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ABSTRACT 
The composite particle production in heavy ion collision is calculated 

in the framework of a hadrochemical model. A critical comparison is perform­
ed between the produced entropy and the observables. It is shown that the 
observed d/p ratio is not the proper quantity to determine the specific en­
tropy, because this ratio strongly depends on the volume of the deuteron. 

АННОТАЦИЯ 
С помощью адрохимической модели вычисляется выход дейтронов в столкнове­

нии тяжелых ионов. Проводится критическое сравнение конечной энтропии с изме­
ренными данными. Показывается, что число дейтронов сильно зависит от объема 
дейтронов, поэтому это число не целесообразно применять для точного определе­
ния энтропии. 

KIVONAT 
Egy hadrokémiai modell segítségével megvizsgáljuk a nehézionütközésben 

keltett összetett részecskék számát, és összehasonlítjuk a végállapot entró­
piáját a megfigyelhető adatokkal. Megmutatjuk, hogy a megfigyelt deuteronszám 
az összentrópia mellett erősen függ a deuteron térfogatától is, igy az össz-
entrépia mérésére nem a leghasznosabb. 



1. INTRODUCTION 

In the search for exotic, in particular quark-gluon plasma states, the 
lepton pairs or the strange particles were pointed out as messengers from the 
early, hot, compressed state of the firecloud formed in heavy ion collisions 
[1-5] These considerations were motivated by the fact tha*-. at lower tempera­
tures (characteristic to the expansion and break-up phase of the fireball) 
the processes which could change the number cf strange particles or the num­
ber and spectral distribution of leptons have very small probability. 

On the other hand the frequent interaction between hadrons was believed 
to destroy any possible signature of earlier states in the later thermal his­
tory of the firecloud. It has since been surmised, hov«ver, that even these 
hadrons may carry a signature of an earlier phase transition. Namely the 
phase transition would show up in the total entropy of the firecloud and 
would be conserved during the later adiabatic expansion. On the other hand 
the entropy can be read fr'-m the ratio of the number of composite particles 
to the number of nucleons. In fact, the entropy obtained from the experimen­
tal deuteron to proton ratio in heavy ion collisions seemed to show an excess 
over that calculated assuming a hot, hadronic, gaseous phase [6]. This obser­
vation led to lengthy discussions. 

Our aim in the present work is to analyse carefully the role of entropy 
in heavy ion collisions. The relation between the specific entropy and ob­
served spectra is discussed in Section 2. A (more or less) consequent descrip­
tion of the expanding fireball in vacuum is given in Section 3. In Section 4 
we use these results in a hadroohemical model. The effect of the finite ex­
tension of deuterons is dealt with in the van der Waals approximation in Sec­
tion 5; our results and conclusions are summarized in Section 6. 

Throughout the paper we use ft = к = с = 1. 

2. ENTROPY AHD THE,OBSERVED SPECTRA 

It was pointed out in Ref. 17] that one can calculate the entropy of the 
fireball formed in heavy ion collisions from the observed deuteron to proton 
ratio (R, ). On the other hand the authors of that work estimated the entropy 
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of the fireball at the beginning of the expansion (supposed by them as being 
adiabatic). Mien comparing tnese two values they concluded that the experi­
ments show an entropy excess during the adiabatic expansion. To avoid this 
contradictJon they suggested some possible reason for this excess, e.g. tlo 
phase transition into the quark-gluon plasma or pion condensation, etc. 

Because of the importance of such a conclusion, let us look again at 
these considerations. In Ref. [8| the nonrelativistic thermodynamical treat­
ment of a one component ideal уаз was applied to the fireball and it was 
found that the specific entropy depends only on the ratio R. 

s /n = s„/n„ = 3.95 - InR, . (2.1) 
p p N N dp 

Bjt even at this low temperature limit, when the nonrelativistic treatment 
may be acceptable, the s /n ratio is not a conserved quantity, which can be 
compared to its initial value. Only the total entropy of the expanding gas 
mixture and the total baryon number are conserved during the adiabatic expan­
sion. Denoting by V the actual volume of the fireball one can construct the 
following conserved quantity: 

S/N. = sV/n, V = \ - = 3.95-lnR, -1.25 R, /(UR, ) (2.2) b b n + 2n. dp dp dp 

which is somewhat lower - at the same observed R, ratio - than the one given 
dp 

by Eq.(2.1) and in Ref. [8|. 
Although Eq.(2.2) also gives some entropy excess, one has to take into 

account - before drawing further conclusions - the entropy produced by the 
chemical equilibration process between nucleons and deuterons. If, after 
this correction it remains some entropy excess, one may investigate for spe­
cial sources of that. Some other mechanisms have been considered recently. 
The replacement of classical statistics by quantum statistics (Ref. [9]) 
seems not to lower the calculated ratio R. . Stöcker (Ref. [10]) proposed 
that the number of protons may increase after the break-up of the system by 
the decay of unstable particles or nuclei. One can also doubt the applicabi­
lity of the nonrelativistic gas approximation and the assumption of point-
-like deuterons. To summarize, we conclude that to predict the entropy relat­
ed to the observed deuteron to proton ratio one must follow up the process of 
chemical equilibration in a rather relativistic treatment and must also in­
vestigate the effects of the finite extension of the deuteron even in the 
case of the dilute gas. We try to this in the following sections. 

3. THE QUASIADIABATIC MODEL 

For the description of the IIIC the adiabaticnlly expanding ras model has 
been used in several papers [11-13]. 
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The difference between these models and the present treatment is the re­
placement of the adiabacity hypothesis by a more precise one, which is valid 
for an arbitrary mixture of gases even ".f its components transform into each 
other. The evolution of such a multicomponent perfect fluid (i.e. the vis­
cosity and the heat conductivity are neglected) will be called a quasiadia-
batic one. In such systems ontropy change may occur because of the chemical 
transmutations. In the following we shall derive the eouations describing 
this system. 

Let us take an infinitely small volume cell of an expanding fireball, 
which moves away with the four-velocity u , and fix our coordinate system to 
this. He can speak about thermodynamics in this local system after defining 
internal energy, pressure, particle number densities of the different compo­
nents of the gas, temperature, chemical potentials; concisely, all the famil­
iar thermodynamical quantities. The internal energy (e) and the pressure (p) 
of these cells depend on the number densities (n ) of components and the 
local temperature (T) or its inverse (0). For ideal gases they can be con­
structed as the sum of the quantities J.elated to the components: 

e = Z n
a * e 3 > P = T £ n

a • (3-D 
a a 

The energy density of a component in the case of the relativistic Boltzmann 
distribution is given as: 

a i 3 K l ( x ) 

e a = maR(m"/T) , where R(x) = £ + ^ (3.2) 

and К (x) denotes the n-th order modified Bessel function of the imaginary 
argument. Knowing the local parameters (n . T} all the other thermodynamical 

a 

quantities can be expressed, and we can write the energy-momentum tensor of 
the perfect fluid in the form: 

T l k = (e + p)u iu k - pg l k . (3.3) 

ik Here g is the metric tensor (g Q O = 1, g ^ = g_2 = g_3 = -1). 
We use only the energy-momentum conservation to describe the hydrodynaml-

cal features of the expansion in the vacuum. It is given in the form: 

Э^ 1 1' = 0 . (3.4) 

Supposing a spherically symmetric explosion of the fireball we need only two 
scalar eqt 
-field, u. 

ik scalar equations. Let the first be the projection of T onto the velocity-

u k 9 1 T l k = о . (3.5) 
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For the second we shall use the energy conservation. I.e. the time11 lie com­
ponent of Eq.(3.4): 

»jT 1 0 = О . (3.6) 

Besides these we have further equations describing chemical processes bet­
ween the component gasrs in the familiar way: 

a.(n u 1) = ¥ . (3.7) 

The source term, V depends on the temperature and the number densities of 
each or almost each component. In Section 4 we will describe the "chemical 
reactions" - decays, collisions, etc. - included in our model, but here we 
need to know only the fact that the number density of the г-th component has 
a source. The set of Eqs(3.5-3.7) describes the expansion. 

To recognize the physical meaning of Eq.(3.5) we transform it to obtain 
a form of a total four-divergency + another term. Aftei that we substitute 
Eq.(3.3) into it. We get: 

и кЭЛ" 1 к =* 3 i(u kT i k) - T 1*;»^ = 3 1(eu 1) + p ^ u 1 = О . (3.8) 

If we now apply the First Law of Thermodynamics for the local infinitely 
small volume cell of the fireball we get: 

3 i(eu i) = T3 i(su i) - pOjU 1) + ц аЭ 1(п аи 1) . 

Replacing this in Eq.(3.8) we get for the entropy the relation: 

a.lsu1) = -0цаЭ.(п u 1) t О . (3.9) 
X X 3 

The physical meaning of this equation is to take into account the entropy 
produced by the chemical processes, i.e. there are possible exothermal and 
endothermal transmutations. Approximating the chemical equilibrium state the 
entropy increases according to the Eq.(3.9). 

From (3.7) we can express the source of the entropy by the chemical 
sources and we get the following set of equations to describe the hadroche-
mistry of an expanding sphere: 

3 i(su 1) = -&ua4»a (3.9) 

iLT'° =0 (3.6) 

3 1(n au 1) - 1 (3.7) 
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Ne would like to approximate the description of the evolution of the 
fireball by ordinary differential equations. For tnls purpose we shall aver­
age the spatial dependence of the variables. This averaging can be done in 
a given coordinate system: we chose the C M . system of the fireball. In this 
system we suppose n and В as being homogeneous. 

He need an assumption for the flow velocity-field, too. Me have chosen 
the form of the spatial dependence of it as follows Ref. [Ill: 

Y(u)u = r*R(t)/R(t) , (3.10) 

where Y(U) = (1-u )~ is the Lorent2 factor, R(t) is the radius of the 
fireball at time t, which is measured at the centre of the fireball and R(t) 
is its time-derivative. 

Using these assumptions we get the following set of averaged equations: 

í a r ( V s y>) = ~ р ц а , р а , 3 - 1 1 ) 

I j L [ v ( e < Y

2 + p-Y 2 u 2 >)l = О (3.12) 

i £ [ V n a - Y > I = * a (3.13) 

Here V denotes the actual - time-dependent - volume of the fireball, and the 
brackets <> mean a spatial averaging. In the present model we supposed n -s 

a 
and 0 as being homogeneous, so we cannot avoid the spatial averaging of the 
expressions depending 01. the velocity-field. In the following we will call 
them "kinematic factors". They are: 

2 2 2 2 
<Y> J < Y > ; < Y U > = < Y > - 1 

Using (3.10) we get : 
ft 

<Y> = - 4 [ x 2 / l + x 2 dx = - ^ [ R / I + R 2 ( l + 2R2) - ArshRl (3.14) 
R J- 8R J 

о 
P 

•Y2> = - i f x 2 ( l + x 2 )dx = 1 + | R 2 (3.15) 

Final ly , from t r i v i a l geometry we have the re lat ion: 

? - 4 ( З Л б ) 

The initial stage of Eqs(3.10-3.16) is the total overlap of the colliding 
nuclei, when V - V = r A ' , R = 0, and n (0), fMO) were calculated in the 
familiar way as the final state of the ignition phase described in Ref. [13 
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To predict the experimentally observed inclusive cross-section data we 
need to choose a tine point (break up time) when the expansion and hadroche-
mistry "freeze out", namely the chemical composition of the mixture and mo­
mentum distribution of the components do not change from this moment till 
the detection of particles. 

There are several criteria for the "freeze out" of fireball models 111, 
14]. In the present calculation we use the following one: if the average col­
lision number per particle in the total volume during a characteristic cool­
ing time is less than one, then the hydrodynamic description must loose its 
validity. Here we only check for the self-consistency of application of the 
hydrodynamic description in the present model: we calculate the averaged num­
ber of collisions per baryon simultaneously with the prediction of the in­
clusive p, d, n spectra. 

We define the characteristic cooling time by the change of the thermal 
energy: 

1 | a i ( e t h u l ) l 

eth 
(3.17) 

where е.. = e-£m n . The averaged number of collisions per particle is cal­
culated supposing collisions between nucleons as being independent: 

a = T O t o t v --n. . (3.18) 
pp rel baryon 

Here the brackets <> mean the average over the momentum space supposing re-
lativistic Boltzmann distribution. (See Section 4.) 

4. HADROCHEMISTRY 

In this Section we concentrate on the right hand side of Eq.(3.7), viz. 
on the * chemical source term. 

cl 

The d i f f e r e n t p r o c e s s e s o f chemical r e a c t i o n s are grouped i n t o the f o l ­
lowing t y p e s : 

1. "one to two" A *» В + С e . g . A «* N 
2 . "two to two" Л + В «f С + D e . g . NN # D 
3 . "two to three" Л + B ^ A + C + D e . g . ND # NNN 

The f i r s t t y p e , the well-known decay , changes the number d e n s i t y of the 
a- th component a s : 

n , = -Г n (4 .1 ) 
a a s 

where Г i s the width of the decaying resonance* 
a 

In the co-moving frame of a fluid cell the source term gives the change of n_ in the proper time, so V II) = -Г* n . But since the energy and momentum a a a a 
distribution of the decaying particles is Boltzmannian, the average can be 
written aa: 
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К. (От ) 
* (1) « -<Г >п = -Г п л 1/т^> = -Г п х. ". . (4.2) • а а ш л tri а а К.ММв ) 

Неге К «х) denotes the n-th order Bessel function of the imaginary argument 
and у . is the Lorentz factor corresponding to the thermal motion. 

The second type is the two-body collision. If each colliding set of par­
ticles has Boltzmann distribution in the momentum space, then the averaged 
rate factor is: w 

0 J o(s)Ms)K (0/s)-^-ds 
(m3im4,2 2/i 

ov - = * 2 , (4.3) 
r e i 4и^т2К 2(Рт 1Ж 2(0т 2) 

2 2 2 2 2 2 
where X(s) = (s-m.-m.) - 4m.m_; s = (p,*p2) represents the invariant C M . 
energy squared; m....m. are the rest masses of particles A...D; o(s) is the 
cross-section of the process investiqated and 0 = 1/T is the inverse tempera­
ture. In the case of the process A + В «* С + В the chemical source term is 
proportional to the rate factor and the number densities of the colliding par­
ticles: 

V 2 ) = -°AB Vrel nA nB • ( 4 4 : 

The third type of hadrochemical processes is very similar to the second 
one: only the difference is shown by the reverse process, which is a three-
-body collision. But we generally take into account the reverse processes by 
means of the equilibrium ratio. For example, for A + B - " A + C + D the total 
change of В is: 

CD 
V 3 ) = -°AB Vrel n A ( n B " p B nC nD> ' ( 4 ' 5 ) 

Similar expressions are written for the reverse processes of first and 
second type: 

V B(1) = Т л Ч п л - о п в п с ) , (4.6) 

V 2 ) = -' nAB vrel > ( nA nB- r' ncV ( 4 Л ) 

The equilibrium ratios are determined by the following restriction: ' n 
chemical equilibrium the source term has to be equal to zero. On the other 

Bu a 

hand we know from the Boltzmann distribution that n - e Q(0,m ) , where 
d a 2 a a Q(0#ni ) = —=-n> K«(0ni ) is the familiar canonical partition function, and d a a 2п2Р а 2 a a 

denotes the spin and isospin degeneracy factor of the particle of type a. 
Hence the equilibrium ratio, o, is given as: 
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yn_n_ # 

С D eq 

-8(u A*u B) 

- d ( W C * U D ) 

Q A C B 

°C°D 

Q A Q B 
Q C Q D 

(4.в) 

One can get the equilibrium ratios for each type of process In a simi­
lar way. 

In a central heavy ion collision a thermalization process goes on. This 
can be thought of as a sort of "chemical reaction" when the stages' of this 
"reaction chain" are the more and more Naxwell-Boltzmann like distributed 
particles. In the present model we describe only two stages of this thermall 
zation process: the original component having sharp energy and momentum dis­
tribution (named "cold" nucleons, N ) , and the Boltzmannian components ("hot 
particles, N, Д, n . . . ) . It has been pointed out that the Boltzmann-distribu-
tion is almost reached after 2-3 collisions per particle [151. Now we model 
the thermalizetion as a one step process: N • N -• A + В or N • X * N + X. 

The source terms related to these processes contain the rate factor for 
the elastic nucleon-nucleon scattering averaged over the momentum distribu­
tion of the cold nucleons. For N + 

о 
• ov> oc 

N collision it is trivial: 

* 1 / 2 < * o > Co o(s ) ~ = o(m sinhC )«2tanh-£ О __2 О О 2 (4.9) 

For an N + X collision the rate factor is: о 
Г (E h^(s)+P A^(s)' 
i -0 о 

o ( s ) A ^ ( S ) 

cov> 
(m3+m4) 

2m' 
-P 

- e 

E h* ( s ) -P A*(s) 
О О 

2m* 
ds 

o l 
t S P o E o K 2 Í D m l ) 

(4 .Ю) 

In these equations С is the rapidity of the cold nucleon; E and P are its 
о _ о о 

energy and momentum respectively; s = (p o
+Pj) is the invariant C M . energy 

squared, s is the same for cold nuclcons, the functions h(s) and X(s) are 
given as 

M s ) = (s - m 2 - m2)2 

о 1 

X(s) = h(s) - 4m 2m? о l 

(4.11) 

(4.12) 

Finally, we list the hadrochemlcal processes Included in the present 
model: 

First type Л < Hit, о * nn 
Second type N N * NN or NA, N N •» NA, N X * NX (X = N, D, -., Л) , 

О О О О 
NN * NA, NN * On 
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Third type H D - ИМИ, ND * MMN о 
The cross-section for these processes are taken frost experimental data (Ref. 
fl«li-

5. THE EXTtNDEO DEUTEN)* 

To investigate the effect of the extended size of the deuteron on the 
observable quantities, especially the entropy related to the ratio R- we 
suggest that the van der Maals approximation for the description of the fire­
ball be applied. This treatment does not give the real equation of state but 
gives a more precise one than the ideal gas approximation. In fact, it will 
be shown in this section that even in the case of dilute gases the finite ex­
tension of deuteron causes appreciable change In the deuteron to proton ratio, 
R. . dp 

For simplicity here we regard a two component gas as one that includes 
deuterons and nucleons. In the van der Naals approximation one should correct 
the internal energy because of the interactions and the pressure because of 
both the finite extensions of the particles and the interactions between them. 
The pressure p and tne internal energy e of this system can be written as fol­
lows: 

P(n . T) = Ideal + n(n ) , (S.l» 
a 1 - Jn V е a 

a a 

e ( n a ' T ) = eideal + "'"а» ( 5 ' 2 ) 

The index "ideal" marks the quantities related to the ideal gas and V я is the 
volume occupied by a particle of the a-th component. From simple thermody­
namic relations we get for the pressure correction: 

•iln I = £n ^"- - W(n ) a ' a an a a a 
Hence the free energy density f and the chemical potent las u a are given as: 

f = fideal " n T l n t l * l n

a

v 3 ) * "{»V ' , 5 - 3 ) 

u 3 = U a
 a, - Tlnd - b / l • n T V a . • Ж , (5.4) ideal r l - In V r > n a 

*• r 
where n = 7n s denotes the total number density. 

If we are in the dilute для limit, which is defined by the relation: 

1"У « 1 (5.5) 
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then the second term in expression (5.4) is negligible. Besides this the 
fourth term of (5.4) does not influence the chemical equilibrium if w = w(n ), 
i.e. if there are only two-body interactions between the particles. Neverthe­
less, the third term contains n«V a, which is not negligible even in the di­
lute gas limit because the fireball may contain many nucleons and appreci­
ably extended - although few - deuterons. 

In the chemical equilibrium between nucleons and deuterons 

U D = 2u N . (5.6) 

If we now use approximation (5.5) and insert the form (5.4) of the chemical 
potentials into Eq.(5.6) we get the following: 

fD-2VN) 
•e " u . (5.7) Ü2 2 

nN 

"D] _-<V"-2V")(nN+nD) 
nN N'ideal 

This means that even in the dilute gas limit, the extended size of the deu­
teron may cause a relatively strong decrease in the deuteron to proton ratio 
R. , and it leads - according to Eq.(2.2) - to some entropy "excess". The 
characteristic specific volume V is not necessarily the geometrical volume 
of the deuteron but, however, it is expected to be in the same order of mag­
nitude. So we calculated V as 

V D = ^ r 2 - 3 / 2 = 20 fm 3 , (5.7a) 

2 where <rn> was obtained from the wave function of Ref. Í171 which contained 
D N a repulsive core. The difference 6V = V - 2V occurring in Eq.(5.7) will 

have the value ÖV = 10 fm 3 using V N = Д^г 3 = 5 fm3. 
3 о 

One can observe that a relatively small change in the volume occupied by 
a deuteron causes a large change in the equilibrium ratio of deuterons to 
protons. 

The specific entropy of this two-component van der Waals gas (in the 
limit defined by Eq.(5.5)) is given as follows: 

V n D = 3 - 9 5 - l n R d p - b 2 5 R d P / ( l f I V " ( W ( v D - y N ) ( 5 - 8 ) 

6. RESULTS AND CONCLUSIONS 

In this paper we calculate such symmetric collisions where the total 
baryon number is 80 or 40, mostly at 0.8 GeV/nucleon bombarding energy. This 
choice describes a situation very similar to the experiments on KCl+Лг, never­
theless slight differences in the final chemical composition can be expected 
because there is a 6 % neutron excess in the experimental situation. 
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Regarding the hadrochemlcal processes. Fig. 1 shows that using 6V = lO 
fm and E/A = 0.8 GeV, the final composition is as follows: 

N = 28, N = 40, D = 6, n = 8 о 

The processes can also be followed in Fig. 1. The break on the N curve is an 
artifact from a simplification in the model, namely that the N + N -•• N + N 
process is neglected after the total overlap. Nevertheless, one can conclude 
that there remains a cold subsystem. The equilibration of the deuteron num­
ber is very rapid, in accordance with Kapusta's calculation, while the pion 
and delta numbers have monotonous trends because the equilibrium ratios in 
the Л <# Nn process depend on the density. Observe, however, that the sum of 
the number of deltas and pions, i.e. the number of pions which will be detect­
ed soon reaches a constant value. In view of this, the prediction of the mea­
surable pion to nucleon ratio is largely insensitive to the choice of the 
break up time. With increasing bombarding energy the final pion number in­
creases and the deuteron number decreases, because of the higher temperature. 

After the total overlap a one-fluid model was used. The evolution of 
some hydrodynamic and thermodynamic parameters is displayed in Fig. 2. Ob­
viously, the thermal equilibrium, cannot, however, be valid when the cooling 
is too fast compared with the equilibrating processes. The quantity "a" de­
fined by Eq.(3.18) shows the relation between the characteristic time of 
these processes. Obviously the critical value of "a" is abo.-*- 1, and in this 
model we assume that for a < a the particles are free. Nevertheless, the 
a(t) curve is very flat at a = 1, thus the breakup time is not well-defined. 
For this reason we regard a as a free parameter to be fitted to the slope 
of the proton spectrum. However, Fig. 2 shows that the breakup density is 
about 1/4 normal nuclear density, Т. ^ 40 MeV and the velocity of the sur­
face is about c/2. The entropy produced by the chemical processes is about 
1 %, definitely less than the neglected contribution of the viscosity. 

The calculated p, n and d spectra are shown in Fig. i. It is expected 
that the slopes should be different because of the different masses. The 
breakup time has been chosen within the breakup interval in such a way that 
the high energy proton slopo be correct (79 MeV). Then even the initial low 
energy part of the proton spectrum is correctly given, and similarly the n 
slope is near to the experimental value (64 MeV instead of 66 MeV). The cal­
culated deuteron spectrum definitely differs from the exponential one in the 
displayed energy region due to the larger rest mass of the deuteron. 

In calculating the spectra we used 6V = 0, i.e. we neglected the volume 
of deuteron. The value of 6V causes only secondary effects in the shapes of 
the spectra but, of course, it is very important for the final number of deu-
terons. Unfortunately, as we emphasized in Section 5, until we know the cor­
rect equation of state of the Jnteracting n-d system, one cannot determine 
the actual value of 6V. Comparing the calculated and experimental ratios one 
can see that 6V Jfc 10 fm explains the detected deuteron number up to E/A % 



- 12 -

4 1.4 GeV/nucleon (Fig. 4). This result clearly demonstrates that the deu-
teron deficiency, alternatively interpreted as entropy excess, is not an 
evidence for phase transition or strong attractive forces. In Fig. 5 we dis­
play the entropy calculated from the experimental d/p ratios with the help 
of expressions for ideal one-component (Eq.(2.1)), ideal two-componer* (Eq. 
(2.2)), and two-component van der Haals (Eq.(5.4)) gases. The predictions of 
Siemens and Kapusta [7] for the entropy is also shown in the figure. 

We can conclude that the entropy calculated from the experimental deu-
teron to proton ratio is within the normal hadronic matter range predicted 
by Siemens and Kapusta [7], if we take into account the finite volume of the 
deuteron. Therefore, the present experimental data do not force the assump­
tion of the formation of some exotic state. Moreover, the chemical composi­
tion of the reaction products in a central heavy ion collision can be under­
stood within the framework of the present hadrochemical model for moderate 
energies E Í 1.5 GeV/nucleon. At the same time it is important to realize 
that - dre to the otherwise not well measurable volume excess 6V of deuter-
ons - the deuteron number is not the proper quantity for "measuring" the en­
tropy produced in the collision, i.e. for finding a piece of evidence of 
exotic states of matter. The more compact composite particles such as He , 
t and a may be more appropriate for that purpose. 
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Fig. l 
Number of different kind of particles ie shown ae a function of time for 
the reaction Ar+Ar at Е^дд - 800 MeV/A. Figures la and lb were obtained 
without and with van der Vaale correction (6V = 10 fm^). The daehed ver­
tical line marke the total overlap of the colliding heavy ione. Obeerve 
that the А+тг number, i.e. the number of the detectable pione very eoon 
reaches the final value. The deuteron number on Fig. lb ie monotonouely 

increasing becaurte of the van der Vaale correction. 
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Fig. 2 
Thermodynamical quant г ties versus time calculated with van der 
Waal» correction (fiiV ~ 10 fm*) for the heavy ion collision Ar+Ar 
at Ftflß - ROO MeV/A. .'7 denote.» the total entropy, V„ is itts value 
at the total overlap; 7 and n are the temperature and number den­
sity, respectively; na ir, the normal nuclear matter density. R is 
the expansion velocity of the surface; a in the average collision 
number per particle during a characteriatic cooling time (Kq. 
(Z.1R)). The. broken line marks the total overlap. The arrow de­
notes the break up time at which the eJ festive proton temperature 

fits the experimental one. This corresponds to ai;. l.C. 
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Invariant ; , IT and d оговв-eectione calculated for the Ar+Ar 
reaction at EL/\ß - BOO MeV/A. The effective temperatures cor­
respond to the elope faatore. In parentheaie the experimental 

valuen (Ref. [Ifi]) are given. 
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The d/p ratios calculated without and with van der Waale correction 
(f>V - 10 fm3). The dote ИГР, the experimental valuee (Ref. [18]) for 

the Ne * NaF reaction. 
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The entropy per particle, S/tl, vernnr, laboratory bombarding energy 
per nucleon fnr the Ne + NaF reaction. The curvets a, b and a are 
the S/N valuer, obtained from the measured deuteron/proton ration 
(V\(ul). The curve a r.hnwa the Sneu(.r,on/Nneu^ron in an ideal дав (Eq. 
(P..1)). The curve b given SfcofcaZ/^bari/on fov a n ideal tuo-aomponent 
дав (V,q. (V,.'/,}) . The curve с display S'tnta'lJNbaryon fov a v a n ( ^ r 

Waala gac wi.1 к f>V ~ 10 fm^ (F.q. (f>. 8) ) . The nkaded area correeponda 
to the prediction of Siemens and Kapuata (Kef. \?]) for hadronic 

matter. 
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