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ABSTRACT

The equation-of-motion technique is used within the random-phase-

appi-ximation to calculate the plasma frequency of the electron gas at

zero temperature in the finite layered model of Viuscher and Falicov

with free surfaces. The plasma frequencies are given by the eigenvalues

of a Toeplit* matrix. This matrix describe^ the Coulomb coupling between

the plaamonB which propagate in different layers. It in shown that thi«

matrix splits into two parts: one which corresponds to the oyclio boun-

dary condition imposed on the system of double thiclcneaa and the other

due to the presence of tte surfaces. The first contribution can be exac-

tly diagonalized and the other one can be treated as a email perturbation

for a sufficiently large number of layers. The first-order perturbation

theory Is applied to obtain finite-size corrections to the plasma frequen-

cy.
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1. INTBODHCTIOH

In the laat years there has been a great deal of interest in the

properties of the electron gaa in layered structures,such as transition

metal dichalcogenides . In these anisotroplo compounds the electrons

are relatively restricted to move along a regular array of parallel pla-

nes, the tunneling between planeB being more or less forbidden.'The analy-

sis of the inelastic scattering of fast electrons shows that the electron

energy losses are directly related to the frequency of the plasma oscil-

lations ' . It is than important to study the dispersion relation for

plasmons in these structures. On the other hand,these systems offer the

possibility of investigating the finite-size effect* and the role of the

altered dimensionality in plasma oscillations.

A simple model of layered electron gas was proposed by Vissoher and

Falicov . The model consists of a suooession of parallel equally apaced

planes. The electrons are free to move within the planes in a neutrali-

zing rigid background of positive charge,which is also confined to the

layers. The tunneling between layers ie completely forbidden. A hydro-

dynamio model baa been used by Fetter ''to study the electrodynamio effects

in thiff system,such as screening and plasma oscillations. In this very

intuitive approach the electrons are approximated by a charged fluid

whioh ia characterized by a local density and velocity. Many-body tech-

niques were used to describe the collective behaviour of the electron

gaa in the layered model of YiBSCher and Falicov. The Bohm-Pines canoni-

cal transformation method has been applied to calculate the plasma

9)
frequency in this system with cyolio boundary condition . Further gene-

ralizations of the model have been performed ' .including the tunneling

between layera in the tight-binding approximation.

The aim of this paper is to investigate the finite-eiae effects on

the plasma frequency in the layered model of Vissoher and Falicov. The

system consists of a finite number of planes with free surfaces,that is

no special condition is imposed on the boundary planes. In Sao.2 the

model is presented. The unperturbed single-particle wave-functions cor-

respond to a free eleotron motion within each layer,any motion of the

electrons along the direction perpendicular to the plane of the layera

being forbidden. The equation-of-motion method 1B applied in the RPA

for the operator of an eleotron—hole pair. A set of coupled algebraic

equations is obtained. This set of equations reflects the Coulomb coupling



between the plaamons which propagate in different layers. The finding of

the plasms, frequency amounts to calculate the eigenvalues of the coupling

matrix. This 1 B a Toeplitz matrix that cannot be exactly diagonalized.

The properties of the coupling matrix are discussed in Sec.3. It is

shown that this matrix has a double representation as a sum of two matri-

ces. The firBt matrix (in both representations) corresponds to the case

when cyclic boundary condition is imposed on the system of double thick-

ness. Its eigenvalues are exactly known. The second matrix (in both re-

presentations) represents the influence of the free surfaces and it oan

be treated as a small perturbation for a sufficiently large number of

layers. The first-order perturbation theory is applied to calculate the

finite—size corrections to the plasma frequency. A. discussion of the re-

sults is given in Sec.4.

2, EftUATIOH OF MOTION METHOD

The Visscher and Palicov model with free surfaces consists of a suc-

cession of |N| parallel planes,the distance between two neighbouring pla-

nes being taken equal to unit. The electrons are strictly confined to

the layers along which they are moving freely in a rigid neutralizing

background of positive charge. The planes are labeled bj>t, "m. = 0Ji,...J\l-i.

The single-particle wave-functions of the unperturbed eigenstates of the

electrons are given by

^ k U , O = JL^XL*-™) > (1)

where spin ie disregarded for simplicity. The wave-vector of an electron

state iB denoted by fe. .the in-plane vector r is confined to a region

of unit area and X represents the coordinate along th« direction per-

pendicular to the plane of the layers. A number of ^ s electrons is

assumed on the in-plane unit area. These electrons interact through Cou-

lomb potential. The function "%{*—*)la arbitrarily highly localized on

the ->n.-th plane and it ie effectively the square root of a S~ (.*-•>«.)

function . Using the wave-functions (l) the Hamiltonian of the system

may be written in the second quantization as follows*
\"* K x}~ fv <f y

where £ ^ = ̂ V/iMis the kinetic energy of an electron ( •£ and M denote

the electron charge and mass,respectively), *v (̂  ( ̂  (̂ ) is the creation

(annihilation) operator of an electron state localized on the tt^-tb
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plane with the wave-vector K and " = vftm.*.) , -w.f ̂ n. = o,i >..,j N-i. ,

is the matrix that comes from the in-plane Fourier transform of the Cou-

lomb potential. The equation-of-motion method will be applied in the

random-phase-approximation (RPA) for the operator J/^^i-tjfei)-^^ .(^c^^

where J^fev^ ̂ -^ J'VntVl-t,(i,Jis the Fourier transform of the electron den-

•ity in the in.-th plane. The calculations are standard and one obtains

!riT'n,*r/f'\S is the well known bulk plasma frequency and

In (5) tit is the Permi distribution at zero temperature for the two-

dimenBional electron gas in each plane. For sufficiently small k, tX'Jjfe,)

may be approximated by fe^jio^ ,30 that the plasma frequency is given by

^ = «•£ X (6)
where \. denote8 the eigenvalues of the matrix f\ . These eigenvalues

will be calculated in the next Section.

If we impose the cyclic condition on the boundaries of the system

and use the following representation for the function S*C»-ĥ  = VVL* - >»)^

4 C>- v*) = M 2—1 •*- >

where>e = ̂ -b^|r4with b running over all integers,then the matrix h 1B

replaced by f\*-*c - C ft'l^) , •<-*, •« = °A,'- > N-i...

whereXfc& means that X- iB restricted to the first Brillouin zone

(-TC<.*iK ) and G-^lpTC with ^ any integer,are vectors in the re

cal lattice. The summation over 0 is easily to perform. We get

where

(7)

(S)
The eigenvectors of ft0*1" are N JL" ™~ and its eigenvalues are

Th* plasma frequency for cyclic boundary condition is

2* 8 9)
a result which has been previoualy obtained ' '.
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PEHTUftBATION THEORY

Th« matrix & ,given by (3),l» a Toeplitz matrix

following integral representation!

It has the

where *:.' ia a continoua variable and the integral ia performed in the

complex plane. By straightforward manipulations_we get

a result which can be obtained from (7) by taking N-> J= • The generating

function of this matrix ia just the function f̂-CM-'J given by (8),whereat

is replaced by the continuous variable vt_' . This function may be written

as

— &

where Y-=-A. . In the limit of N—> &> the matrix ft becomes a bounded

self-adjoint Toeplitz operator (|L>t') is bounded,real and measurable

OD (— C,5T )}, According to a theorem of Hartman and Wintner 'the conti-

HUOUB spectrum of this operator lies between min^tx;) =jjut) - ^ " ^ ( ^ ^

max^-K') = f.(o) = Htf)(,l-i')1-, Therefore,in the thermodynamic limit

the spectrum of /\Lict ayatem with oyclic boundary condition) coincides

with that of f\ (system with free surfaces),a result which is expected

because of the translation^ invarianoe of these systems.

Kao at al. '''studied the eigenvalues of the matrix /V using its

characteristic equation. They found that these eigenvalues may be repre-

sented aa

, (11)

where £. is given by (10) andSX^,M) -? 0 for fixed t. and

The exact foro of 5.(_t,N^ is unknown. A eimilar relation holda alsoThe exact foro of 5.(_t,N^ is unknown. A eimilar relation holda also

for the eigenvalues placed at the bottom of the spectrumifr - J-~ *J'h

L, =
ted lso

. From (ll) we obtain that the eigenvalues may be represen-

^ ^-' (h^)\ where S.l(Kl"*)"ll>iilf''̂ )-K3|(.Ht|). Our aim is to

give approximate expressions for £'U N ^ f° r a sufficiently large hJ .

These expressions represent precisely the finite-size corrections to

the eigenvalues of the matrix /V and,therefore,to the plasma frequency

in the Visacher and Falicuv model.

To thie end,let us introduce the matricso h~~ ^K,)^^^ °i'r••>N-1

-5-

where X correspond respectively to><-- i.̂ ,Tjf-4 and ̂  •-• (.I^-IV'/M ,with k>

integers. One can see that A,* is just A^° . The matrices ft^r are

cyclic matrices with the period ^ l*» . They correspond to the cyclic

boundary condition imposed on the system of double thickness. The •igen~
"*' f i. — i. *r v**_

vectors of these matrices araK JL. and their eigenvalues are

From {12) we get7'
V r. l

L (13)

in the last summation X being allowed to run over the whole apace. We

shall calculate {P, ' J ^ g i v e n by (13) with a method of Lighthill16'.

Replacing •>«.-•«. by ". ,where - rJ *K v VA. i H - 1 we have to calculate

Using the integral representation

3-ft. (.«.•"+. <k±) L = ^ V ^
— aa

and the relation «.<»

the calculations are straightforward and one obtains

Therefore,the matrix h has the following double representation!

(14)

where

The matricea t\\ represent the influence of the surfaces and contain

information about the finite-size effects. According to (ll) and (12),

for sufficiently large fv the eigenvalues of P* approach the eigenvalues

of A ~ . Consequently,the small deviations of these eigenvalues from

those of ft~ can be calculated by means of the first—order perturbation

theory,applied for the matrices At~ •

Let ua take the eigenvalue-ftzt>/T/P) of the matrix Ao > jp" ''*> '' '

( \ fixed). This eigenvalue is twofold degenerated since (̂.«.)is an even

function ( K is restricted to the first Brilouin zone, —C*-><-*:K ) . The
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firat-order theoretical per;urbation calculation is standard and one

obtains

^ C V ) — i("l,tlt-j (̂  ,_ cc-i «-_)t»L"~ i-v~ici x. -v v-*") (S i *• - 1 ^ * | N i (16)

where terms of order v- li were neglected. It is easily to see that,

for large (\. , the separation between two neighbouring eigenvalues of ft*

(or A e ) is of the order of N . For sufficiently large N the

N -term in (16) corresponding to the upper sign brings a contribution

of order ĵ to jJ.Cx) . The expression corresponding to the lower sign in

(16) brings a contribution of the same order to -tt'K.) with a*. = i<-—(/i.̂ -*)itjM

for. 1*1 an odd integer and X- X- ̂ ÎT/̂ J for fJ an even integer (b-Vj-)«

The calculation with the perturbation theory applied for the eigenvalues

^(x.) corresponding to iC="ir-^f>-0>»"/N (which labels an eigenvalue of f\~ )

or x.= fT-^TjjJ will give a N -term equal'^o that from (16). Therefore,

a factor of two must be inserted in the N -term given in (16). The

perturbation theory can be applied in the same manner for the eigenvalues

of /\~ and the results are identical with those from (16). Therefore,the

eigenvalues of ft ,up to the first order of the perturbation theory,

may be represented as

|>-l,i,

;

(upper eigenvalues) ̂

\ «.» ̂ -in t U7b)
k :1 2 •• - (l° w e r eigenvalues) .

Taking into account that 1" = s- and using (6) these expressions give us

the finite-size corrections to the plasma frequency in the layered

model of Visscher and Falicov.

One can see from these results that the N proves to be a good

parameter of the perturbation theory. For sufficiently large fvJ the

perturbation theory produces the eigenvalues of the matrix /V which are

placed in the immediate neighbourhood of the eigenvalues of AJ" (the

perturbation theory yields |\J" -terms while the separation between two

neighbouring eigenvalues of pto is of the order of fj ) . This result

ie in agreement with the theorem (ll) given by Kac et al. . The matri-

ces A ^ may have nondegenerate eigenvalues as ̂ .(°> or £C±iO . The

perturbation theory cannot be used in this case since the results do

not agree with {ll). For example,the perturbation calculation applied

for the eigenvalue £[q) brings a contribution — n-U-*O N~^ which is

much larger than the separation between two neighbouring unperturbed

-7-

eigenvalues.

4. DISCUSSIOH

It must be pointed out that the present method of perturbational

treatment of the eigenvalues of the matrix A leads to a mathematical

result established many years ago by Widom 'for Toeplitss matrices.

Widom shown that the eigenvalues placed at the top of tha spectrum

have the following asymptotic behaviour for large N :

% s M _ ^
r 2_N

where

and

M -

4- * iJ
L

18) L

This integral is easy to evaluate. We get yot^ -J_(\TV-)(A-<-) ,ao that

18)

The same result iB obtained from (17») by using an expansion of H A K

in powers of X. in the neighbourhood of at. = Q . In the same manner we

obtain from (17b) the asymptotic behaviour of the eigenvalues placed

at the bottom of the spectrum

Finally,we remark that the plasma frequency of the layered system

with free surfaces ( fsl layers) may be approximated (for sufficiently

large fO ) by the plasma frequency corresponding to the system of

double thickness with cyclic boundary condition. A similar result is

well known for the system with short-range interactions (elementary

excitations as phonons,magnons,etc.)• The perturbational approach used

in the present paper for calculating the plasma frequency in the finite

layered model of Visschar and Falicov may be applied for evaluating

the finite-size corrections to the thermodynamic quantities of this model.

This problem will be treated in a forthcoming paper.
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