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ABSTRACT

The equation-of-motion technique ie used within the randomphase-
appr-ximation t¢ calculate the plasma frequency of the electron gas at
zero temperature in the finite layered model of Visscher and Falicov
with free surfaces. The plasma frequencies are given by the eigenvaluves
of a Toeplitz matrix, This matrix describﬁ‘ the Coulomb coupling hetween
the plasmons which propagate in different layers. It is shown that this
matrix splits into two parta: one which corresponds to the syeclie boun-
dary condition imposed on the syetem of double thickness and the other
due to the pregence of the surfaces. The first contribution can be s1ac-
tly diagonalized and the cther one can be treated as a small perturbation
for a suffieiently large number of laysra. The first-order perturbation
theory is applied to obtain finite-nize corrections to the plasma frequen—
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1. INTRODUGTION

In the last years there hap been a great desl of interest in the
properties of the electron gas in layered stiruciures,such ss transition
metal dichalcogenidasl'4)
are relatively restricted to move along & regular array of parallel pla-

« In theee anisotropic compounds the electrona

nes,the tunneling betwsen planes being more or less forbidden. The analy-
sie of the inelastic scattering of fast electrons shows that the electron
energy losses are directly related to the frequency of the plasma cscil-
5,6)
plasmong in these atructures. On the other hand,thews aystema offer the
poeeibllity of inveatigating the finite-gize effecte and the rols of the

lations . It is then important to atudy the disperasion relation for

altered dimensionality in plasma oscillations.

A simple model of layered electron gae was proposed by Visscher and
FalicovT)
planes. The electrone are free to move within the planes in a neutrali-

. The model consists of a auccession of parallel aqually mpaced

zing rigid background of positive charge,which is also confined to the
layers. The tunneling betwesn layers is completely forbidden. 4 hydro-
dynamic model has been used by Fetter “to study the electrodynamic effects
in this system,such ag screening and plasma oscillations. In this very
intuitive approach the slectrons are approximated by a charged fluid
which ie cbaTacterized by a local density and velocity. Many-bedy tech-
niques were used to describe the collective bshaviour of the elactron

gas in the layered mcdel of Vipscher and Falioov. The Bohm-Pines canoni-
cal transformation method has been applied to calculate the plasma

9)

sincluding the tunneling

frequency in thie system with cyclle boundary congition
lo,11

« Further gene-
ralizations of the modal have been performed
betwean layers in the tighit-binding approximaticn.

The aim of this paper is to investigate the finite-size effects on
the plasma frequency in the layersd model of Visscher and Falicov. The
system oonsists of a finite number of planes with free surfaces,that ims
no special condition ie imposed on the boundary planes. In Seo.2 the
model is presented. The unperturbed single-particle wave-functions ocor-
respond to a free sleotron motion within each layer,any motion of the
eslectrons along the direction perpendicular to the plane of the layera
being forbidden, The equation-of-motion method is applied in the RPA
for the operator of an electron-hole pair. A set of coupled algebraic
equations is obtained. This set of equations reflects the Coulomb coupling
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between the plasmons which propagate in different layers. The finding of
the plasma frequency amounts tc calculate the eigenvalues of the coupling
matrix. This is a Toeplitz matrix that cannot be exactly diagcnalized.
The properties of the ccupling matrix are discussed in Sec.3. It is

shown that this matrix has a double representation as a sum of two matri-
ces. The first matrix (in both representations) corresponds to the case
when cyclic boundary condition is imposed on the system of double thick-
nessd. Its eigenvalues are exactly known. The second matrix (in both re-
presentations) represents the influence of tha free surfaces and 1t can
be treated ss a small perturbation for a sufficiently large number of
layers. The first-order perturbation theory is applied to calculate the
finite-size corrections.to the plasma frequency. & discussion of the re-

sults is given in Sec.4.

2, EQUATION OF MOTION METHOD

The Vigscher and Falicov model with free asurfaces consists of a suc-
cespion of N parallel planes,the distance between two neighbouring pla-—
nes belng taken equal to unit. The electrons ara atrictly confined to
the laysrs along which they are moving freely in & rigid neutralizing
background of positive charge. The planea are labeled by m, wz0,4,. N4,
The single-particle wave-~functiona ¢f the unperturbed eigenatates of the
electrons are given by

Qoo C¥ov) = 2Ny (1)
where apin is diaregarded for simplicity. The wave-vector of an electron
state is denoted by & ,the in-plane vector v is confined to a region
of unit area and * represents the coordinate alocng the direction per-
pendicular to the plane of the layers. A number of m, electrone is
agsumed on the in-plane unit area. These elactrons interact through Cou-
lomb potential. The function Llx-m)is arbitrarily highly looslized on
the m —th plane and it ia effectively the square root of a S_L‘—m)
function /. Using the wave-—functions (1) the Hamiltonian of the ayetem
may be written in the second quantization as followss

. b = ¥
H :‘wz\.;b‘.szMKCML-*&k?‘r_ﬂ_:n AM“C“EWKC"‘-“:kC“&LL“k& ! (@)

. Lk £ o)
where EQ,.:’:\L"K /E,H is the kinetic energy of an electron ( £ and ™M denote

-
the electron charge and mams,respectively), & ¢ ( L‘“k) is the sreation

(annihilation) operator of an electiron atate localized on the ™. -~tih

plane with the wave-vector X and Az(Amu). W, =08 L NS,
2~ By (3)

A
is the matrix that comes from the in~plane Fourler transform cf the Cou-
lomb potential. The equation-of-motion method will be appliad in the
random-phase-approximation (RPA) for the operator §, tesk %)= < byt Gy
whare f m*Z §’ U~ 3 &.)13 the Fourier transform of the electron den-

gity in ths M—th plane. The caloulaticns are standard and one obtaine
e iy = b(_u @) ZL A Fulk) (4)

wherec, -(‘1 iTm g_lpf\)]la the well known bulk plasma frequency and

h— Mhae ke .
=, T i (5)
s e, B+ E.&‘- Lg‘*ﬁ_

In (5) mk ig the Fermi disiribution at zero temperature for the two-

b(.t.uJ k) =

dimensional slectron gac in each plana. For sufficiently smallk, D(w,&)
may be approxlma'ted by Q.[m ,80 that the plasma frequency is given by
Wt = wsk (6)

~
wheTe A denotey the eigenvalues of the matrix P‘ « These eigenvaluea

will be calculated in the next Section.
If we impose the oyclic condition on the boundaries of the system
and use the following representation for the function S‘(m-n._) -\”th n)\
r(i—M) = ‘LL..\‘LA—X'LX”“)
wherexa?.t,u.lﬂwith " running over all integers,then the matrix A 1s

replaced by A™C - (AT , W= O, MLy
-k St — - A.K(\m LS
NIRRT T I C S Y g Z,chwmq )
wefld G

where ¥t & means that Y. is restricted to the firet Brillouin zone

(-‘K(.K‘-u. ) and Q= ?-\;u with ‘: any integer,are vectors in the recipro-

cal lattice. The summation over G is eaaily to perform. We gatlz)
AT = RN 2T, e AL (N
e w B ' :
where _—
ey = mhk (amhl —nae) . (8)

The eigenvectors of A“*" are R 257%™ and 1ts elgenvalues are {£i3x).
The plasme fregusncy for cyclic boundary condition ia
wl - oh. ‘_k,(_) )
Z.-

a result which has been previocusly obtalned ’9)

i T



3, PERTUABATIUN THEORY

The matrix A J&iven by (3),is a Toeplitz matrixl3). It has the
following integral representations
e S xS (v )

A

‘u ] i .
—_~n = E- -S AI.K.- Ll-! L & ) ~ '
where x‘ ias a continous variabvle and the integral is performed in the

oomplex plano- By strnghtforward manipulanona we got

A= (-uu v\)
A = e S e Tl o g )_1__\%«. ko s 1(9)

a result wh1cI:h ca.nube obtatned from (7) by ta.kln; N-»20 » The generating
function of this matriz is juet the funstion {\»') given by (8),where e
is replaced by the continuous variable w' . This function may be written
as

g0y = U-vD) (- 2reas pyr)™h (10)
where = & -, In the limit of M-3c0 the matrix A  becomes a bounded
self-adjoint Toeplitz operator ({iL»') is bounded,rTeal and measurable
on {~,T }}. dccording to a thecrem of Hartman and Wintneru)the conti-
nuous spectrum of this operator lies beiween min?tu‘).——gut)=U“"‘)(\*;)Land
max‘-b«')ﬂ.(o) = Wr)(1-r)>, Therefore,in the thermodynamic limit (N->oa)
the spectrum of A“4<(system with oyclie beundary condition) coincides
with that of £ (system with fres surfaces),a result which is expected
pecause of the translational invariance of these aystems.

Kac at al.lS)studiod the eigenvalues of the matrix P using its

charagteristic equation. They found that these eigenvalues may be repre-

sented am
Wi « &L H))
) = {2, .. 11
U2 e e, (1)
where .@_ is given by (10) and &lp, ™) > 0 for fized b oand N—oo .
The exact form of é_L‘.,N) is unknown. A similar relation holds alseo
. ~&lhH
for the eigenvalues placed at the bottom of the xspectrum_ﬁJ ¥ - _.t.——L)

N+
b=1,2,..- « From (11) we obtain that the eigenvalues may be represen—

ted also by _(ikm-.'.ibﬂ)) where &' (), M)= [N&(b,n) }:jltﬂ, Our aim is to
give approximate expressions for E'(} N) for a sufficiently large N .
Thege expressions represent precisely the finite-size corrections to
the eigenvalues of the matrix A and, therefore,to the plasma frequency
in the Viascher and Falicev model.
To this end,let us introduce the matrices A “I\ )..N h.“*",',"';N-l,
(h )mtz ™ 2, -E(a:,) j_"K.L"‘"\_ “) , (12)

o E€HR
~He

where * correspond respectively tos = LN and ¥ = U-b"‘“fﬂ swith ‘.
integers. One can see that A is just AS . The matrices AT are
cyclic matrices with the period N . They correspond to the cyolic
boundary condition imposed cn t.he system of double thickness. The eigen-
vectors of thase matrices aref - “"‘“
From (12) we getT)

:-:.’b’_ (§23 rf.'uj vt“] \LN o) Lu#fl")
(4 “:@:g}g’\‘ < ' (13)

and their eigenvalues are {13,

\\...-n) — ¥ - \)

in the last summation ™ being allowed to¢ run over the wkole space. We
shall calculate (A2 ).. given by (13) with & matnod of Lighth11116)
Replaoing ~.-w by w ,where ~N~\ a = N-L we have to calculate

Hik“\ - RN& 2_‘ Lh*h.") —L}LLL.
Using the integral represantatwn

— A.u_ R )
26 (ot &.L)L SA/& T

and the relation - oo
_12‘ «h‘.L;a_u.) Z 5\(,&\--&\. p—Na,) = lt'"’” > 4,p integers,
£=-o0

the oalculat.}:ns are straightforward and one obtains
r
AYLo = o, ahtemal _oghid (SR (B ke

2

d=-o
) T MT crilu-Ngl CHk —L ) kew
R M T L T OB

Therefore,the matrix M bas the following double representation:
b o x
A‘ = Ao “+ A [ (14)
where

N N S - M~ A _
LH%)‘H“:: ¢ e + L) (Y‘ “.'* A )) ""J"'\GQ,L,"',N‘i’(r_-L&Xls)

The matrices Htl represant the influence of the surfaces and contain
information about the finite-size effects. According to {11} and {12},
for suffmiently large N the eigenvalues of A approach. the eigenvalues
of A » Consequently,the small deviations of these eigenvalues from

-
those of A';_, can be caloulated by means of the first-order perturbation
t

theory,applied for the matrices RI‘ .

Let us take the eligenvalue -f!(lbﬁhd) of the matrix Pf,: sp=hy
(} fixed). This eigenvalue is twofold degenerated since .ﬁ.t?'t)is an even
funotion ( 7¢ is restricted to the firet Brilouin zone, —<T &t X ). The

.



firgt-order theoretical per:iurbation calculation is standard and one

eigenvalues.
cbtains
o0 X u‘L\*v—) (R mw.)u_ LT‘*A:‘L!-L-\—Y—L) Y, owes pTiM o, (16) 4. DISCUSSION
where terms of order v N_" were neglected. It is easily to see that,
for large N ,the separation betwean two neighbouring eigenvalues ofpr* It must be pointed out that the present method of perturbationsl
{or A } is of the order of N For sufficiently large N the treatment of the sigenvalues of the matrix !;‘ leads to a mathematical
) . wi g 17 ; .
.f\: 1 —term in (16) corresponding to the upper sign brings a contribution result established many years age by Widem for Toeplitz matrices.
_i R .
of order N to FOL) . The expresaion corresponding to the lower sign in Widom shown that the eigenvalues placed at the top Oif the spectrun
{16) brings a contribution of the same order to £60) with ‘)_Q_:ﬁ_,‘_-;_‘,,i)'ﬂjN have the following asymptotic behavicur for large NV :
for. N an odd integer and X = i~2p"(N for N an even integer {(p=tiae l‘, = M = T_'__ﬂ L+ '-_) « SN, Sl R VR R
i i rturbation theor i
The calculation with the perturbation theory applied for the eigenvalues X M = s %(’h') TR ﬂ ‘ o % "(8) = Lv(ie )i r)
{{%) corresponding to ®=1v -—klp -ORIN (which labels an eigenvalue of Ac ) wnere -
=T~z - . and i
or X=it~2ha |\ will give a N term equa‘lk‘o that from (16). Therefore, ‘ ‘o B o M - LlE*) bk &
a factor of two must be inserted in the N = -term given in (16). The = on S_ e 2 T ‘
~n
perturbation theory can be applied in the same manner for the eigenvalues 18) Y
— i S A-
of A, and the results are identical with those from {16}. Thersfore,the This integral is easy to evaluate. We get = -1hr)l-r) 80 that
eigenvalues of A ,up to the first order of the parturbation thecry, ?\'}': \\*_r_f L f_"_.i’__ (e %;!.JL)] WO p=te .
may be represented as - w-m*

The same result is obta:.ned from (17a) by using an expansion of <A ye
2 E00 Hhr gt e Qetreone e ) N e oy

! {17a) in powers of > in the neighbourhood of =0, In the same manner we
p='2, - (upper sigenvalues) s obtain from (17b) the asymptotic behaviour of the eigenvalues placed
A= fe-) ﬂ'-lv-(“"‘)(.l.—mh)\l-v Tt v rr")—z'N—l, <= BTIN, (171) at the bottom of the spsctrum
A L
be1,2,. (lower eigenvalues) , A, = A= R'L X ‘;__LK -2t )} ,.O'U\f) b= .
e \" LT Llv ) NL

Taking inte account that ‘l‘:?ﬂ-ﬁ and using (&) these expressions give us Finally,we remark that the plasma frequency of the layered system
the finite-size corrections to the plasma frequency in the layered with free surfaces (N layers) may be approximated {for suffioiently
model of Visscher and Falicov. — A large N } by the plasma frequency corresponding to the system of
One can mea from these results that the N proves %o be a good double thickness with cyciie boundary condition. A similar result is
parameter of the perturbation theory. For eufficiently large NN  the well known for the eystem With short-range interastions {elamentary
perturbation theory produces the eigenvalues of the matrix A»i which are excitations as phonons,magnons,etc.). The perturbational approach used
placed in the immediate nelghbourhood of the eigenvalues of A {tha in the present paper for calculating the plasma frequency in the finite

3
perturhation theory yields N terms while the sepa_r:tlon between two layered model of Visscher and Falicov may be applied for evaluating
neighbouring eigenvalues of Pra is of the order of N )i5l§hls result the finite-size corrections to the thermodynamic quantities of this model.
is in agreement with the theorem {11} given by Kac et al. ”’. The matri-

1 ) Thig problem will be treated in a forthcoming paper.
ces A may have nondegenerate eigenvalues as #(") or f_(t'ﬁ) + The

perturbation theory cannot be used in this case since the results do ACKNOWLEDGMENTS
not agree with {11). For example,the perturbation calculation applied The author is indebted to Prof. M.P. Tosi for reading the manuscript.
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- L
for the eigenvalue {L(o) brings a contribution L N which is Agency and UNESCO for hospitality at the International Centre for Theoret-
much larger than the separation between two neighbouring unperturbved ical Physics, Triestas,
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