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1. Introduction

The application of the Interacting Boson Approximation to che region of
well deformed nuclei is a topic of considerable current interest in nuclear
structure, as evidenced by the two invited talks already devoted to the
subject at this conference. Such interest is hardly surprising, since a
detailed study of the model in this region offers the best opportunity to
compare and contrast its predictions with those of the best understood of
the geometrical concepts, the deformed rotor. Indeed both rintilatities
and crucial differences between the two approaches have been pointed out
by lachello (1981) and Casten and Warner (1981), and many of the latter
center around the relative E2 strengths predicted in the IBA for a Hamil-
tonian which is near the SU(3) limit of the model. It is the purpose of
this paper to study in more detail the mechanism which determines the
relative E2 strengths in the IBA, and, more specifically, to investigate
the structure of the E2 operator necessary to reproduce the empirical 3(E2)
values in deformed even-even nuclei in the rare earth region.

In the IBA-1 basis, the SU(3) Hamiltonian can be written as (Arima and
lachello, 1978)

H = -<Q-Q-<'L-L (1)

The resulting level scheme for :>=16 is shown in fig. 1. The I3A bands are
grouped into different representations of SU(3), states of the same spin
being degenerate within a given representation. The corresponding E2
operator is

T(E2) = a{(s d-fd s)V-;-7/2(cidV '; (2)

This operator, when applied to the wave functions of the SV(3) Kanilton-
ian, results in a selection rule which forbids transitions between differ-
ent SU(3) representations. Thus, in the rigorous SU(3) limit, transitions
from, for instance, the first excited K=0+ or 2 + bands Co the ground band
are forbidden, while transitions between the K=0+ and 2~ bands are allowed.
This situation is essentially the inverse of Che starting point of the
geometrical description where the lowest excited K"=0+(3) and 2+(y) exci-
tations would be expected to have relatively strong E2 transition^ to the
ground band, and where Sr+y transitions would be forbidden,-since they - _
require che destruction of one type of phonon and the creation of another.
Empirically, the existence of strong E2 transitions between y and ground
bands is a well established faature of deformed nuclei and hence it is
necessary to perturb the rigorous SU(3) limit..in_tJie_JJ3A._u.Q rep_raduce_.th.is.
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feature at least . ..Such .a perturbation.,can,, iir.pr.inciple, be introduced
via the" Harniltdhian~or the" E2' operator ,""and""we Viil" EegirT~By *slirdyin|"Ehe~
effects of the la t ter alone. '
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2. Inter-representation B(E2) values in the SU(3) limit of the Hamiltonian

i

The most general form of the IBA-1 E2 operator can be written as i

T(E2) = a{ (s^+d+s) <2)+R//5 (d^) ( 2 ) } (3)

Comparison with. eq._ (2) indicates that the^UO) form arises when l^V
-=-2.958.—:fThe-- factor-of̂ '/F-rias-l>eefr-ihVroduced---to—insure— compatibility J
with the appropriate computer program.) In the SU(5) or 0(6) limits, R is;
zero, and hence its range of values can be expected co lie between 0 and
-2.958. The reduced matrix elements from the two terms of the operator
can be defined as j

<XfJf |!(s+d+d+s)||x iJ i>

<XfJ f | | l//5(d+d)|!x1J i>

so that

B(E2;J>Jf) = a2(M1+RMQ) (5) :

Note that MQ and M^ define the dn^O and +1 terms respectively. Thus,
the selection rule which results in rigorously zero B(E2) values for
transitions between SU(3) representations can arise in two possible ways;
either

= 2.958 M,0
(6) - MQ - 0 (7)

In fact, Che condition of (7) occurs only when iX>4. In the other cases,
the zero B(E2) values arise because of the condition of eq. (6), namely.
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Fig. 1 The first four representations of the SU(3) limit in the IBA.



an exact cancellation,o£ the ...two contributions;,to^ the E2 matrix element
for the SU(3) value of R~""'tTien''the"E2'Sati:ix~̂ iem"e"ni~'can̂ e"Tjri'irt"eTr'aS ;

t : _r_.. _
(8)

It is now evident from eq. (8) that, in the SU(3) limit of the Harailtonianf,
the ratio of any two inter-representation matrix elements with the same
initial spin is a constant, independent of R. More specifically

<XfJf |T(E2)||xiJi>

onl tvoe fgfJf-J^. *1
(9)

!

Thus, for the SU(3) Hamiltonian, the result of eq. (9) implies that the \
B(E2) strengths of all inter-representation transitions can be put on a
single relative scale. The correspondence between the geometrical and i
IBA descriptions can then be studied via the E2 strengths predicted in !
each model, which are frequently a very sensitive structure probe.

The non-zero inter-representation transitions and their relative strengths
are shown in fig. 2 for the first four representations of SU(3). Several
crucial features emerge from these results. Firstly, considering the
(28,2) representation, which contains the analogues of the classical 3
and Y vibrations, the S-»-g strength is seen to be considerably weaker than
the y*g strength. This point has already been discussed earlier by
Iachello (1981) and, coupled with the existence of strong y+3 transitions,
which were discussed in detail by Casten and Warner (1981) , indicates a

INTER REPRESENTATION TRANSITIONS
IN THE IBA
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Fig. 2 Relative B(E2) strengths of 2+-*2+ transitions for the SU(3)
Hamilconian. Only bandheads are shown.



markedly different structure for the 8 band. in..the IBA relative to that
which i's normally assumed "from" the'geometrical framework'; It" is~how~evT:::~
j'ant that these features are both inherent in the SU(3) Harailtonian, being
independent of the specific-parameterization chosen for the E2 operator,
and it will be shown later" that they remaTiT~in~lEhi"presence of a pT£turbed:

Hamiltonian. i

| Turning now to the higher SU(3) representations, in the geometrical model,
• the YT^S transitions would be expected to equal the y-»"g» while the B8+3
1-wou-ld—be—tw±ce-t-he-£-<-g^—Thej^relatiye-B(E2.) strengths -for the SU(3) Hamil-
; tonian are shown in fig. 2 and the identification of the analogues of the
K w=2 + 3y a n d 4 + YY excitations is straightforward. However, in consider-
ing the remaining two KK=Q+ excitations, the candidate for the yy mode has
only half its expected strength to the y band, while both the 3S-»-Y and
YY*B branches, forbidden in the geometrical model, are significant in the
IBA scheme.

Table 1

Relative

Transition

I3A
Geometrical

B(E2) values

3-g

0.
0.
.15
.15

from

Y*g

.1.0
1.0

the KT==0+

BS+B

0.
0.
,20
30

double

38

0.
0.

3 and

*Y

27
0

Y vibrations

YT*Y

0.
1.
.55
.0

YY*3

0.10
0.0

These results can be understood if the two higher lying K =0 bands in the
IBA are no longer associated with pure 3B or YY modes in the geometrical
basis. The relative strengths of the transitions from these bands and the
3 and y bands are given in Table 1. If the IBA band is described as
!X,p ;:<*>, then

|24,4;0+>3g = a|33>+blyy> (10)

|26,0;0+>. = biS6>-aJYY> (11)

where the subscripts on the left refer to the labeling of fig. 2 and
Table 1. Considering first the "forbidden" YY"^ transitions, eq. (11)
vieIds

<26aO;O
+j|E2 j|S>= b<33! !E2 i!3> (12)

It has been assumed that the 3 and y bands are equivalent in the IBA and
geometrical descriptions. Thus, the values or Table 1 give

b2 = 0.1/0.3 = 0.33; a2 = 0.67 (13)

Then use of these values in eqs. (14) and (15) gives

3(E2;S8'H-6)=0.20; B(E2; 33 '->Y)=0. 33; B(E2 ;yy '+Y)=0.67 (14)

The primed notation signifies the IBA bands of eqs. (10) and (ID- While
these numbers do not correspond precisely to those of Table 1, indicating
additional small admixtures in the two bands, it is nevertheless?clear
that these two bands must be considered as predominanrly-a"mixture-of-the
pure 38 and yy configurations, the (26,0) 0 + band being approximately 67%
the yy configuration and 33% 38, with the (24,4) 0 band being the
inverse.



3. Empirical determination of the TBA E2-.operator ;J_ !J r •_•

In principle, the constants a and R of the E2 operator of eq. (3) can be ]
considered .as .free, parameters in the description .of. a particular—nucleus. _;
Nevertheless it is of interest to investigate whether the global empirical
systematics on B(E2) values in the rare earth region can be used to limit
the possible range of each. To this end, it is necessary only Co look at
transitions involving S, Y a°d ground bands, since B(E2) data for higher
bands is scarce. Furthermore, since the parameter R affects only relative
B(E2) values, while a affects only the absolute scale, the former can first
be studied by setting ct=l in,eq.. (3) ̂ and., looking •.at. B(E2) ratios. This is
done"for "the~SU(3)~Haniiitoni'an in f ig~3^ ~wh'ere"i:erative"~B(E2) "values "are ~'
plotted as a function of R in fig. 3a, and the corresponding B(E2) ratios
are shown in fig. 3b. As expected from the discussion of section 2, the
ratio of the two inter-representation transitions, fr^g/y^g, is constant,
independent of R. This is not true for the intra-representation transi-
tions, since in this case, the two contributions to the E2 matrix element,
Mi and Mo, have opposite phase and hence add for negative values of R.
However, it can be seen that the change of the intra-representation B(E2)
values with R is small, and this feature arises because the MQ contribution
to the matrix element is considerably smaller than the M] contribution.
Thus the quantities most sensitive to the value of R are the ratios of
inter to intra-representation transitions.

In a realistic calculation it is clearly necessary to perturb the IBA Ham-
iltonian in order to reproduce the observed energies, which would other-
wise follow the pattern of fig. 1. In a recent detailed study of l^Er
(Warner et al, 1980 and 1981) it was shown that use of an additional term
K"P.P in the Hamiltonian of eq. (1) was sufficient to reproduce the over-
all features of the experimental level scheme. Such a perturbation has
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Fig. 3 (a) Relative B(E2) values and (b) 3(E2) ratios for the SU(3)
Hamiltonian with N=16.



Fig. 4 (a) Relative B(E2) values and (b) B(E2) ratios for a perturbed
SU(3) Hamiltonian with N=1C, K=0.004 MeV, K'=-0.0105 MeV and
K"=0.015 MeV.

the effect_of pushing the. S band, above the y, band, in energy, as well as
breaking the'degeneracies' in"the higher representations: Since ~t"Be~~maJor~
ity of nuclei in the deformed rare earth region exhibit this feature, the
current study will be limited to a perturbation of this form.

The relative B(E2) values and corresponding ratios are plotted as a func-
tion of R in fig. 4, for a <" value of 15 keV. It can be seen in fig. 4a
that the g*g and y>g transitions are relatively little affected by the
perturbation to the Hamiltonian, although the latter no longer goes to zero
at R=-2.958. Not surprisingly, since the P-P term principally affects the
energy of the 3 band, it is the E2 matrix elements involving this band
which are also changed' the most.'• ~More specific3ily/JLkhe.jitalues_Qf_B.CE2_; ,
2̂ -*0+) have decreased significantly, the value now going to zero at RM..9,
while the overall strength of the 2;J>0|" transition is increased, and the
slope of the line changes, corresponding to a change in the relative phases
of M]_ and Mo- In fig. 4b, the ratio of 3*g to v*g transitions is, of
course, no longer a constant but follows the behavior of the 3*g transition.
A further increase in the size of the P-P term again leaves the^+g and
y+g transitions virtually unaffected while decreasing the magnitude of the
S+g transitions and increasing the *r>-8 transitions.

It is now apparen": that the ratio B(E2;2y»-0g)/3(E2:2g-*-0g) is very .little
affected by the perturbation to the SU(3) Hamilnonian, while varying con-
siderably as a function of R. Empirical values for this ratio areP plotted
in fig. 5a for the nuclei for which the P*P perturbation can be expected to
be appropriate, and it can be seen that the data fall in a relatively narrow
band which, in fact, implies a range of -0.5 to -1.2 for the constant R.
Most rmportantly, it is evident that the SU(3) value of R(-2.958) predicts



values . of, the ratio., two .orders ..of. magnitude, smaller? than observed in
"experiment:~~ Since the"strength ~6£~'transit'ions "irivdiv~ing"f he fci band~are
rather sensitive to the size of the P'P perturbation in the Hamiltonian,

•it is not possible :toLobtain a precise prediction for them fron the ex-
tractecT value ~of~tiT. NeveirheTess, twb~crucIar"Jeatures can be dedHcecH
Firstly, S»g transitions are predicted to be considerably weaker than
transitions, the ratio B+g/y+g varying from ^0-15 in the SU(3) limit to
progressively smaller values as K" increases. Experimental values of this
ratio are plotted in fig. 5b, and it is clear that this prediction is \
borne out. Secondly, v>B transitions are predicted to dominate over B-*-g j
transitions. This feature has been dealt with in some derail in the pre- !

'Lvious-talfci-arial so iwill^nb tlTje-Ldascusse'dOlf urxher-'-Ker-e ~_ j

Finally, the possible range of values of a in eq. (3) can be determined
from the absolute empirical B(E2;2j>-0g) values. This has been done by
taking the range of B(E2 ;2+-*0g) values implied by the deduced R value ;
(a=l) for N=16 and correcting them for the expected boson number dependence
of N2. The IBA E2 operator a..ropriate to deformed nuclei in the rare
earth region can then be written as

T(E2) * (0.145+0.15)f(s4d+d+s)(2) - (0.85+0.35)//5(d+d)(2)} (15)
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Fig. 5 Empirical values of B(E2) ratios for deformed rare earth nuclei
where the assumed S band is above the y band in energy. The
references are listed separately at the end of the text.
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(The recognition that the SU(3) wave functions lead to fixed ratios of ]
•B'(E2). strengths.' for-iht"er?-rep'r esentation. -transitions-allows—the—E2_matrix-]
elements to be used'as a sensitive probe in determining the structure of !
the IBA bands in the geometrical basis. The existence of this tool has \
been hidden to date by the fact that all such transitions are rigorously j
forbidden for the SU(3) value of R normally adopted. Thus it has been I
,shown that the higher lying 0 + excitations in the IBA do not correspond to
: the pure multiphonon excitations of the geometrical model, but rather to :

f.".1?^^0^ ftfPr : Lvpe author's naiae(s) here |
; The deduced empirical values of the constants a and R in the E2 operator i
lead automatically to a prediction that y*g and y*-B transitions will dom-j
inate &*g transitions in deformed nuclei. Neither of these features can j
be deduced a priori from the geometrical model, and yet both seem to be •

; verified by the data, although further experimental studies are necessary j
to confirm the latter throughout the region. Thus, the characteristics
of the first excited 0 + band in the IBA, while corresponding well with
those found empirically, are very different from those normally associated
with the classical S vibration. ,

I
Finally the need for an E2 operator whose structure is very different from
that suggested for the SU(3) limit seems to indicate a certain inconsis-
tency in the current application of the IBA in this region, since the '
quadrupole operator in the Hamiltonian is always assumed to take the SU(3)
form. It would be interesting to attempt calculations in which the Hamil-
tonian and E2 operator were required to use the same form for Q. The
constant R of eq. (3) affects the quadrupole term in the Hamiltonian as

Q-Q -\- M2 + 2 ^ + R2MQ (16)

where a=l has been assumed, and M2,Mi,Mo represent And=+2,+l,0 terms •
respectively. It can thus be seen that a reduction of R will lead to an ,
increase in the importance of the £^=+2 term, relative to the others. i
Since this is the major effect resulting from the introduction of the P-P
perturbation, it seems likely that the two effects will be similar. i

Research has been performed under contract DE-AC02-76CH00016 with the
U.S. Department of Energy.
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