0⁺- STATES IN ¹⁰²Pd AND ¹⁰⁸Cd.

K. Cornelis, E. Coenen, M. Huyse, G. Lhersonneau and J. VerplanckeK.U. LEUVEN, Celestijnenlaan 200D, 3030 Leuven, Belgium.

Abstract

A presentation is made of an angular correlation experiment by wich we could identify the two fonon O^+ - states in 102 Pd and 108 Cd. In the case of Pd a comparison is shown with IBA calculations and a levelstructure calculated with a asymmetric rotor vibratormodel.

1. Introduction

The even-even Pd and Cd-nuclei have for many years been interpreted as having an anharmonic vibrational structure. A two fonon multiplet can be seen from N=60 for Cd-nuclei and from N=58 for Pd-nuclei (fig. 3.4.). In order to extend the systematics in the behaviour on those multiplet states we looked for the 0^+ - states in 102^{Pd} and 108^{Cd} .

fig.l. Angular correlation patern of some $x^{\pi} + 2^{+} + 0^{+}$ cascades.

Therefor we performed a $\gamma - \gamma$ angular correlation experiment on the (β^+ + EC) - decays of 10^{2m} Ag- and 10^{8m} In nuclei. In 10^2 Pd we found a 0^+ state very close to the long living anomalous 0^+ on wich we reported earlier 1^1 . The electromagnetic features of the new 0^+ state are more in agreement with a two fonon description whereas the other 0^+ - state seems to be some kind of intruder which can not be acounted for in a normal collective (IBA, triaxial rotor vibrator etc.) model. The 0^+ state in 10^{8} Cd is lower in energy than the expected trend, but seems to have normal electromagnetic properties.

2. The angular correlation experiment.

The produced radio activity and the availlable measuring time for a ISOL setup at a cyclotron are normally not sufficient to perform a decent $\gamma - \gamma$ angular correlation experiment. However, the huge anisotropy of a $0^+ + 2^+ + 0^+$ cascade makes it possible to distinguish it from other $x^{T} + 2^+ + 0^+$ cascades, even with poor statistics as can be seen in fig.1. This means that the angular correlation technique can still be a usefull tool when looking for 0^+ - states in low activityand short living sources.

In our experiment we only measured the correlation at the three crusial angles 0° (180°), 50° and 90°. The $102m_{Ag}$ and $108M_{In}$ sources were produced with a natMo(¹⁴N(90Mev), xpyn) reaction and massseparated using the LISOL facility at Louvain-la-Neuve²⁾. An example of the resulting spectra gated on the $2^+ \rightarrow 0_q^+$ transition is shown in fig.2. The spectrum at 180° shows the (1101.7 ± 0.5)keV gamma which proved to have the good anisotropy for a $0^+ \rightarrow 2^+ \rightarrow 0^+$ cascade. From the coincidences we could also deduce that the O⁺ level at 1658 keV is almost completely fed by a 729 keV gamma coming from a known level at 2390 keV $(J^{\pi} 1, 2^{\pm})$

In the same way we observed a 0^+ state at (1375.0 ± 0.9) keV which is mainly fed by 1244, 1306 and 827- keV transitions depopulating known levels in 108 Cd ${}^{3)}$. Also mini-orange spectra were taken from both sources in order to measure the E0($0^+ \rightarrow 0^+_{q}$) transition strength. From these spectra only an upper limit could be deduced for the parameter.

$$X = \frac{B(EO, O^{+} \rightarrow O_{g}^{+})}{B(E2, O^{+} \rightarrow 2_{1}^{+})}$$

For 102 Pd we have X \leq 2.7.10⁻¹ and for 108 Cd X \leq 4.

fig 2. Spectra at 50° and 180° gated on the $2^+ \rightarrow 0_{d}^+$ transition

3. Discussion.

In fig. 3 we can see that the 0^+ - state in 102 Pd is following the systematical trend of rising when going to lesser neutrons. The 2^+_2 and 4^+_1 do not go up as fast and in 102 Pd the two fonon triplet is completely broken. The same systematical behaviour can be reproduced by IBA-2 calculations ${}^{4)}$ as shown in fig. 4.

In table 1 a comparison is shown of the low energy levels in 102 Pd and a theoretical calculation with an anharmonic vibrator model $^{5)}$.

Table 1.

Iπ	Exp. (keV)	Theory:E _{INn}	INn
o ⁺	0	0	011
2 ⁺	556	552	211
4^{+}	1275	1333	411
2 ⁺	1534	1492	211
o+	<u>1658</u>	1658	012
6+	2111	2119	611
4 ⁺	2138	2177	421

In this calculation the experimental energy of the 0^+ - state was not used in fitting the model parameters, however, the agreement with experiment is excellent.

The first excited 0^+ -state in 108 Cd (fig. ⁵) does not seem to follow this systematical trend of rising when going more neutrondeficient. In this case it would be interesting to find the second excited 0^+ -state which appears to be low in the heavier Cd isotopes. These 0^+ - states can propably be explained in terms of 2-proton particle - 2 hole excitations through the Z=50 shell closure as in the case of the even Sn isotopes 6 .

fig. 3 Positive parity states in even Pd nuclei.

fig. 4 IBA-2 calculation of the Pd isotopes.

fig. 5 Positive parity states in even Cd nuclei .

References

- K.Cornelis, et al., Z. Physik <u>A 292</u> (1979) 403
- 2) G. Dumont, et al., Nucl. Inst. and Meth. <u>153</u> (1978), 81
- 3) I.N. Wischnewski, et al., Z. Physik <u>A 298</u> (1980), 21

DISCUSSION

J. Kantele: I have some complementary information to give: within the Jyväskylä-Uppsala collaboration, we have studied ¹⁰²Pd low-spin states using (pp') and double Coulomb excitation. The 1648 keV state is seen in the latter reaction which indicates a collective character for this state; it probably contains some two-phonon strength. The 1592 keV level does not seem to be connected to the 2^+_1 state, which yields the largest known X-value, over 400. Thus the 1592 keV 0^+_2 state has a structure completely different from that of the 0^+_3 one at 1648 keV; the wave function is probably dominated by some twoquasiparticle component.

V. Paar: How many parameters do you have in fitting spectra in your figure? Do you fit to each nucleus parameters separately?

K. Cornelis: The parameters in this fit were allowed to vary in the fit.

- 4) P. Van Isacker, et al., Nucl. Phys. A 348 (1980), 125
- 5) H. H. Hsu, et al., Phys. Rev. <u>C 16</u> (1977), 1625
- 6) G. Wenes, et al. Phys. Rev. <u>C 23</u> (1981), 2291

J. Stachel: In principle the full IBA-2 Hamiltonian has \approx 12 free parameters. The calculations referred to here (P. Van Isacker, G. Puddu, Nucl. Phys. 1980) are a simultaneous fit to all neutron-rich (N = 50-66) Pd- and Ru-isotopes. Some of the parameters were set = 0 in this fit, all parameters involving only protons were kept constant over the whole isotope chain, some were taken equal for Ruand Pd-isotopes. So it is essentially the change in three parameters describing the change in excitation energies and decay properties along each isotope chain.

D.S. Brenner: In your IBA-2 calculations which parameters did you vary to obtain your fits to the Pd and Cd isotopes? What criteria were used to determine the "best" fit to these data?

K. Cornelis: For this question I refer to P. Van Isacker, for he has been doing the calculations. He certainly can tell you more about the details.