SHELL MODEL DESCRIPTION OF THE N=82 NUCLEUS 141Pr

H. Prade, W. Enghardt, H.U. Jaeger, L. Kaeubler, H.J. Keller and F. Stary

 $2d_{5/2}$, $2d_{3/2}$ and $3s_{1/2}$ orbits. All configurations of the types $(1g_{7/2}, 2d_{5/2})^9$ or $(1g_{7/2}, 2d_{5/2})^8$, $(2d_{3/2}, 3s_{1/2})^1$ are taken into account in the larger configuration space, whereas the smaller space consists of the $(1g_{7/2}, 2d_{5/2})^9$ configurations.

The calculated and experimental energy spectra for positive-parity states agree very well. The percentage contributions of the configurations to the wave functions of selected positive-parity states in the case of the larger configuration space are given in the table. The reliability of these predictions is strongly supported by a good agreement of our calculated spectroscopic factors and electromagnetic quantities (transition probabilities, branching and mixing ratios, g-factors and quadrupole moments) with the experiment. Shell model calculations of odd-parity states in ¹⁴¹Pr are in progress.

Literature

- 1. H. Prade, H.U. Jaeger, L. Kaeubler, H.J. Keller and F. Stary ZfK-404 (1979) 76 (Abstr. Int. Conf. on Extreme States in Nucl. Systems, Dresden 1980).
- 2. B.H. Wildenthal, Phys. Rev. Letters 22 (1969) 1118.

Ì	, 00	onfigu	ration	^a)	contribution (%) to the state J_i^{π}												
	1g _{7/2}	^{2d} 5/2	^{2d} 3/2	³⁸ 1/2	5/2 ⁺	7/2+	3/2+	1/2+	9/2+	11/2+	9/22	13/2+	15/2+	13/22	17/2+	15/22	19/21
O.A.	5	3	1	·	.3	•6	6.0	2.4	1.8	1.7	4.7	3.7	2.0	3.7	3.3	3.3	2.8
	4	4	1		•6	•9	1.3	1.1	2.2	2.0	1.8	•6	•7	1.3	•5	2.0	1.8
	5	3		1	· •1	.6	- •3	•2	4.0	3.8	1.0	1.5	2.5	2.1	-3	•5	2.0
	4	4.		1	. •6	•2	1.9	20.6	1 ه	-3	1.7	.8	•2	1.2	1.3	1.0	1.1
	6	2	1		.8	1.4	1.9	1.0	3.4	3.8	3.5	1.6	1.7	1.1	.8	2.7	5.4
	3	5	1		-	-1	.9	-5	•3	•2	.8	•3	•2	-4	-4	.2	•2
	5	4	} .		-1	43.8	4.8	3.6	30.4	37.0	6.3	26.0	33.8	2.4	.8	15.8	17.4
	6	2	}	1	.8	-4	7.7	41.8	•3	•5	1.9	•9	-4	1.2	1.3	1.4	1,0
	3	. 5		1	-	.1	-	-	•2	•7	.2	-3	.2	3	-	.1	.2
	6	3	ļ		5 7.9	.2	64.7	1	8.2	1	67.1	9.4	.9	68.2	73.2	61.7	68.1
	4	5			16.0	.1	4.5	2.3	2.5	•3	6.0	2.2	•3	14.5	18.1	9.0	-
	7	1	1	1	1 -1	•2	1	.8	1	•5	1.0	1.8	.1	1.1		•6	-
	7	2			.1	45.9	2.8	3.8	42.4	45.3	3.9	50.8	57.0	2.4	-	•1	-
	2	6	1].	. –	-	-1	}	•1	-1	-1	-	-	-	-	-	-
	3	6		1	(–	5.1	-	-	-1	.9	-	-	•2	-	-	1.7	-
	7	1		1	-	.2	,1	-	2.9	1.2	•1	•1	-	-	-	-	-
	2	6	1	1,	} -	-	-	1.5	-	-	-	.1	-	-1	-	-	-
	8 -	1			22.6	-	-	-	-	- '		1 -	-	-	-	-	-
	8		1.		-	-	.9	-	-	-	-		-	-	-	-	-
	8	(,)	1	1	-	-	-	10.4	(-	-	-	-	-	-	-	-	-

a) Number of protons on the shell-model orbit N1j.

95