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ABSTRACT

The composite particle production in heavy ion collision is calculated
in the framew~rk of a hadrochemical model. A critical comparison is perform-
ed between the produced entropy and the observables. It is shown that the
observed d/p ratio is not the proper quantity to determine the specific en-
tropy, because this ratio strongly depends on the volume of the deuteron.

AHHOTAUMA

C noMoublo agpoXUMHUYECKON Mojesnd BHYHCNAETCHA BHXOM INeATPOHOB B CTONKHOBE-
HHUHH TAXENHX HOHOB. (IpOBOOHTCA KPHTHUYECKOE CpaBHeHHEe KOHEeYHOR 3HTPOMIHU C H3IMe-
PEeHHHMH naHHuMK, [loxka3’HBaeTcsl, YTO UHCAO NeATPOHOB CHJIBHO 3aBHUCHT OT Oo6bemMa
REeRTPOHOB, MO3TOMY 3TO UYHCIIO He LeNlecCOOBPA3IHO NPHUMEHATH UIA TOYHOrO onpencie-
HHUA 2HTPONHH .

KI1VONAT

Egy hadrokémiai modell segitségével megvizsgdljuk a nehézionUtk&zésben
keltett Ysszetett részecskék sz mat, és Ysszehasonlitjuk a végdllapot entré-
pi&j&t a megfigyelhetd adatokkal. Megmutatjuk, hogy a megfigyelt deuteronszam
az 8sszentrédpia mellett erdsen fllgg a deuteron térfogatatdl is, igy az Ussz-
entrépia mérésére nem a leghasznosabb.



1. INTRODUCTION

In the search for exotic, in particular quark-gluon plasma states, the
lepton pairs or the strange particles were pointed out as messengers from the
early, hot, compressed state of the firecloud formed in heavy ion collisions
[1-5] These considerations were motivated by the fact tha+ at lower tempera-
tures (characteristic to the expansion and break-up phase of the fireball)
the processes which could change the number cf strange particles or the num-
ber and spectral distribution of leptons have very small probability.

On the other hand the frequent interaction between nhadrons was believed
to destroy any possible signature of earlier states in the later thermal his-
tory of the firecloud. It has since been surmised, however, that even these
hadrons may carry a signature of an earlier phase transition. Namely the
phase transition would show up in the total entropy of the firecloud and
would be conserved during the later adiabatic expansion. On the other hand
the entropy can be read fr-m the ratio of the number of composite particles
to the number of nucleons. In fact, the entropy obtained from the experimen-
tal deuteron to proton ratio in heavy 1ion collisions seemed to show an excess
over that calculated assuming a hot, hadronic, gaseous phase {6]. This obser-
vation led to lengthy discussions.

Our aim in the present work is to analyse carefully the role of entropy
in heavy ion collisions. The relation between the specific entropy and ob-
served spectra is discussed in Section 2. A (more or less) consequent descrip-
tion of the expanding fireball in vacuum is given in Section 3. In Section 4
we use these results in a hadrochemical.model. The effect of the finite ex-
tension of deuterons 1is dealt with in the van der Waals approximation in Sec-
tion 5; our results and conclusions are summarized in Section 6.

Throughout the paper we use h = k = ¢ = 1,

2. ENTROPY AWD THE.OBSERVED SPECTRA

It was pointed out in Ref. [7] that one can calculate the entropy of the
fireball formed in heavy ilon collisions from the observed deuteron to proton
ratio (de). On the other hand the authors of that work estimated the entropy



of the fireball at the beginning of the expansion {(supposed by them as heing
adiabatic). Yhen comparing ‘nese two values they concluded that the cxperi-
ments show an entropy excess during the adiabatic expansion. To avoid this
contradictjon they suggested some possible reason for this excess, e.q. th=
phase transition into the quark-gluon plasma or pion condensation, etc.

Because of the importance of such a conclusion, let us look again at
these considerations. In Ref. [8] the nonrelativistic thermodynamical treat-
ment of a one component ideal yas was applied to the fireball and it was
found that the specific entropy depends only on the ratio de )

s /n_ =8

o’ p N/nN = 3.95 - lanp . (2.1)

Bit eve:n at this low temperature limit, when the nonrelativistic treatment
may be acceptable, the sp/np ratio is not a conserved quantity, which can be
compared to its init.al value. Only the total entropy of the expanding gas
mixture and the total baryon number are conserved during the adiabatic expan-
sion. Denoting by V the actual volume of the fireball one can construct the

following conserved quantity:

+
Sy 7 g
ny + an

S/N, = sV/n,V =

b = 3.95-1anp-1.25 de/(IFRd ) (2.2)

p
which is somewhat lower - at the same observed de ratio - than the one given
by Eq.(2.1) and in Ref. [8].

Although Eq.(2.2) also gives some entropy excess, one has to take into
account - before drawing further conclusions - the entropy produced by the
chemical equilibration process between nucleons and deuterons. If, after
this correction it remains some entropy excess, one may investigate for spe-
cial sources of that. Some other mechanisms have Leen considered recertly.
The replacement of classical statistics by guantum statistics (Ref. [9])
seems not to lower the calculated ratio de. Stocker (Ref. [10]) proposed
that the number of protons may increase after the break-up of the system by
the decay of unstable particles or nuclei. One can also doubt the applicabi-
lity of the nonrelativistic gas approximation and the oassumption of point-
~like deuterons. To summarize, we conclude that to predict the entropy relat-
ed to the observed deuteron to proton ratio one must follow up the process of
chemical equilibration in a rather relativistic treatment and must also in-
vestigate the effects of the finite extension of the deuteron even in the

cage of the dilute gas. We try to this in the following sections.

3. THE QUASIADIABATIC MODEL

For the description of the HIC the adiabatically expanding c¢as model has
been used in several papers [11-13],




The difference between these models and the p-esent treatment is the re-
placement of the adiabacity hypothesis by a more precise one, which is valid
for an arbitrary mixture of gases even _f its components transform into each
other. The evolution of such a multicomponent perfect flujd (i.e. the vis-
cusity and the heat conductivity are neglected) will ke called a quasiadia-
batic one. In such systems ~ntropy change may occur tecause of the chemical
¢ransmutations. In the following we =hall derive the ecuations describing
this system.

Let us take an infinitely small volume cell of an expanding fireball,
which moves away with the four-velocity ui, and fix our coordinate system to
this. We can speak about thermodynamics in this local system after defining
internal enerqgy, pressure, particle number densities of the different compo-
nents of the gas, temperature, chemical potentials; concisely, all the famil-
iar thermodynamical quantities. The internal energy (e) and the pressure (p)
of these cells depend on the number densities (na) of components and the
local temperature (T) or its inverse (B). For ideal gases they can be con-
structed as the sum of the quantities .elated to the components:

e = Zna°ea , p="Tin . (3.1)
a a
The energy density of a component in the case of the relativistic Boltzmann

distribution is given as:

e? = maR(ma/T) , where R(x) = % +

(3.2)

and Kn(x) denotes the n-th order modified Bessel function of the imaginary
argument. Knowing the local parameters {na, T} all the other thermodynamical
quantities can be expressed, and we can write the energy-momentum tensor of
the perfect fluid in the form:

'I‘1k = (e + p)uiuk - pg1k . (3.3)

ik

Here g is the metric tensor (goo =1

#9117 922 7 933 7“1
We use only the energy-momentum conservation to describe the hydrodynami-

cal features of the expansion in the vacuum. It is given in the form:
9,T =0 . (3.4)
Supposing a spherically symmetric explosion of the fireball we need only two

scalar equations, Let the first be the projection of Tik
-field, u

onto the velocity-
K’

ik
UkaiT =0 . (3.5)



For the second we shall use the energy conservation, i.e. the timelike com-
ponent of Eq.(3.4):

3. T =0 . (1.6)

Besides these we have further equations descriting chemical processes bet-
ween the componeni gases in the familiar way:

RO BEE S (3.7)
The source term, va depends on the temp:rature and the number densities of
each or almost each component. In Section 4 we will describe the "chemical
reactions”™ - decays, collisions, etc. - included in our model, but here wo
need to know only the fact that the number density of the 2-th component has
a source. The set of Eqs(3.5-3.7) describes the expansion.

To recognize the physical meaning of Eq.(3.5) we transform it to obtain
a form of a total four-divergency + another term. After that we substitute
Eq.(3.3) into it. We get:

ik ik

~ _omi
U d T = A (T T

k

2 = 31(eu1) + paiu1 =0 . (3.8)

1%k
If we now apply the First Law of Thermodynamics for the local infinitely
small volume cell of the fireball we get:

i, _ i, _ i a i
ai(eu ) = Tai(su ) p(aiu ) +u ai(nau ) .
Replacing this in Eq.(3.8) we get for the entropy the relation:
i, _ a2 i
ai(su } = -Bu Bilnau )y #0 . (3.9)

The physical meanina of this equation is to take int¢ account the entropy
produced by the chemical processes, i.e. there are possible exothermal and
endothermal trinsmutations. Approximating the chemical equilibrium state the
entropy increases according to the Eq.(3.9).

From (3.7) we can expres: the source of the entropy by the chemical
sources and we get the following set of eauations to describe the hadroche-
mistry of an expanding sphere:

i a
ai(su ) -Bu ?a (3.9)

31T1° =0 (3.6)

i 2
P tnu’) = ¥ (3.7)
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We would like to approximate the description of the evolution of the
fireball by ordinary differential equations. For tnis purpose we shall aver-
age the spatial dependence of the variables. This averaging can be done in
a given coordinate system: we chose the C.M. system of the fireball. In this
system we suppose n_ and B as being homogeneous.

We need an assumption for the flow velocity-field, too. We have chosen
the form of the spatial dependence of it as follows Ref. 111]:

vi(ulua = r-R(t)/R(t) , (3.10)
where y(u) = (l-uz)-l/2 is the Lorentz factor, R(t) is the radius of the
fireball at time t, which is measured at the centre of the fireball and ﬁ(t)
is its time-derivative.

Using these assumptions we get the following set of averaged equations:

éa‘%(vy\m = -guly_ (3.11)
T alvien? + pylutsy) = o (3.12)
1 d L
v d—t[Vna'\Y>, = va (3.13) ’

Here V denotes the actual - time-dependent - volume of the fireball, and the l
brackets <> mean a spatial averaging. In the present model we supposed n,-s ;
and B8 as being homogeneous, so we cannot avoid the spatial averaging of the

expressions depending oi. the velocity-field. In the following we will call

them "kinematic factors”™. They are:

<Y> 3 <72> 3 <12u2> = <y2> -1 .
Using (3.10) we get:
ft .
o> = 21+ P ax = 25+ K0+ 28%) - ArshRl (3.14)
| 8R
o
P
f72> = ;%[xz(l + x2)dx =14+ %ﬁz (3.15)
R }
1

)

Finally, from trivial geometry we have the relation:

<UL
"
W
x| 2

(3.16)

The initial stage of Egs(3.10-3.16) is the total overlap of the colliding
nuclei, when Vv = Vo = r°A1/3, R = 0, and "a(O)’ B(0) were calculated in the
familiar way as the final state of tre ignition phase described in Ref. [(13].



To predict the experimentally observed inclusive cross-section data we
need to choose a time point (break up time) when the expansion and hadroche-
mistry "freeze out”, namely the chemical composition of the mixture and mo-
mentum distribution of the cormponents do not change from this moment till
the detection of particles.

There are several criteria for the “"freeze out" of fireball models (11, '
14]. In the present calculation we use the following one: if the average col-
lision number per partjcle in the total volume during a characteristic cool-
ing time is less than one, then the hydrodynamic description must lbose its
validity. Here we only check for the seif-consistency of application of the
hydrodvnamic description in the present model: we calculate the averaged num-
ber of collisicns per baryon simultaneously with the prediction of the in-
clusive n, d, n spectra.

We define the characteristic cooling time by the change of the thermal

energy:
i
la (e u")|
%: ._i_et_‘_‘_ , (3.17)
th
where €n = e-{mana. The averaged number of collisions per particle is cal-

culated supposgng collisions between nucleons as being independent:

- c-qtot .
a =7t opp vrel’nbaryon . (3.18) |
Here the brackets <> mean the average over the momentum space supposing re-
lativistic Boltzmann distribution. (See Section 4.)

4. HADROCHEMISTRY

In this Section we concentrate on the right hand side of Eq.(3.7), viz.
on the Wa chemical source term.

The different processes of chemical reactions are grouped into the fol-
lowing types:

1. "one to two” A«eB+C e.g. A« N
2. "two to two" A+ BC +D e.g. NN« D
3. "two to three" A+ BeA+C +D e.g. ND & NNN

The first type, the well-known decay, changes the number density of the
a-th component as:

n_=-C.n (4.1)

where ra is the width of the decaying resonance.

In the co-moving frame of a fluid cell the source term gives the change
of n, in the proper time, so wa(l) = -rana. But since the energy and momentum
distribution of the decaying particles is Boltzmannian, the average can be
written as:



ll(B'a)
V.(l) = -<I"a>na = -ranafllvth> = -ran. i;Tﬁ;:T . (4.2)
Here ln.x) denotes the n-th order Bessel function of the imaginary argument
and Yeh is the Lorentz factor corresponding to the thermal motion.
The second type is the two-body collision. If each colliding set of par-
ticles has Boltzmann distribution in the momentum space, then the averaged

rate factor is:

) I o(s)A(s)K, (B/5) L as
(m3+n4)2 2/s
cov__ . = , (4.3)

rel 2 2
4nlm2K2(Bm1)K2(Bm2)

where A(s) = (s-mi-ni)z - lming: s = (pl4p2)2 represents the invariant C. M.

energy squared; m,...m, are the rest masses of particles A...D; o(s) is the
cross-section of the process investigated and B = 1/T is the inverse tempera-
ture. In the case of the process A + B ~+ C + B the chemical source term is
proportional to the rate factor and the number densities of the colliding par-
ticles:

VA(Z) = (4.4;

“"%a're1 "A"s

The third type of hadrochemical processes is very similar to the second
one: only the difference is shown by the reverse process, which is a three-
-body collision. But we generally take into account the reverse processes by
means of the equilibrium ratio. For example, for A + B~ A + C + D the total
change of B is:

v .(3) = -0,V ‘N, (Np=p Phon ) (4.5)
B AB'rel’ A" BB CD : )

Similar expressions are written for the reverse processes of first and

second type:

WB(I) frA)(nA-pn n.) ’ (4.6)

BC

¥p(2) (4.7)

= -J”Anvrel)(nAnB-GnCnD)

The egquilibrium ratios are determined by the following restriction: 'n
chemical eauilibrjum the source term has to be equal to zero. On the other

a
hand we kno: from the Boltzmann distribution that n, = eBu Q(B,ma), wvhere

- a_ 2
(Bm,) = ;;3Emakz(0ma) is the familiar canonical partition function, and da

denotes the spin and isospin degeneracy factor of the particle of type a.
Hence the equilibrium ratio, o, is given as:




—B(uh+ua)
o= (A8 % %l _ W% (4.8)
n.n -g(u ) Q.Q - :
c™> eq c'Yo c“o
e 0-Qp

One can get the equilibrium ratios for earh type of process In a simi-
lar way.

In a central heavy ion collision a thermalization process goes on. This
can be thought of as a sort of "chemical reaction®” when the stages of tnis
"reaction chain® are the more and more Maxwell-Boltzmann like distributed
particles. In the present model we describe only two stages of this thermall-
zation process: the original component having sharp energy and momentum dis-
tribution (named "cold® nucleons, No), and the Boltzmannian components ("hot"
particles, N, 4, n...}). It has been pointed out that the Boltzmann-distribu-
tion is almost reached after 2-3 collisions per particle [15]. Now we model
the thermalizztion as a one step process: No +# N, A+ Bor N + X » N + X,

The source terms related to these processes contain the rate factor for
the elastic nucleon-nucleon scattering averaged over the momentum distribu-
tion of the cold nucleons. For N0 + No collision it is trivial:

Al/z(s )

¢
. _ o . . _o
ov»oc = 0(50).——;E5—— o(moslnh(o) 2tanh 5 - (4.9)
()
For an No + X collision the rate factor is:
C (g hi(s)+P Ad(s)) £ hY(s)-p_AY(s)
' —Bl o o -pl-2 o
b \ ! ‘ 2m2 2mg
I o(s)r?(s)|e o -e ds
(m3+m4)2
<ov>ol = 2
BmlpoEokzlﬂml)
(4.10)

In these equations co is the rapidity of the cold nucleon; Eo and Po are its
energy and momentum respectively; s = (po+pl)2 is the invariant C.M. energy
squared, s, is the same for cold nucleons, the fun~t:ons h(s) and A(s) are
given as

2 2,2
his) (s - my - ml) p (4.11)

Als)

2 2
1 . (4.12)

hi(s) - 4mom

Finally, we list the hadrochemical processes included in the present
model:
First type A e Nn, op«nn
Second type NoNo + NN or NA, NON + N3, Nox + NX (X = N, D, =, A),
NN # NA, NN ¢ Dn
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Third type Nop + MNN, ND & NNN
The cross-section for these processes are taken from experimental data (Ref.
(16} .-

S. THE EXTENDED DEUTEROA '

To investigate the effect of the extended size of the deuteron on the
observable quantities, especially thke entropy related to the ratio .dp we
suggest that the van der Waals approximation for the description of the fire-
ball be applied. This treatment does not give the real equation of state but
gives a more precise one than the ideal gas approximation. In fact, it will
be shown in this section that even in the case of dilute gases the finite ex-
tension of deuteron causes appreciable change in the deuteron to protom ratio,
de.

For simplicity here we regard a two component gas as one that includes
deuterons and nucleons. In the van der Waals approximation one should correct
the internal energy oecause of the interactions and the pressure because of
both the finite extensions of the particles and the interactions between them.
The pressure p and tne internal energy e of this system can be written 2s fol-
lows:

o rr——— i

P
ideal
pin., T) = ———————— + n(n]) , (5.1)
a 1 -Jnv? a
a
a
e(na. T) = e deal + U(na) . (5.2}

The index "ideal” marks the quantities related to the ideal gas and v2 is the
volume occupied by a particle of the a-th component. From simple thermody-
namic relations we get for the pressure correction:
_ el
a(n) = Zn 30— - W(n))

a
"a

Hence the free energy density f and the chemical potentia s u? are given as:

£ = f4ea1 - PTIN(L - {nav‘) + Win)) , (5.3)
a
a a r nTv W
u® =y -TIn(I-XnV)#—*-— , (5.4)
ideal r 1 - i“rvr an

where n = {na denotes the total number density.
If we are in the dilute gas limit, which is defined by the relation:

n vl << g (5.5)
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then the second term in expression (5.4) is negligible. Besides this the

fourth term of (5.4) does not influence the chemical equilibriun {f w = w(n&,

i.e. if there are only two-body interactions between the particles. Neverthe-

less, the third term contains n-Va, which is not negligible even in the di-

lute gas limit because the fireball may contain many nucleons and appreci-

ably extended - although few - deuterons. '
In the chemical equilibrium between nucleuns and deuterons

by = ZuN . (5.6)

If we now use approximation (5.5) and insert the form (5.4) of the chemical
potentials into Eq.(5.6) we get the following:

D N
n n -(V'=2v ) (n_+n_)
D] ‘e ND . (5.7)

Pl
Z n|o

)
N ideal

This means that even in the dilute gas limit, the extended size of the deu-
teron may cause a relatively strong decrease in the deuteron to proton ratio
de, and it leads - according toDEq.(Z.Z) - to some entropy "excess". The
characteristic specific volume V~ is not necessarily the geometrical volume
of the deuteron but, however, it is expected to be in the same order of mag-
nitude. So we calculated vP as

3

0. 55/réw3/2 = 20 fm> , (5.7a)

v 3

where <r2> was obtained from the wave function of Ref. [17] which contained

D
a repulsive core. The difference 6V = VD - ZVN occurring in Eq. (5.7) will
have the value &6V = 10 fm3 using VN = igrg =5 fm3.

One can observe that a relatively small change in the volume occupied by
a deuteron causes a large change in the equilibrium ratioc of deuterons to
protons,

The specific entropy of this two-component van der Waals gas (in the
limit defined by Eq.(5.5)) is given as follows:
) = (ngen ) (WP-vt) (5.8

sB/nB = 3,95 - InR - 1.25 de/(1+R

dp dp

6. RESULTS AND CONCLUSIONS

In this paper we calculate such symmetric collisions where the total
baryon number is 80 or 40, mostly at 0.8 GeV/nucleon bhombarding enerqgy. This
choice describes a situation very similar to the experiments on KC1l+Ar, never-
theless slight differences in the final chemical composition can be expected
because there is a 6 % neutron excess in the experimental situation.
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Regarding the hadrochemical processes, Fig. 1 shows that using 6V = 10
fm3 and E/A = 0.8 GeV, the final composition is as follows:

N0 = 28, N = 40, D=6, n=8 .

The processes can also be fcllowed in Fig. I. The break on the N curve is an
artifact from a simplification in the model, namely that the No + N, + N+ N
process is neglected after the total overlap. Nevertheless, one can conclude
that there remains a cold subsystem. The equilibration of the deuteron num-
ber is very rapid, in accordance with Kapusta's calculation, while the pion
and delta numbers have monotonous trends because the equilibrium ratios in
the A = Nn process depend on the density. Observe, however, that the sum of

the number of deltas and pions, i.e. the number of plons which will be detect-

ed soon reaches a constant value. In view of this, the prediction of the mea-
surable pion to nucleon ratio is largely insensitive to the cholice of the
break up time, With increasing bombarding energy the final pion number in-
creases and the deuteron number decreases, because of the higher temperature.
' After the total overlap a one-fluid model was used. The evolution of
some hydrodynamic and thermodynamic parameters is displayed in Fig. 2. Ob-
viously, the thermal equilibrium, cannot, however, be valid when the cooling
is too fast compared with the equilibrating processes. The quantity "a"” de-
fined by Eq.(3.18) shows the relation between the characteristic time of
these processes. Obviously the critical value of "a" is abou:+ 1, and in this
model we assume that for a < aLr the particles are free. Nevertheless, the
a(t) curve is very flat at a = 1, thus the breakup time is not well-defined.
For this reason we regard a, as a free parameter to be fitted to the slope
of the proton spectrum. However, Fig. 2 shows that the breakup density is
Tbr ~ 40 MeV and the velocity of the sur-
face is about c/2. The entropy produced by the chemical processes is about
1 %, definitely less than the neglected contribution of the viscosity.

The calculated p, n and 4 spectra are shown in Fig. 3. It is expected
that the slopes should be different because of the different masses. The
hreakup time has been chosen within the breakup interval in such a way that
the high energy proton slopr ba correct (79 MeV). Then even the initial low
energy part of the proton spectrum is correctly given, and similarly the n
slope is near to the experimental value (64 MeV instead of 66 MeV), The cal-
culated deuteron spectrum definitely differs from the exponentiazl one in the

about 1/4 normal nuclear density,

displayed energy region due to the larger rest mass of the deuteron.

In calculating the spectra we used 6V = O, i.e. we neglected the volume
of deuteron. The value of 6V causes only secondary effects in the shapes of
the spectra but, of course, it is very important for the final number of deu-
terons. Unfortunately, as we emphasized in Section 5, until we know the cor-
rect equation of state of the interacting n-d system, one cannot determine
the actual value of 6V. Comparing the calculated and experimental ratios one
can see that 6V ¥ 10 fm3 cxplains the detected deuteron number up to E/A £
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£ 1.4 GeV/nucleon (Fig. 4). This result clearly demonstrates that the deu-
teron deficiency, alternatively interpreted as entropy excess, is not an
evidence for phase transition or strong attractive forces. In Fig. 5 we dis~
play the entropy calculated from the experimental d/p ratios with the help
of expressions for ideal one-component (Eq.(2.1)), ideal two-componer* (Eq.
(2.2)), and two-component van der Waals (Eq.(5.3)) gases. The predictions of
Siemens and Kapusta [7] for the entropy is also shown in the figure.

We can conclude that the entropy calculated from the experimental deu-
teron to proton ratio is within the normal hadronic matter range predicted
by Siemens and Kapusta [7], if we take into account the finite volume of the
deuteron. Therefore, the present experimental data do not force the assump-
tion of the formation of some exotic state. Moreover, the chemical composi-
tion of the reaction products in a central heavy ion collision can be under-
stood within the framework of the present hadrochemical model for moderate
energies E X 1.5 GeV/nucleon. At the same time it is important to realize
that - dvre to the otherwise not well measurable volume excess &V of deuter-
ons - the deuteron number is not the proper quantity for "measuring” the en-
tropy produced in the collision, i.e., for finding a piece of evidence of
exotic states of matter. The more compact composite particles such as He3,

t and a may be more appropriate for that purpose.
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Arsfr
€ xp = 0.0 GeV/A
§Ve 0fm®

204

10 1

Ar+Ar
Eias *0.8GaVA
Vo0 fm®

20-

104

|
10 27 30 4715 6 70
t 10

Fig. 1
Number of different kind of particles ig shown as a function of time for
the reaction Ar+Ar at Eppg = 800 MeV/A. Figures la and 1b were obtained
without and with van der Waals correction (8V = 10 fm3), The dashed ver-
ttecal line marke the total overlap of the colliding heavy tons. Observe
that the A+m number, i{.e. the number of the detectable pions very soon
reaches the final value. The deuteron number on Fig. 1b te monotonously
tnereasing because of the van der Waals correction.
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Fig. 2
Thermodynamical quantitivs verpus time calculated with van der
Waal, correction (8V = 10 fm?) for the heavy fon collision Ar+Ar

at Frag = 800 MeV/A. 5 denotes the total entropy, &, L8 its valur
at the total overlap; T and n are the temperature and number den-
sity, regpectively; n, is the normal nuclear matter denaity. is
the expanaion velocelty of the surface; a is the average collision
number per particle during a ~haracteriatic cooling time (Eq.
(3.18)). The broken line markp the total overlap. The arrow de-
noteg the break up time at which the effective proton temperature
fita the experimental one, This correaponds to a,, = 1.6.
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Fig., 3
Invariant |, ® and d eross~gectiong calculated for the Ar+Ar
reaction at Eppp = 800 MeV/A. The effective temperatures cor-
respond to the alope factors. In parenthesis the experimental
values (Ref. [18)) are given.
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Fig. 4
The d/p ratios calculated without and with van der Waals correction
(6V = 10 fm3). The dots are the experimental values (Ref. (18)) for
the Ne + NaF reaction.
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The entropy perv rarticle, S/N, versus laboratory bombarding energy
per nucleon jor the Ne + NaF reaetion. The curvesg a, b and ¢ are
the 5/N valucs obtaitned from the measured deuteron/proton ratios
(de). The curve o showa the Syuepon/Nneutron th an ideal gas (Eq.
2.7)}). The curve b gives Stotal/mbarqon for an ideal two-component
gas (Lq.(%.2}). The curve c display Sissgi/Nbaryon for a van der
Waals gas with 8V < 10 fm3 (Eq.(5.8)). The ahaded area eorresponda
to the predicotion of Siemens and Kapusta (Kef., (7)) for hadronic
matter.
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