SEARCH FOR \$\beta-DELAYED THREE-NEUTRON EMISSION FROM 31na

C. Détraz, D. Guillemaud, M. Langevin, F. Naulin Institut de Physique Nucléaire, BP N° 1, 91406 Orsay, France and

M. Epherre, R. Klapisch, M. de Saint-Simon, C. Thibault, F. Touchard Laboratoire René Bernas du CSNSM, BP n° 1, 91406 Orsay, France

Abstract

An upper limit P_{3n} < 5 x 10⁻⁴ is found for the branching ratio of the β -delayed three-neutron emission from ³¹Na.

For very neutron rich isotopes, $(3 - \text{de-layed two-neutron emission has been shown to be an important decay mode }^1)$. But a possibility also exists of observing $(3 - \text{de-layed three-neutron emission since } Q_8 - B_{3n}$ can become positive. For instance, a 11.62 $^{\pm}$.22 MeV mass value 2) of 31 Na leads to 2 Q8 - 3 B3n = 2.35 $^{\pm}$.22 MeV.

In view of the strong ³¹Na yield from high-energy fragmentation reaction, and of the high sensitivity provided by the long half-life of the expected ²⁸Mg product, ³¹Na was felt to be an ideal candidate for the observation of the admittedly very small (3-delayed three-neutron decay mode.

The 31 Na isotopes are produced in the fragmentation of Iridium by 24 GeV protons from the CERN synchrotron. They are analyzed by an on-line mass spectrometer 3). We obtain a typical yield of some 2×10^4 31 Na+ions diffusing within a few tens of ms from the ion source after each beam burst, e.g. every 3 seconds.

If ³¹Na decays to a level of ³¹Mg energeticaly unstable to 3n emission, and if this decay channel is preferred to one or two-neutron emission, the 21.1 hour of 28Mg product nucleus accumulates in the collecting foil. This catcher has the shape of a deep test tube so that the ²⁸Mg nucleus which can recoil out of the foil from three-neutron emission is reimplanted into it. After collecting ³¹Na ions during one day or so, a search is made for the characteristic activity of ²⁸Mg. This method was already successfuly used to measure the

(3 -delayed two-neutron branching ratio P_{2n} of $^{30}Na^{1}$). In the present case, the sensitivity of the method was improved by requesting that the χ -ray observed be in coincidence with a χ -particle. In this way the background count rate was reduced to 3 x 10 per keV and per hour in the energy spectrum in the vicinity of the 1779 keV χ -ray from ^{28}Mg .

No γ activity was observed above the background level from the collecting foil.

This corresponds to an upper limit for β -delayed three-neutron emission, P_{3n} < 5 x 10⁻⁴.

This limit is of the order of the branching ratio expected from E $_{m{\beta}}$ dependance alone since P $_{2n}$ was found 1) to be 7 x 10⁻³ for Q $_{m{\beta}}$ -B $_{2n}$ = 6.2 MeV. However, an estimate of P $_{3n}$ (31 Na), calculated by Takahashi⁴) in the framework of the gross theory of $_{m{\beta}}$ decay, predicts an extremely small P $_{3n}$ value, 7 x 10⁻⁷, since most of the strength above the 31 Mg \rightarrow 28Mg + 3n threshold decays by emission of one or two neutrons only.

It is impossible at this stage to significantly improve the $^{31}\mathrm{Na}$ yield, hence to lower the present limit on $\mathrm{P_{3n}}$. Therefore the somewhat exceptional $^{11}\mathrm{Li}$ nucleus will remain the only known case of β -delayed three-neutron emission⁵⁾.

The authors are grateful to Dr. K. Takahashi for his interest and comments.

- 1) C. Détraz et al., Phys. Lett. <u>94</u> B (1980)
- C. Thibault et al, Proceed. AMCO VI, p. 291, and unpublished results.
- M. de Saint-Simon et al. 1980 EMIS Conf., (NIM, to be published)
- 4) K. Takahashi, private communication
- 5) R.E. Azuma et al. Phys. Lett. <u>96</u>B (1980) 31 M. Langevin et al, Nucl. Phys. A, in press