er. The constant 6 can
be determined uniquely from the empirical A(E2/M1) values of the intra-
band transitions in the y band. Using this value, the absolute strengths
of the I-*I &->g transitions, measured to be essentially pure Ml, can be
used to extract y. This analysis indicates that, in the case of y-»-g and
y*y transitions, the first term of eq. (2) is £1% of the second. For 3->g
transitions, the second term is £10% of the first. Thus in practice, the
two terms are independent and the conclusions reached above concerning
the spin dependence of I+I-̂ I transitions from the y band hold also for I>>]
transitions. For (3-*g Ml transitions the spin dependence indicated by the
nj dependent term is again identical to that which can be deduced from the
geometrical model (Kumar, 1975). In this respect, it is important to not^
that since n^ is a scalar, its matrix elements are independent of L ia the



limit of infinite N. If the corresponding B+g E.2 transition is now assumed
to be described by the leading order intensity relations, i.e. :

|T(E2)|X'Ie> = <y)20|lg0> <I ||T(E2)||: (6)

tne inclusion of the analytic expression for the Clebsch-Gordan coefficient
pf eq. (6) again yields the spin dependence of eq. (3) for A(E2/M1). Thus
phis spin dependence, in both the IBA and geometrical models, is appropri-
ate for all Ml transitions from the g and y bands.

[The signs of the A(E2/M1) values can also be considered. For Y+g (and Y+Y)
transitions, the sign will be''constant as long as'the sign of 3 is constant]
Similarly, for B-»-g transitions, the sign will be determined by y. Thus in j
well deformed nuclei, where the two parameters can be expected to vary only
slightly, one expects a constant sign for all y+g transitions, and a con-
stant, but possibly opposite, sign for all f3-*g transitions. The review of
J<rane (1973) indicates that this is indeed observed in the majority cf
cases, Y"*g A values being negative and f-+g values being positive in the
adopted sign convention. In transitional regions, the underlying physical
description of the two constants may cause the signs (and magnitudes) of
the two terms to vary more rapidly.

Finally, a comment can be made concerning the extension of the arguments
presented here to the region of Pt nuclei, where the 0(6) quantum numbers
(,O,T,V£) are valid (Casten and Cizewski, 1978). In such a case, the nj
term of eq. (2) obeys the selection rule Aa=2, AT=0, while the E2 operator
obeys the rule Au=0, AT=+1. Thus for transitions in 196pt> for example,
between the o=N-2 and N groups of levels, the AT=0, I+I transitions might
be expected to be dominantly Ml in character, with relative absolute
strengths distributed according to the spin dependence of the first term
of eq. (2). In addition the ratio of these Ml transitions to Ml branches
involving Ao=2, AT=+1 should be large. Unfortunately, insufficient data
are available at present to test these predictions.

To conclude, it has been shown that the IBA can produce essentially identi-
cal results for Ml transitions in deformed even-even nuclei as can be ob-
tained from the geometrical approach, and many comparisons with experiment
are already available for the latter in the literature. Since no physical
constants are involved in the IBA-1 formalism, it woi Id be useful to use
the similarity of the two approaches to obtain a physical description of
the IBA constants. Use of the IBA-2 approach might also prove illuminating
since it should identify the contributions of the neutron and proton de-
grees of freedom, analogous to the method of Greiner.
i
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