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1. Introduction

‘The application of the Interacting Boson Approximation to the region of
well deformed nuclei is a topic of considerable current interest in nuclear
structure, as evidenced by the two invited talks already devoted to the
subject at this conferencz. Such interest is hardly surprising, since a
detailed study of the model in this region offers the best opportunity ¢t
compare and contrast its predictions with those of the best understood o
the geometrical concepts, the deformed rotor. Indeed beth rimilarities
and crucial differences between the two approaches have been pointed out
by Iachello (1981) and Casten and Warner (1981), 4nd many of the latter
center around the relative E2 strengths predicted in the IBA for a Hamil-
tonian which is near the SU(3) limit of the model. It is the purpose of
this paper to study in more detail the mechanism which determines the
relative E2Z strengths in the IBA, and, more specifically, to investigate
the structure of the E2 operator necessary to reproduce the empirical B(E2)
values in deformed even-even nuclei in the rare earth region.

m O

In the IBA-1 basis, the SU(3) Hamiltonian can be written as {Arima and
Iachello, 1978)

H = -<Q-Q—<'L-L (1

The resulting level scheme for 3=16 is shown in {ig. 1. The I3A bands are
grouped into different reprasentations of SU(3), states of the same spin
being degenerate within a given representation. The correspcading E2
operator is

~ ) o AN,
T(E2) = a{(s+d+d+s)(')-f7/2(d d) H (2)

This operator, when applied to the wave functions of the SU/3) Hamileton-
ian, results in a selection rule which forbids transitions between differ-
ent SU(3) representations. Thus, in the rigorous SU(3) limit, transitions
from, for instance, the first excited X=0% or 2% bands to the ground band
are forbidden, while transitions between the X=0% and 2% bands are allowed.
This situation is essentially the inverse of the starting point of the
geometrical description where the lowest excited X7=0%(2) and 2%(¥) exci-
tations would be expected to have relatively strong E2 transitiong to the
ground band, and where 3»v transitions would be {orbidden,-since they . -
require the destruction of one twvpe of phonon and the creation of another.
Empiricallyv, the axistence of strong E2 transitions between vy and ground
tands is a well established feature of deformed nuclei and hence it is
necessary to perturb the rigorous SU(3) limict_in_the JIBA_to reproduce_this



_feature at :least. . Such .a percurbation can,, in:.principle, be introduced
via the Hamlltonlan or the E2 operator, “and we will Begin By “studyitg" Ehe

effects of the latter alone. :
’ _Dage_onlv o tvve nitle here |

The most general form of the IBA-1 E2 operator can be written as i
{
T(E2) = of (stird*s) Purivs@h Py 3 |

1Comnarlson with eq. (2) indicates that the SU(3) form arises when R=-/-_/2

<=-2,958 2 ¢The" factor-oFSVEthas been int raduceds to_ensure_compaC1b111ty~_ﬂ
with the appropriate computer program.) In thke SU(5) or 0(6) limits, R is
zero, and hence its range of values can be expected to lie between 0 and
-2.958. The reduced matrix elements from the two terms of the operator

can be defined as

i

-1/2 o+ .

M, = (23,+1) / <fofH(s d+d S)”"i*’f ;
}

4
My = (z,ri+1)'1/2 <fofl|1/f§(d+3>HxiJi> ©
so that ;
B(E2;J+J,) = az(M +RM )2 (5 !
*YiYf 1 0
Thus,

Note that Mp and M; define the And=0 and +] terms respectively.
the selection rule which results in rlgorously zero B(E2) values for
transitions between SU(3) representations can arise in two possible ways;

either

Ml = 2,958 MO (6) or }& =M =0 (N
In the other cases,

In fact, the condition of (7) occurs only when Ax>4,
(6), namelw,

the zero B(E2) values arise because of the condition of eq.
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four representations of the SU(3) limit in the IBA.

Fig. 1 The first




an exact cancellation of the two contrlbut;ong to_the E2 matrix element
for the SU(3) value of R.” Thed the E2 matrix “element can be written as

"
!
i
t
'

gy ) Ly > = a2s 41 (ar/2.958) 8

It is now evident from eq. (8) that, in the SU(3) limit of the Hamiltoniaq,
the ratio of any two inter-representation matrix elements with the same
. initial spin is a constant, independent of R. More specifically !

Xgdg HT(EZ)HX I>M
TED Tk, > oo M

(9

i

Pl wase onlv o tyvoe L_f fl

Thus, for the SU(3) Hamiltonian, the result of eq. (9) implies that the
B(E2) strengths of all inter-representation transitions can be put on a
single relative scale. The correspondence between the geometrical and i
IBA descriptions can then be studied via the E2 strengths predicted in
each model, which are frequently a very sensitive structure probe.

The non~-zero Inter-representation transitions and their relative strengthé
are shown in fig. 2 for the first four representations of SU(3). Several
crucial features emerge from these results. Firstly, considering the :
(28,2) representation, which contains the analogues of the classical 3 )
and v vibrations, the 8+g strength is seen to be considerably weaker than '
the y>g strength. This point has already been discussed earlier by
Iachello (1981) and, coupled with the existence of strong y+3 transitions,
which were discussed in detail by Casten and Warner (1981), indicates a

INTER REPRESENTATION TRANSITIONS
IN THE IBA
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Fig. 2 Relative B(E2) strengths of Zﬁ*°+ transitions for the SU(3)
Hamilconian. Only bandheads are shown.
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markedly different structure for the B band in.the IBA relative to that
whifn is normally assumed from the’ “geometrical’ Framewdtk: 1t 1§ How evi=—
l=ant that these features are both inherent in the SU(3) Hamiltonian, being
‘independent of the specific- parameterization chosen for the E2 operator,
"and it will be shown later that they remain in the presence of a perturbéd
Hamiltonian. |
{ Turning now to the higher SU(3) representations, in the geometrical model,
‘the yvy*>g transitions would be expected to equal the y>g, while the gg+3
rwouid—be—twrce—the—&+g———The"relative :B(E2) -strengths -for the SU(3) Hamil-
itonlan are shown in fig. 2 and the identification of the analogues of the
[ K'=2* 3y and 4+ yy excitations is straightforward. However, in consider—
ing the remaining two K'=0t excitations, the candidate for the yy mode has
"only half its expected strength to the y band, while both the 88+y and
. yy+8 branches, forbidden in the geometrical model, are significant in the
' IBA scheme.

Table 1

Relative B(E2) values from the Kw=0+ double 8 and y vibrations

% Transition &g g gg+8 86>y YyYry +v>3
i 13a 0.15 1.0 0.20 0.27 0.55 0.10
' Geometrical 0.15 1.0 0.30 0.0 1.0 0.0

These results can be understood if the two higher lying K"=0+ bands in the
IBA are no longer associated with pure 38 or vy modes in the geometrical
basis. The relative strengths of the tramsitions from these bands and the
8 and v bands are given in Table 1. If the IBA band is described as

I%,u;K">, then
a|33>+b[yy> (10)
(11)

-+
[24,4;0 >aa

|26,0;0™ bl38>-avyy>

where the subscripts on the left refer to the labeling of fig. 2 and
Table 1. Considering first the '"forbidden" yy+3 transitions, eq. {11)
vields + ,

Y_{<26,o;0 [{E2]13>= b<33;|E2|!3> (12)
It has been assumed that the 2 and y bands are equivalent in the 1BA and
geometrical descriptions. Thus, the values of Table 1 give

“ = 0.1/0.3 = 0.33; a~ = 0.647 (13)

Then use of these values in eqs. (14) and (13) gives
B(E2;88'+8)=0.20; B(E2;38">+v)=0.33; B(R2;yy'+v)=0.67 (14)

The primed notation signifies the IBA bands of egqs. (10) and (11). While
these numbers do not correspond precisely to those of Table 1, igdicating
additional small admixtures in the two bands, it is neverthelessz:clear
that these two bands must be considered as predominantly-a-mixture-of-the-
pure 38 and vy configuracions, the {26,0) 0% band kelng approximately 677
the yvy configuration and 337 38, w1th the (24,4) 0 band being the

inverse.




3. Empirical determination of the TBA E2_operator.._ ' i: . _

In principle, the constants & and R of the E2 operator of eq. (3) can be
considered .as .free. parameéters in the description .of a particular nucleus. !
Nevertheless it is of interest to investigate whether the global empirical
systematics on B(E2) values in the rare earth region can be used to limit
the possible range of each. To this end, it is necessary only to look at
transitions involving 8, y and ground bands, since B(E2) data for higher
bands is scarce. Furthermore, since the parameter R affects only relative ’
B(E2) values, while a affects only the absolute scale, the former can first
be studled by settlng a“l 1n eq.A(J) an¢‘}ook1ng at, B(E2) ratlos. Thls is
plotted as a function of R in fig. 3a, and the correspondlng B(EZ) ratios
are shown in fig. 3b. As expected from the discussion of section 2, the
ratio of the two inter-representation transitions, &>g/v+g, is constant,
independent of R. This is not true for the intra-representation transi-
tions, since in this case, the two contributions to the E2 matrix element,
M) and Mp, have opposite phase and hence add for negative values of R.
However, it can be seen that the change of the intra-representation B(E2)
values with R is small, and this feature arises because the Mgy contribution
to the matrix element is considerably smaller than the Mj contribution.
Thus the quantities most sensitive to the value of R are the ratios of
inter to intra-representation transitions.

In a realistic calculation it is clearly necessary to perturb the IBA Ham-
iltonian in order to reproduce the observed energies, which would other-
wise follow the pattern of fig. 1. In a recent detailed study of 168gy
(Warner et al, 1980 and 1981) it was shown that use of an additional term
k"P.P in the Hamiltonian of eq. (1) was sufficient to reproduce the over-
all features of the experimental level scheme. Such a perturbation has
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Fig. 3 (a) Relative B(E2) values and (b) B(E2) ratios for the SU(3)
Hamilton;aq w;th N=1§.
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Fig, 4 (a) Relative B(E2) values and (b) B(E2) ratios for a perturbed
SU(3) Hamiltonian with N=1{, «=0.004 MeV, «'=-0,0105 MeV and
x"=0.015 MeV. i

the efrect‘of pushing the B band above the y.band in. -energy, as well as
breaking the- degenerac1es in"the higher rcprescntatlona. Sirice the major—-
ity of nuclei in the deformed rare earth region exhibit this feature, the
current study w111 be 11m1ted to a pgrturbatlon of this form.

""" T i

The relative B(E2) values and corresponding ratios are plotted as a func-
tion of R in fig. 4, for a «" value of 15 keV. It can be seen in fig. 4a
that the g»g and g transitions are relatively liitle affected by the
perturbation to the Hamiltonian, although the latter no longer goes to zero
at R=-2.958. Not surprisingly, since the P-P term principally affects che
energy of the 3 band, it is the E2 matrix =2lements involving this band
which are also changed the most., “More spécifically zthe values_of B(E2; __ .
23>0%) have decreased significantly, the value wow going to zero at R0l 9,
while the overall strength of the °*+03 transition is increased, and the
slope of the line changes, corresponding to a change in the relative phases
of M] and Mp. 1In fig. 4b, the ratio of 3+g to v>g transitions is, of
course, no longer a constant but follows the behavior of the 3+g transition.
A further increase in the size of the P-P term again leaves thez-+g and

v+g transitions virtually unaffected while decreasing the magnitude of the
3+g transitions and increasing the +8 transitions.

It is now apparent that the ratio B(E-,_Y*O )/B(L—.—g Og) is very little
affected by the perturbation to the SU(3) Haml tonian, while varvﬂng con-
siderably as a function of R. Empirical values for ’hlS ratio are plotred
in fig. 5a for the nuclei for which the P+P perturbation can be expected to
be appropriate, and it can be seen that the data fall in a relatively narrow
band which, in fact, implies a range of -0.,5 to -1.2 for the constant R.
Most ‘mportantly, it is evident that the SU(3) value of R(-2.958) predicts




; !

'experlment.“81nce the strength of transitions 1nvolv1ng the B band are
rather sensitive to the size of the P*P perturbation in the Hamiltonian, |
it is not possible ;to, obtain:a ‘precise prediction for them from the ex-
‘tractéd value of K. Nevertheless, two crucial features can be deduced. |
Firstly, B*g transitions are predicted to be considerably weaker than y*g

transitions, the ratio B+g/y+g varying from ~0.15 in the SU(3) limir to
progressively smaller values as k' increases. Experimental values of this
ratio are plotted in fig. 5b, and it is clear that this prediction is
borne out. Secondly, y*8 transitions are predicted to dominate over f>g {
_transitions. This feature has been dealt with in some dertail in the pre-!
Tyious_talk;_and se willtnotlbe!discussedfurthef Hete ;
1

Finally, the possible range of values of a in eq. (3) can be determined

from the absolute empirical 3 E2,2 ~0 ) values. This has been done by

taking the range of B(EZ,Z**O ) va%ues implied by the deduced R value

(a=1) for N=16 and correcting them for the expected boson number depandence
"of N2. The IBA E2 operator a, —ropriate to deformed nuclei in the rare )

earth region can then be written as ’

T(E2) n (0.16540.15){ (s ™) @ - (0.8540.35) /5@ H P sy |
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Fig. 5 Empirical values of B(E2) ratios for deformed rare earth nuclei
where the assumed 2 band is above the vy band in energy. The
references are listed separately at the end of the text.




t4.:Conelusions al:-r.+ i leilin irning on this line

1]
}
'The recognition that the SU(3) wave functions lead to fixed ratios of :
‘B(E2). strengths. for-mtex:.-r:epr:esent:at::.on...trans1t'.1ons_al1ox..rs_tl'\&_li?...mat'.r:z.x_1
elements to be used as a sensitive probe in determining the structure of
the IBA bands in the geometrical basis. The existence of this tool has |
been hidden to date by the fact that all such transitions are rigorously
forbidden for the SU(3) value of R normally adopted. Thus it has been

i shown that the higher lying 0% excitations in the IBA do not correspond tq
' the pure multiphonon excitations of the geometrical model, but rather to
mixtures of them.

Ltvpe author's name(s) here

* The deduced empirical values of the constants ¢ and R in the E2 operator .
lead automatically to a prediction that y>*g and y>8 transitions will dom-

" inate f+g transitions in deformed nuclei. Neither of these features can
be deduced a priori from the geometrical model, and yet both seem to be
verified by the data, although further experlmental studies are necessary;
to confirm the latter throughout the region. Thus, the characteristics |
of the first excited 0% band in the IBA, while corresponding well with
those found empirically, are very different from those normally assoc1ated

with the classical 8 vibration.
|

. Finally the need for an E2 operator whose structure is very different from
that suggested for the SU(3) limit seems to indicate a certain inconsis-
tency in the current application of the IBA in this region, since the

" quadrupole operator in the Hamiltonian is always assumed to take the SU(3)
form. It would be interesting to attempt calculations in which the Hamil-
tonian and E2 operator were required to use the same form for Q. The '
constant R of eq. (3) affects the quadrupole term in the Hamiltonian as

|
i
1
!
i

2
. 2 ™
Qme12+2R.11+R O (16)]
where 2=1 has been assumed, and M,M;,Mg represent Ang=+2,+1,0 terms 5
respectively. It can thus be seen that a reduction of R will lead tc an .
increase in the importance of the 4n4g=+2 term, relative to the others. i
Since this is the major effect resulting from the introduction of the P-P
perturbation, it seems likely that the two effects will be similar. :
Research has been performed under contract DE-AC02-76CHO0016 with the ;
U.S. Department of ZEnergy. .
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