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ABSTRACT

The F-centre model for the bound state and the first optical

transition of an electron in a metal—molten salt solution is

examined in the high dilution limit appropriate for comparison

with optical absorption data. It is first argued that the model

is consistent with recent neutron diffraction and computer

.simulation data on the structure of pure molten saltss and not

incompatible with an Anderson localization model for the electronic

conductivity of the solution at higher concentration of metal.

A detailed evaluation of the model is presented for the case of

a molten salt of equi-sized ions simulating molten KC1. The

treatment of the electronic states is patterned after semicontinuum

approximations previously applied to the F-centre in ionic crystals,

but the equilibrium radius of the electronic cavity and its

fluctuations are determined self-consistently from the free energy

of the solution. The detailed analysis of this case and the

agreement of the results with experiment allow the construction

of a simple parametrization scheme, which is then applied to

explore the trends of the optical absorption spectrum and of the

volume of mixing through the whole family of M-MX solutions, where

M is an alkali and X a halogen. Similarities and differences of

the electronic bound state in the crystal and in the liquid are

underlined.
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1. Introduction

The alkali metals dissolve in molten alkali halides to

give true solutions, with partial miscibility at lower temperatures

and a critical point above which the two liquids become miscible

in any proportion (for general reviews see Bredig 19&4, Corbett 19*'4),

The electrical conductivity of the solutions, which has been

measured in several instances near the salt-rich and metal-rich

ends of the concentration range and over the entire range for

the K—KBr system (Bronstein and Bredig 1958 and 1961 ; Bronstein,

Dworkin and Bredig 1962), changes from that of an ionic liquid to

that of a liquid metal. The simultaneous presence of a critical

point and of a metal-non-metal transition is an evident reason for

interest in these systems.

At low metal concentrations the most interesting question

concerns the nature of the states of the valence electrons of the

alkali atoms added to the molten salt. An electronic contribution

to the conductivity in the concentration range 0.01 +0,1 moles

of metal has been approximately extracted from the experimental

data, and is found to be appreciable at these high temperatures

and to increase with temperature. Various models for this electronic

transport and for electronic traps have been discussed in the past

(for a review see Nachtrieb 1975)• More recently, Katz and Rice

(1972) have pointed out that the observed features of the

conductivity are qualitatively consistent with a phenomena of

Anderson localization. Durham and Greenwood (l9?6) have given an

account of the data by assuming that current is carried by a small

fraction of the added electrons in extended states, in numbers

which may depend on temperature and composition and undergoing

scatterings against optic modes and disorder.

At still lower concentrations (0,01 moles of metal or

less) broad bands of optical absorption have been reported for
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a number of metal-molten salt solutions (Mollwo 1935) Young

Rounsaville and Lagowski 1968 and other references given therein),

The spectroscopic evidence seems incompatible with a model in which

the electron responsible for the optical absorption is bound in

an alkali atom or in an alkali diatomic molecule in the solution

(Rounsaville and Lagowski 1968). It instead suggests a bound state

akin to the F-centre in the crystal, in which the electron would

be bound in a bubble inside the liquid structure where it replaces

a halogen ion {Pitzer 1962). In particular, the absorption peak

frequency in the liquid joins smoothly with the F—band peak in

the crystal when plotted against the two-thirds power of the

density, in spite of the discontinuous change in density at melting

(Gruen, Krumpelt and Johnson 196°). This is the well-known

Mollwo-Ivey law for the F—centre peak in the crystal (see e.g.

Fowler 1968), which thus holds across the melting transition. A

similarly smooth connection exists for the width of the absorption

band in the crystal and in the liquid when plotted against the

heat content of the system, which for the liquid includes the

latent heat of melting (Nachtrieb 1975).

It should be stressed that an F-centre-like model for the

electronic bound state in the dilute solution is fully consistent with

the recent evidence on the structure of pure molten salts provided

both by neutron diffraction experiments (Edwards, Enderby, Rove

and Page 1975, Derrien and Dupuy 1975, Mitchell, Poncet and

Stewart 1976) and by computer simulation (Woodcock and Singer

1971, Sangster and Dixon 1976). These data show a high degree of

short-range order in the molten salt, where each halogen ion is

surrounded by a rather well defined shell of between five and six

alkali ions on average. This first-neighbour shell can be expected

to provide the attractive well binding the electron when it

replaces a negative ion. On the other hand, there is no obvious

contradiction between an F-centre model for the optical absorption
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at low metal concentration and an Anderson Localization model.

For electronic conductivity at higher concentrations. Indeed,

the F-centre bound states may well be the lowermost electronic

states in an Anderson tail below the conduction band of the

solution , and these, of course, are the only occupied states

at high metal dilution.

In this paper we explore the numerical consequences of

adopting an F—centre-like model for the electronic bound state in

metal-molten salt solutions in the limit of infinite dilution.

Such a calculation clearly presents some aspects of complexity

when compared with the corresponding problem for the ionic

crystal or for a neutral fluid. First of all, liquid-state disorder

will allow a sizeable relaxation of the local structure around the

electron bubble as contrasted with the case of the crystal. In

the estimation of the mean radius of the bubble, on the other

hand, one cannot resort to a simple argur.ient which invokes the

electronic kinetic pressure and the surface tension of the

liquid, since the neighbours of the bubble will prevalently be

positive ions whereas the equilibrium surface of the ionic liquid

is electrically neutral. Furthermore, liquid-state fluctuations

imply a distribution of sizes for the electronic bubble, whose

importance is stressed by the broadness of the observed absorption

spectrum. In summary, one needs to know the structure of the ionic

liquid around the electronic bubble and the corresponding free

energy of the system as functions of the radius of the bubble.

Once these are known, the electronic states in the ensuing

pci Tii!,tl vm ' I i an hi- di •' i'mim-il hy si CIEH1;IT(1 I eftin i q u o ^ .

We treat the problems that we have just underlined by the

simplest possible approximation (Senatore, Parrinello and Tosi

1978), that is we schematize the solution as a mixture of charged

hard spheres and estimate its structure and free energy by the
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analytic expressions yielded by the so-called mean spherical

approximation (MSA) for a charged-hard-sphere fluid (Waisman

and Lehowitz 1972, Blum and H^je 1977). In short, this approximation

combines hard-sphere boundary conditions with a Debye-Htlckel

treatment of the long-range effects due to the Coulomb interaction,

and is known (Abramo, Caccamo, Pizzimenti, Parrinello and Tosi

1978) to yield a reasonably accurate account of the observed

diffraction patterns of pure molten salts, at least when the

sizes of cations and anions are not too different. The MSA

presents some difficulties in the equation of state, that we

shall later point out and try to remedy by a judicious choice

of the size parameters for the pure solvent. Of course, the

charged hard sphere which schematizes the effect of the electronic

bubble on the solvent has an a priori arbitrary size, to be

determined eventually by minimizing the free energy. It contributes

to the free energy also through the ground state energy of the

electron in the bubble and through polarization of the electronic

shells of the ions. We shall tackle the electronic problem in

detail for the case of a solvent of equi-sized ions adapted

to represent molten KC1, and then examine a parametriNation of

the results for extension to other systems.

The layout of the paper is briefly as follows. Section 2

presents the essential formulae for the calculation of the

electronic states, the thermodynamic and structural properties

of the dilute solution in the MSA, and the optical absorption

spectrum. The choice of the parameters for the solvent is discussed

in Section 3. Sections 4 and 5 present the results obtained for

the system K-KC1 through a detailed evaluation of the electronic

states and for the family of M-MX systems through a parametriMtion

scheme, respectively. Section 6 offers a few concluding remarks.
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2. Description of the model

We consider the replacement of a halogen ion in a molten

alkali halide by an electron. Since the Madelung energy in the

liquid is only marginally reduced relative to the crystal (see

e.g. Adams and McDonald 1974, 1975), we expect that the surrounding

liquid structure will confine most of the electronic wave function

within a spherical cavity kept open by the electronic kinetic

pressure, and only the tails of the wave function will extend

beyond the first shell of neighbours. We denote by cf an effective

hard-core diameter of the cavity through which we shall describe

the distortion induced in the surrounding liquid; that is

R = £( <T + oj_) is the distance of closest approach of an alkali

ion with diameter cj, to the centre of the cavity with diameter

& . Fluctuations will lead to a distribution of values for CT"

around the value CT that minimizes the free energy of the system.

We neglect fluctuations leading to non-spherically-symmetric

configurations.

2.1 The electronic ground state

The potential felt by the electron associated with a

cavity of given diameter is flat within the sphere of radius

R and determined by the detailed liquid structure and electronic

polarization outside. We estimate this potential by a semicontinuum

Hartree-Fock method, in analogy with previous work on the F-centre

in the crystal (Gourary and Adrian i960). We first introduce the

probability f> (,O of finding the electron vithin a sphere of

radius r.

(2.1)
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and proceed on the assumptions that p(R) is not far from unity

and that the ions and the core electrons do not follow the detailed

motion of the trapped electron, but only its average. The potential

for r < R consists of a Coulomb contribution and a core-polarization

term,

V. (2.2)

The Coulomb contribution can be expressed through the pair

correlation functions <t {*! , which describe the probability of

finding an ion of species 01 at a distance r from the centre of

the cavity as

(2.3)

Here, ^ and i, are the density and the valence of the d -th

ionic species, and we should note that *J (<•) depends on the

probability p(r) of finding the electron within the shell of
•

first neighbours. The core polarization term in eq. (2.2)

vanishes if p(R) = 1 and is taken to have the Hartree-Fock

expression

' *"' J« *V *' '

where £ is the high-frequency dielectric constant of the

solvent. Finally, the potential for r > R is taken in the form

of a screened Coulomb potential,

V~Jt * ' ~

The "lattice polarization" terms usually included in calculations
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on the F-centre in the crystal (Gourary and Adrian i960, Iadonisi and

Preziosi 196?) are already accounted for in our treatment through

the use of the ion-cavity correlation functions in eqs. (2.3)

and (2.S),

We shall restrict the detailed evaluation of the electronic

states to the case of a solvent of equi-sized ions, adopted to

simulate molten KC1. The diameter of these ions is taken as

^ « -1 [ô , +O^) , the average of the diameters of the K and Cl

ions. The MSA yields an analytic expression for the quantity given

in eq, (2.3), which in the present case reads

(2.6)

where I is a parameter of the solvent determined by eq. (2,ll)

below. It also yields in the same case an analytic expression for

the charge-cavity correlation function Zj ?^C.— *̂  CO entering

eq. (2.5) (Henderson and Smith 1978). The potential calculated

for p(R) = 1 is reported in Fig. 1. It is evident that the

potential outside R is reasonably well represented by the simple

expression

E T (2.7)

that we shall use in the following.

It is now a simple matter to solve the Schrb'dinger equation

for each value of <r with the above prescriptions for the potential,

determining the function f [r) self-consistently. We have done ao

by the method originally used by Krumhansl and Schwartz (1953) (see

also Gourary and Adrian i960). We only note here that p(R) turns

out indeed to be close to unity in the ground state (p(R) = 0.82

for O"=o^ in molten KCl) and defer a discussion of the other



results to Section 4. We now turn instead to a discussion of the

free energy of the dilute solution.

2.2 The free energy

The MSA for an 1\. -component mixture of charged hard spheres

yields also an analytic expression for its Helmholtz free energy,

•consisting of a hard-sphere contribution and a Coulomb contribution:

F(V,T)
t

(2.8)

We take for Fhs the expression obtained by integration of the

virial pressure for a neutral—hard—sphere fluid,

1.9)

A = t-fwith ^ = ^ ^ t ^ * and A = t-f & , and adopt for F the

expression obtained by integration of the excess internal energy

(Blum and Hjje 1977),

(2.10)

Here, the charges, partial densities, and diameters of the component

species are Z^l*.), ^ , and cr̂  , respectively; I is to

be determined by solving the algebraic equation

(2.U)rv.
and the quantities ilu and P have simple expressions in terms

n

of the quantities that we have just defined. In the present case,

components 1 and 2 of the fluid represent the alkali and halogen
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ions, and component 3 represents electronic bubbles with

diameter <x = cT and valence Z . = -p (R).

The relevant O* -dependent term in the free energy, to

first order in P , is the chemical potential Ht(.w) °f the

electronic bubble, which can be written

U» * tf. * P * + t?* + E« • (2'l2)

We aim to account for core polarization effects through the term

^^ and for the internal degrees of freedom of the electronic

bubble through E,l«-) ," the energy of the electronic ground state

relative to the bottom of the potential well binding the electron,

determined by the solution of the SchrBdinger equation in the

preceding section. Differentiation of eqs. (2.9) and (2.10) in

the limit ^ -• o yields at once

(2.13)

and

(2.110

where the quantities ' > î _ and P now refer to the pure solvent.

In particular, P vanishes in the case of a solvent of equi-sized

ions.
pol

The core polarization tens u. can be estimated by

considering the polarization work involved in replacing a halogen
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ion by the electronic bubble in an adiabatic process, as is

appropriate for the calculation of a thermodynamic quantity. The

change in free energy of the system upon addition of an alkali

ion and an electronic bubble is

Core polarization effects are negligible in the quantity (ft.
+ y.

vhich corresponds to the addition of an alkali-halogen ion pair

Lo the liquid (see also Section 3 below). In the evaluation of

( t*»-^_) , on the other hand, we must adiabatically extract a

halogen ion, creating a core polarization field in the system,

and replace it adiabatically by the electron, which would

completely cancel the core polarization field only if PO(R) = 1

and O* = o"_ , the diameter of an "anion vacancy". A continuous-

dielectric calculation yields

!.l6)

where the first term is the polarization work involved in bringing

^el0 adiabatically from zero to its actual value in the

polarization potential of the medium, and the second term is the

same quantity calculated with po(R) = 1 and O" * <y_ .Of course,

this second term is irrelevant since we need only the dependence

of ^ t on O" . We can cancel the rigid-ion contribution to \*_

in (y«,~^-) against ^_ in (H++y..')j
 an<* must then use the rigid-

ion value for U in S F .

The equilibrium value of o* , denoted by cr , will be

determined by minimizing the expression (2.12) for ^(pO • Of

course, a knowledge of the free energy allows one to evaluate

other thermodynamic properties of the dilute solution. We shall

be interested in particular in the isothermal compressibility
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of the pure solvent,

(2.17)

and in the volume change upon addition of a metaJ atom to the

molten salt,

* •
K. (2.18)

with N = ?,v- F o r t h e evaluation of \> we shall need also the

chemical potential U of the alkali ion, that we shall take, for

reasons Just indicated above, to have the rigid-ion value given by

expressions analogous to eqs. (2.13) and (2.14).

2.3 The optical absorption spectrum

For a given diameter O* of the electronic bubble in the

electronic ground state, the energy of a Franck-Condon transition

is the difference

(2.19)

between the energies of the first p-type excited state and of the

ground state. In the evaluation of E (a) we have used again the

expressions (2.2) and (2.7) foj Lht potential we 1.1, bui havt

allowed for a readjustment of cove polarization by replacing t (f)

in eq. (2.4) by (̂1*) » the corresponding self-consistent

probability for the excited state. We must then account in (2.19)

for the relative shift of the bottom of the wells for the two

states, as well as for a (small) term representing the polarization

work involved in the change of core polarization.
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On account of fluctuations, which occur with probability

:) , (2.20)

the absorption line at Oi(ff(l') will be broadened into a band,

with a peak frequency olw , which may be different from oi(<3".).

Additional broadenings and shifts can arise from non-spherically-

symmetric fluctuations and from relaxation of the liquid structure

in the electronic' transition. The probability of a transition at

frequency <*1 by electrons in bubbles with diameter between 9

and «r+ dw is

aw (2.21)

where M (JT) is the square modulus of the transition matrix element.

Inversion of eq. (2.19) to get a function O"(u») and integration of

eq. (2.2l) over S yield the absorption intensity

(2.22)

The peak frequency oim of this spectrum and its full width A w

at half maximum will be compared later with the available data on

optical absorption.

3. Parameters of the solvent

In the present discussion of the dilute solutions of metals

in molten salts the solvent, taken near the freezing point and at

the measured density at atmospheric pressure, is described by three

parameters, i.e. the diameters Ĉ . and W_ of alkali and halogen

ions and the electronic dielectric constant £ w . For the latter

we adopt values appropriate to the crystal (Tessman, Kahn and Shockley

1953). The choice of diameters is quite critical, especially in

the calculation of the equilibrium diameter O", of the bubble and

of the volume change \> of the solution through the solvent

compressibility, and we have reconsidered their determination

from properties of the pure solvent.

The recent determination of these parameters for molten

salts by Abramo et al. (l978) was based on a fit of the compressibility

by the MSA expression yielded by the Ornstein-Zernike relation. Our

expression for the compressibility, derived from the MSA free

energy reported in Section 2.2, does not coincide with the Ornstein-

Zernike expression. This "thermodynamic inconsistency" in the

equation of state is indeed the main difficulty of the MSA in the

evaluation of thermodynamic properties, and we try to remedy it

for our purposes by refitting the solvent diameters to the measured

compressibility so that the equation of state of our model is

consistent with its free energy. We find again that each ion in

the family of salts can be assigned a characteristic diameter at
o

a given temperature, but the diameters are increased by 0.05 • 0.1A

and are somewhat less sensitive to temperature. As shown in Fig. 2,

where the calculated partial structure factors for a salt of nearly

equi-sized ions (molten RbCl) are compared with the neutron

diffraction data of Mitchell et al. (1976), the MSA with the new

diameters still yields a good description of the structure of the

pure solvent.
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The values of the new diameters at the freezing point of

each salt, and of the parameter P determined from eq. (2.1l)

for the pure solvent, are collected in Table I. The table reports

also the MSA values of the Madelung energy EL of the solvent,

which is clearly related to the value of V. in eq. (2.2).

Comparison with the experimental values of the cohesive energy U

at freezing, reported in the table whenever available (Adams and

McDonald 1974), shows that the MSA estimate of E is quite

reasonable, since the discrepancy of 10 •* 15 % between R and U

can be largely attributed to the Born-Mayer repulsive energy.

It should be noted that the above calculations on the

pure solvent were carried out without account of core polarization.

Introduction of dielectric screening through a k-independent

dielectric function £ w would greatly reduce the heights of the

main peaks in the partial structure factors reported in Fig. 2

and size&bly decrease j EM| , which is mainly determined by the

liquid structure in this region of k-space. This observation

supports our claim that the chemical potential ^+*t*-J discussed

in Section 2.2 should not include polarization effects, and that

the latter are arising in the problem at hand from differences

between the electronic bubble and the halogen ion that it replaces.
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4. Results for a model of K-KC1

The solution of the SchrBdlnger equation for the two

electronic states in a model molten salt of equi—sized ions

simulating KC1 yields the self-consistent distributions of

radial probability

(4.0

which are reported in Pig. 3 for the value of <j f which minimizes

the free energy. The corresponding values of p^R) and p^R) are

0.32 and 0.49, respectively, indicating a strong localization

of the ground state and an appreciable spread of the excited

state.

The other results of the calculation are collected in

Table.II and compared with the available data on optical absorption.

The following points are worth noting:

(i) the relaxation of the ionic liquid around the electronic

bubble is not a large one { (cf -o1,} / <3"- 3 O.M* ) but is

appreciably larger than one expects for the F-centre in the

crystal;

(ii) liquid-state fluctuations induce a large broadening

of the spectrum, in substantial accord with the observed width

although the theory does not take account of all mechanisms for

broadening;

(iii) the calculated spectrum has a somewhat asymmetric

Gaussian-like shape with a high-frequency tail, in accord with the

observed spectra, and the asymmetry leads to a downward shift of

the peak frequency, bringing it into reasonable agreement with the

measured value;

(iv) the volume change "O" of the solution upon addition

of a metal atom is comparable to the volume 0^ of the atom
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in the alkali metal, namely the excess volume of mixing

is small. Galka, Suski and Moscinski (1973) have been unable to

observe an excess volume of mixing for this system over the

concentration range between 0.02 and 0.IS molar fractions of

metal. An error of 4 % in our value of O"e would be sufficient

to reduce ^*V^fc to zero, so that our calculated value for

f1^- &tn) / "V* m a v D e within the likely uncertainties of the

theory. It should be stressed, on the other hand; that one is

not justified in comparing results at very high dilution with

results at finite dilution. Indeed, the optical properties

change drastically around concentrations of 0.01 moles of metal

(young 1963), indicating that the nature of the electronic states

is rapidly changing with concentration. This behaviour is well

known in metal-ammonia solutions (see e.g. Mott 1974).

The present calculation for the K-KCl system thus agrees with

experiment in the conclusion that the electronic bound state in very

dilute metal-molten salt solutions is of the F-centre type. The

similarity of behaviours in the solid and in the liquid is

ultimately related to the affinity of their structures, while the

differences arise in essence from the greater compressibility and

from fluctuations in the liquid. In the next section we shall use

the results obtained for the K-KCl system to build a simpler model

for the other metal—molten salt solutions. We shall be particularly

concerned,for the reasons just given above, with the behaviour of

the optical absorption spectrum through the family of systems at

very high dilution, but shall also comment on the qualitative

behaviour of their thermodynamic properties.

-17-

5. Results for the fami]y of metal-molten salt solutions

Our aim is to build a simple pariimetrization scheme for

the detailed quantum-mechanical results obtained above for the

K-KCl system, that we shall then extend to the other systems. The

first consideration is that the electronic ground state is so

well localized that the ground state energy ought to be reasonably

well represented in its dependence on O" by the spherical-well

formula,

(s.D

This simple expression does indeed reproduce with good accuracy

the calculated behaviour of Eo(g'^ near the equilibrium diameter

Vo t and the parameter A is determined by fitting the calculated

value of dLE4(<r}/ Arr at <T s <ro . 0« the other hand, the

core-polarization correction (2.16) to the electronic chemical

potential can be approximately accounted for by screening the

Coulomb term (2.14) through a factor V E ^ » as far as its

dependence on tar is concerned. This can be seen by noticing that

V»(,O *£> 4 in eq (2,l6) and that Yv is appreciably larger

than unity. If we further take for the K-KCl system the value

Po(R) = 0.82, independent of 9 j we can redetermine the equilibrium

diameter in this scheme and find W0 — 3.46A instead of the value
o

O*o = 3-49A found in Section 4. Finally, the empirical validity

of the Mollwo-Ivey law suggests that the optical transition

energy defined in eq. (2.19) can be written approximately

The parameters A and B are not expected to bear a simple relation
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to each other) because of the appreciable spread of the excited

state that we have seen in the preceding section. The value of

D is fitted to the observed peak frequency a^ in the K-KC1

system, with account of fluctuations in the theory.

The evaluation of the equilibrium diameter of the bubble

and of the absorption spectrum can now be carried out for all

the systems if we assume that the three parameters A,B and p (R)

are constants independent of the system.This already yields a

reasonable account of the optical data available for various

solutions, and in particular reproduces qualitatively the

observed trend of C ^ to increase through the family of

chlorides from Cs-CsCl to Li-LiCl, A better account of this trend

can be obtained by allowing for a dependence of the parameter A

on the cation, in the form of a proportionality to the cation

diameter O". . This factor seems to account qualitatively for the

effect of a greater depth of the potential well in freezing the

kinetic, pressure of the electron, and yields a regular variation

of the bubble diameter O^ through the family of systems.

Obviously, by this rough type of approximate scheme we can

only hope to assess the qualitative trends of the properties of

the dilute solutions. The results for the bubble diameters and

for the optical spectrum are collected in Table III. The experimental

evidence on the trend of c!)^ with varying anion for a given cation

is conflicting, in that the results of Mollwo (1935) for both the

sodium and potassium halides depend only on the cation while those

of Rounsaville and Lagowski (1968) for the potassium halides show a

decrease of »*>m from the chloride to the iodide. A trend of the

latter type in c*w seems implicit in the theory, although its

magnitude could be altered by further hypotheses on the parameters.

It should be noted that this dependence of (*„ on the anion is

anyway weaker than for the F-centre in the crystal, owing again

-19-

to the larger compressibility of the liquid.

The calculated values of the excess volume of mixing of

the dilute solutions are also reported in Table III. The only available

experimental study of this quantity is that of Galka et al. (1973),

who have also examined the system K-KI at concentrations from 0.02

to 0.2 molar fractions of metal, finding again no evidence for a

sizeable effect. Our approximations could imply an error of a

factor of two in ('U-VwO/iT',,, for this system at very high dilution.

Our results, on the otl'er hand, definitely suggest that large

volumes of mixing should be present, and possibly observable,

in the systems with lighter cations at higher dilutions than

those explored by Galka et al. (1973).

Experimental values for the activity of the salt in the

dilute solution have been reported by Pitzer (1962) on the basis

of an analysis of the phase diagram. The evaluation of this

thermodynamic quantity requires a knowledge of the free energy

to second order in the concentration of metal, and can be carried

out in the present scheme through a strict application of the MSA

expression (2.8) •» (2.10), thus effectively neglecting the quantum-

mechanical nature of the electronic centres as well as core

polarization. The results are very rough but qualitatively agree

with the trends revealed by the data.
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6, Concluding remarks

It may be useful to conclude by commenting briefly on the

similarities and differences of the electronic bound state in the

crystal and in the liquid. Our treatment of the problem in the

K-KC1 system is similar to treatments previously given for the

F-centre in the crystal (see e.g. Iadonisi and Preziosi 1967),

except that we have allowed the system to relax to its free

energy minimum and have allowed for fluctuations around this

minimum. We have also been able to test in Fig. 1 the closeness

of the outer potential to a simple Coulomb tail. The overall

agreement of the results with optical data is of comparable quality.

As we have previously pointed out, the bound state in the

liquid originates from the good short-range order of the spacial

distribution of ionic charges around a halogen ion, which yields

as in the crystal a strong Hadelung potential. The degree of order

can be gauged directly from the height and narrowness of the main

peaks in the partial structure factors illustrated in Fig, 2.

The strong negative trough in the cross-correlation function

S. Ofc) at the same wavenumber is a precise mark of ordering in

the charge distribution (see e.g. Parrinello and Tosi 1979).

On the other hand, the looseness of the liquid structure

revealed by its greater compressibility and its transport

properties implies quantitative modifications of the bound state

and of the optical transition to the first excited state.

Relaxation around the electronic bubble as well as fluctuations

lower the absorption peak frequency, reduce its dependence on

the solvent ion species, and greatly broaden the spectrum.

On the experimental side, more systematic studies of

the absorption spectrum in the family of metal-molten salt

solutions would seem useful at this stage. It may also prove

possible, by a suitable choice of system, to extend the studies

-21-

of the volume of mixing to the relevant range of metal concentration.
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TABLE I

Properties of pure molten sal ts near freezing

f (tT l) -E^eV/molecule) -V(eV/moleculef

LiF

LiCl

LiBr

Lil

NaF

NaCl

NaBr

Nal

KF

KC1

KBr

KI

RbF

RbCl

RbBr

Rbl

CsF

CsCl

CsBr

Csl

(a)

1.58

1.62

1.63

1.64

2.18

2.24

2.25

2.28

2.76

2.79

2.80

2.82

3.01

3.03

3.04

3.06

3.29

3.32

3.32

3.33

From Adams

2.24

3.12

3.38

3.75

2.18

3.04

3.30

3.68

2.24

3.05

3.31

3.68

2.27

3.07

3.33

3.68

2.3O

3.10

3.35

3.70

and McDonald

• — •.;: • y;

1.60

1.18

1.26

1.2O

1.27

1.06

l.Oi

0.956

1.13

0.939

0.899

O.846

1.08

0.912

0.873

O.819

1.04

0.882

0.841

O.783

1974.
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11.55

9.44

9.40

8.97

9.71

8.14

7.8l

7.38

8.56

7.24

6.94

6.56

8.17

6.94

6.66

6.30

7.80

6.63

6.36

6.02

10.0

8.25

7.38

7.69

6.68

6.38

6.51
6.26

7.19

o
•

o

"1
1

0

10

1
<3

0 0

3 -

3 ^

1
t I
S oa
H 111

^1

0 0
X t£

1 I
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TABU i l l

Properties of dilute metal-molten salt solutions +

LiF

LiCl

LiBr

!il

NaF

NaCl

NaBr

Ual

KF

KC1

KBr

KI

RbF

RbCl

RbBr

Rbl

CsF

CsCl

' sBr

Csl

2

3

3

3

2

3

3.

3,

2,

3.

3.

3.

2.

3.

3.

4.

3.

3.

A.

4.

.50

.24

.48

.75

.6j

.31

.53

.83

.77

.46

.66

96

93

51

71

02

07

70

ID

12

3
2

2

1

2

1

1

1

1,

1,

1,

1.

1.

1.

1.

1 .

1.

I.

i .

1.

.34

.35

.13

.91

.42

.80

.66

.49

.82

.42

.33

.21

58

30

22

11

37

13

U9

00

3

2

2

1.

2

1

1

1

1,

1,

1,

1.

1.

1.

1.

1,

1.

1.

1.

0.

.14

.22(2,

.01

.81

.25

.6of1.

.56(1.

.40(i.

.70

.33(1.

.25(1.

.13(1.

48

22

14

04

29

06(i.

03

94

.26a

.57*

,57b

,57d

27?
27?
27?

07d)

')

J ,

)

)

1.

1.

1.

6,C1

33d)

19d)

13d)

1.15

0.78

0.70

0,62

0.90

0.65(1

0.59

.41°)

O.52(O.63
d)

0.66

o.5l(o.

o.48(o.

o.43(o.

0.56

0.46

0.43

0.39

0.47

0.38(0.

O.38

0.35

.79d)

,90d)

79d)

63d)

0

1

1

2

0

0

0

1

-0,

0,

0.

0.

-0.

-0.

0.

0.

-0.

-o.
- 0 .

0.

.29

.14

.63

.34

.00

.62

.86

.26

.29

.11

.24

.48

30

(>1

08

29

32

07

01

19

+ The parameters used in the calculation are A =72,1 CT̂ /a*. + «.V A ,
B - 55,5 evJt1" , and p,(R) = 0.82. Experimental values are reported
in parentheses from: (a) Young 1963, (b) Mollwo 1935* (c) Gruen
et al.1969, (d) Rounsaville and Lagowski 1968.
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FIGURE CAPTIONS

FIK.1 Potential well for an electron Ln the K-KCi system, tor p (R) = l

and <T - 3.49A.The broken curve gives the Coulomb tail of oq (2.7).

Fip.2 Partial structure factors in molten RbCl at 1023 K. Full lines,

MSA results; circles, neutron diffraction data of Mitchell et_aL.

(1976).

Fifi.3 Radial probability distributions for the ground state and for

the first p-like excited state of the electron in the K-KCI

system, for <3"= 3.49A'.

-ST-
-28-



V(r}feV} 2

CO

> o

I I I

-29-

i
CO

I
ro

7 MA"1)



CURRENT ICTP PREPRINTS AND INTERNAL REPORTS

o <

CTJ

ic/79/a
IHT.REP.*

IC/79/3

IC/79/4

IC/79/5
INT.REP.*
IC/79/6
INT.REP.•
IC/79/7
IBT.HEP.*
Ic/79/8

IC/73/9
IRT.REP.*
IC/79/IO
IHT.REP.*
IC/79/ll
INT.REP.*
IC/79/12
1ST.REP.*

IC/79/13
IHT.REF."

IC/79/14
IHT.REP.*
IC/79/15
IHT.REP.*

IC/79/19
1ST.REP.*
IC/

MUBARAK AHMADt Few-body system and p a r t i c l e resonances .

K.C. AKHENIZ and A, SMAILACICi Clasa ioa l s o l u t i o n s for fermlonic
models.

N.S. BAAKLIHI and ABDtJS SALAMi Hon-metrieal supergravity for a apin-2
nonet .

V. ElIAS and S, RAJPOOT: Confinement, perturbation theory and
Sterman-Weinberg j e t s .

MUBARAK AHMAD and M. SUAFt JALLtTi Heavy quark and magnotio moaent.

K. KAWARABAYASHI and T. SUZUKIi Dynamicftl quark
proTjlem.

and the U(l)

K. KHHARABATASHI, S. KITAKADO and T. IKAMIi Flavour and spin struc-
ture of linear baryons,

0. VIIOSSICHi A priori bounds for solutions of two-point boundary
TS1U« problems using differential inequalit ies,

0. VIIOSSICHt On the exietenoe of poslt ire solutions for non-linear
« l l ip t io equations.

G. VIDOSSICHi CompariBon, exiatenos, uniqueness and suooaasive
approximations for two-point boundary valu* problems.
0. VIIlOSSICHs Two remarks on the s tabi l i ty of ordinary differential
equations.

0. VTBOSSICHt Comparison, ei istenoe, uniqueness and euoosssive
approiimations for ordinary and e l l ip t io l»undwy value problems.
0. VIDOSSICHi Two fixed-point thsorema related to eigenvalues witb
the solution of Kazdan-warner"s problem on e l l ip t io equations,
0, VII)0S3ICH: Eiistenoe anduniquenaas rsBults for boundary value
problems from the comparison of eigenvalues.

A. NOBILE and M.P. TOSIs Inhomogeneity e f f e c t s in the exohanRe ho le
for a nu*»ai-one-dimen3ional chain.

CM
IC/79/22
TNT. HEP."

, rM,j Charm fra^inentation function from neutrino data. >,

U) • Internal
THESE PREPIITHT

586, 1-34K)"

Limited ' l i c j t r i hu t i on .
WE AVAILABLE FIIOH THE lUBlJCftTinnij OFFICE, IC1T, P.O. BOX

I T M , Y . I T i:> HOT MECE:V-A:IY TO WHITE TO TUB



IC/79/33
IB!P,HBP.*

IC/79/34

S.P. HITAL and U. VARAINt Dielectronic recombination in sodium i s o -
electronic sequence.

TOBARAK AlirUD and N. SHAFI JALLUi Gel'f and and Taetlin technique and
heavy quarks.
Workshop on drift waves in biffh temperature plasmas - 1-5 September
1978 (Reports and summaries).
J.O. ESTEVE and A.P. PACHECO: Renormalization group approach to the
phase diagram of two-dimensional Heisenberg spin syetema.
E. MAHDAVE-flBZAVBH: Production of lipht lap-tons in arbitrary beams
via many-vector boson exchange.
M. PAHRINELIJO and H.P, TOSIi Analytic solution ofthe mean sjsherioal
approximation for a multioomponent plaama.
K. AKCJATi The leading order behaviour of the two-photon *a&ttering
aitplitudeo in QCD.
If.3. CRAIGIB and H.F. JONES 1 On the interfaoe between «i««ll-p_ non-
perturbatire and large-angle perturbative physios in QCD and tfle
parton model.
J. LOHESC, J. PRZTSTAlfA and A.P. CHAOKHELLi A comment on the ohain
aubduotioh criterion.
N.A. NAKAZIE and D. 3TOREYt Superaynoetrio quantisation of l inearised
supergravity.

Ic/79/36 J'. TAfiSKIt Remarks on a conformal-lnvariant theory of gravity.
HIT.HEP. •
IC/79/37 t. TOTHj Additive quark model »lth eix flavoura.
IIIT.RBP.*

Ic/79/39 A.O. BARlTfi Hadronie multiplete in terms of absolutely stable
IITT.REP.* particles 1 An already-unified theory.

IC/79/41 A. TACLIACOZZO and E, TOSATOIi Effects of apin-ortit oouplin? on
IBT.REP.* pharge and spin density waves.

Ic/79/44 RIAZtTLBIN and PATTAZUBDISi ^iark mass ratios due to Ooldetone
IMT,REP.# paeudoBcalar mesons pair.

IC/79/46 N.S. CHAICIE and ABDUS SALAMt On the effect of scalar partons at short
distances in unified theories with spontaneously broken colour symmetry.

Ic/79/47 A.O. BARUT: Infinite-component wave equations describe r e l a t i v i s t l o
1ST.REP." composite systamB.

Ic/79/46 T.N, SHERRY) Comment on the question of ffauge hierarchies.




