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1. - INTRODUCTION

A shell is a body which occupies in space a volume bounded by
two curved surfaces and such that the distance betwaen these two
surfaces is small in comparison with its other dimensions [18].
This dimensional feature allows simplifications in the three-dimensional
model for linear elasticity. It is shown iﬁ sections three and four of
this paper how Kirchhoff-Love's kinematical assumptions lead to the
well known Budiansky-Sanders’s model [S]. In particular it is explained
how the existence and uniqueness of a solution is a consequence of the
three dimensional Korn's inequality. In section five the membrane model
is dedvzed from the B.S. model by an asymptotic expansion. The small
piramecer being the thickness of the shell, (assumed to be uniform
for the sake of simplicity). The mathematical study of this model is
done in section six and seven. The existence and umiqueness of a

solution is proved for a uniformly convex membrane shell.

The forthcoming section is devoted to the notations used in the

sequel and is basic to the understanding of the other sections.

2. = NOTATIONS [21)

Let us consider a smooth surface imbedded in R3. say y. We assume
that there exists a map ? from an oper set & of R? onto w which is at
least C3. The plane R? containing @& will be referred to a system of

coordinates (0; E‘, 52), and R3 is referred to (0; X, Xg, xa).

Furthermore, the boundary ¥ of § corresponds by ¢ to the boundary

of w.

To the map @ corresponds a curvilinear system of coordinates om w
such that at any point m = ¢(E], 52) of 4y the vectors tangent to the

coordinates lines are :

as = @, ; o= 1, 2, (where, o stands for -—?—5.)
£13
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We assume that the vectors a, are linmearly independent and span

the tangent plane Tmcn) at m to w. The unitary normal at m to v is

denoted by ¥ = N(m).

In the following, Greek indices will belong to the set {1,2}, and

the summation conventicn will be assumed. Let {a®} denote the dual
- 6: ,- (Kronecker's symbol). For any

basis of (aa} defined by auaa

smooth function g defined on w, we set :

2.1 %ﬁ - 35; a® = g,a a*

g

Let T = f(m) be the projection from R3 on the tangent plane Tn(u).

- Clearly, for any point m of w, the following identity holds

(2.2) Id =g+ NN,

where 1Id is the identity in m3 and ¥ {s the transpoge of N.

With use of (2.2), any vector field v of R3 &efined on & can be

decomposed iuto a ctangential componernc Ve

V3-ﬁV-

The derivative of v, with respect to the points of @ is defined by :

v v
2.3) e at
ag®
If we setr :
v, " v° a, .,
then
e a
(2.4) . e = v ,B aa a

The Christoffel symbols ri

8

]

a
+ Vv . _a
o

are defined by :

»8

= Tvand a normal component



D

or else :

The covariant derivative of ve is then, by definition :

[ o ~a A B _ & 8
(2.5) q Py (v ,8 +"AB v") a a v 6 a a.

The transpose of Ve denoted ;t can also be represented in the

basis a%:
- a
vV, = a
e Ve d
where
8
- v
Va " 8g Vo
and

8 * (au, ae), (scalar product in NP)- .

A simple exercise [6 ] shows cthat :

. R | A
(2.8) Yalp © Vo, " Tas Vi T Bad” |@
A , v,
where v s 2Fe the components of the matrix 1 55— in the basis (aa},
defined by : ;

a

A A A
v |8 Ve Tag ¥ -

We have for instance :
= @ 8 . - 8 _a - a
vymw (vu a) . (v aB ) v, v a aB VoV .

The derivative gg of the unit normal N to the surface g is called

its curvature opcrator.



We can easily prove it.is a symmetrical endomorphism of Tm("’)'

We usually set :

- N a B

2.7) =" -bs a, a.

Later on, we shall make use of the covariant divergence of a

tangential vector field on @ or field of endomorphisms of Tm(w).

For any vector field v " v® aq, let us define (6]:

. - 1
(2.8) div v_ =
le

12
t 7z Clal'h e,

which is a scalar function on @, ~

Similarly, for any field t of endormorphisms of Tm(m)’

T = t; a, aB, let us define [61: ’
P
. - - 1/2 o a A
2.9 div 1 —Tlsll 7 (= (sl T)ae) + Thp Ty

vhich is a covector, ie. a linear form on the vectors.
In formulas (2.8) = (2.9), lg| is the determinant of the temsor 8,5

In order to state our problem, we shall now define several spaces

of functions defined om w.
Firsc, we set :
2 < 2,4
(2.10) L) = {£ : £ = £ ope L°(B)},
with the norm :
- 1/2
2 1/2
el 5 = (f JE1* s
L (w) )
Next we introduce : .

(2.11) éc = {vt -y a, s v e l.z(w)),
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with the norm defined by :

R e AR
~t

which is equivalent to :

. 1
Cro s,
a=1,2 L7 (w)

Using already introduced spaces, we define :

| o
B i

@2.12) gl = (g e 2@ 5 E e,

which will be equipped with ics natural morm :

-— 2 1/2
H] =dlel ANy,
] E’ W) L2 () om

The tangential stress space is defined by :
- {r=<%a aP; 1% . LZ(N)' Ty = Ty}
Ee g&h i v SV I L
and provided with the norm :

. - 1/2
(2.13) = {] Tr (x 1)}
Ielly = ¢f o G s

vhere we have set : Tr(g . 7) = q: r: for arbitrary elements g, t of the
space L .

The space of tangential displacements will be :

- O ) }
Y. (v: via iv e Ho(“D)

provided with the norm :

e

v dly =€ = 1o }
L a-|,2” IH'(w)



If we set :

v v
1 t t
YW =z @zt 5D,

it is proved in [7] that the mapping :

12

(2.15) ve e X, =1 ] Trl(y(v) . y(¥))}
w

is a norm on L equivalent to the one defined in (2.13) as soon as the
Christoffel symbols’ ria are small enough in 8° norm. The proof is based
on a result due to P. Roygée {20] and on a comparison with an‘eigenvalue

problem.

Finally we set :

2.16) @) = (£: = £o pe H@),

with the norm :

£ - |IE
1 2.y, = 1EH 2

Referring again to [13], we note that this space can also be

equipped with the equivalent norm :

. 3_ (3E,
2.17) £+ ||N = G2 "-’-:-:’

if the Christoffel symbols are small emough in &° norm.
With the preceding notations, we have :
T g—m(g::)- AR IS
vhere g*¥ is the inverse of the metric tensor Byg (i-e. g%y 8,0 " 6:), and :
(g*Y f,u)lB = (g% f.a),e + T:e g7 f,a.

We now imtroduce the closure 2° of the open set 2° occupied by the

shell ;



(2.18) G - (M eRO; OM = om + x, N where - cSx, S

and m is a point of the surface w; 0 beirg any origin in R3}.

The real number ¢ is half the thickness of the shell. It is assumed
to be constant and strictly positive. We suppose that ¢ is small enough
such that to any point M of @t corresponds a unique couple (um, x3) of

the set @ x [~ ¢, €], satisfying

oM = om + Xq N.
At each point M of 2% we have the identity :
(2.19) I,=N+NK,

where I_.’ is the identity in IR3 and N the transposed of the vector N. It

is to be mentioned that as Il is an orthogonal projecticn we have :

0=
Let v be a vector field defined on 9%. At each point M of a%, v()
is a vector of IR3. Because of (2.19), we can split v into a tangential

component :

(2.20) v, = T,
and a normal ‘compoment :

.20 vy =8 v.
Thus we have :
(2.22) Vv ot N.

In a similar way any symmetrical endomorphism field of IR3, say T,

can be split into three components :

(i) 1::'1'(' T,

which is at each point (m, %) of 2% a symmetrical endomorphism of ‘l"m(u);

(ii) T, =T TN,
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(iii) T =NtN

which a sealar,
Hence @

(2.23) TR b T NNSNTo+T N
! a 3N .
The curvature operator of the surface yp demnoted by I s 2
symmetrical endomorphism of T (w). Hence it admits two real eigenvalues

m

say %- and %— where Ri and RZ are the principal radius of ecurvature of

the surface u at the point m of @
The thin shell theory o assumes that :
(2.26) e max (o o o) < 1.
T TRy

If we d;fine a symmetrical endomorphism of Tm(u) by

N
(2.25) u = I2 * %3

where I, is the identity in the tangent plane Tm(w); then the thin shell

assumption implies thact :

-1 - W2 N — et @Y
(2.2 ULyt R G et Ex)T )

We shall also make use of the formula :

: det 2

det y = [ + x 3 o

N,
3 Tr(—a;) + x

Let us now consider that g is a real function defined in Q%. The

derivative of g denoted gﬁ is a linear form on g3, From the equalicy :

OM = om + x3 N,
we obtain by differentiating :

aN
M = du + Xy = dm + N dx,,
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where (dm, dxs) denotes any element of the set Tm(m) x [R. Which is the
- ) tangent space to the manifold w x {~¢, €] at (m, xa), and dM the
corresponding element of the tangent space T“(QE) at the point M
- defined by :
OM = om + %y N
Hence on one hand :
(2.27) n7dM=udm,
or else under the thin shell assumpcion (2.24) :
(2.28) - dmwu ' md N
and on the other hand :
(2.29) dxy = N d

et 3g , . 3%
Then setting by definition of Py and Y

3% g m 28 gy + 2B 4y
3Jm 3}!3

a 3°
we deduce
B TR T I T
(2.300 M " m* T ax, N

Let us now denote by v a vector field of m3 defined on 2. Then the

derivative g% is an eudomorphism of Ra.

Following the steps (2.27) ~ (2.28) - (2.29) - (2.30), we have :

v .. 3V v
SH d¥ 3o dm + ax3 dxa,

then :
3v v ujl T+ 3 §

M 3m Bxs ‘
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and finally from (2.22)

- 11 -

v av v
av _ 't -l t=_3 -1 3 .5
% " Im I+ 5;; N+ = (v3 N) u T+ ?x3 N N.
If we notice that :
v
] N 3
IR S i T
we deduce that :
v v v av
v 't =l £ an -t 3 ~-ip 3¢5
M am ¢ T+ X b Y3 3m ® LR m * Xy ¥ 3.
Haking.use of (2.19) we also have :
v v v
v t =l ="t = t = N ~1
AN —— — —_— — s
T T+ NN H+ax3N+v33mu *
v v
3 -1 3 =
v T YR
But from :
N v, 0,
we deduce by differentiating :
av
= 38 =t
Ve~ " Vam e
and we obtain the final exyression :
v v
v _ £t -t N -1 Ve o fan -1
EAD =T v Trvgmy TrggVoNvemy 17
v v
3., = -1
a—x;NN+N-aj;—u o

In particular if ¢

can write :

3v

(2.32) Tr(o it

) = Tr(ac

denotes any symmetricel endomorphism oflR3 we

Ve Ly W -1, =
n el IR A Te(a, 5o )+ 9y y.(v) *a y“(v)..



where we have sec :
» v av
t -1 3 3N =i
Y,(V) = —axJ e Ve
(2.33) av

3
y (v) = =2
] ax3 ’
and Ops Tg» % age defined in (2.23).

In order to complete this set of notations let us remark that f is

. . €
a "smooth funcrion" defined on Q° we have :

e
(2.34) / £(M) A = f f £(@, x,) dec u du dx,
M -~
(4

@ w

e -+ .
- L/ £g', €2, xy) dec ulg|®ag’ ae? ax,,
@ -
wheré |g| is the determinant of the tensor 8.g°

We are now able to formulate the three dimensional model in linear

elasticity, for the shell occupying the set ne.

The displacements of the points of 3% are denoted by u.

The stress field denoted by ¢ is symmetrical; (i.e. g = s ). The

applied forces are of two kinds :

(i) body forces, the density vector of which is f and surface forces
acting on the upper and lower boundaries rf and rf . Their density are
-denoted by g+ and g‘. The shell is supposed to be fixed on its lateral

boundary r2 =y x]~¢, el

Hence

€
u=0on ro.

The constitutive equation we are considering is a linear relatiomship

between che stress ¢ and the linearized strain :
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1 ,3u Ju.
Y =3 Gg* 3y -

It is known as Hooke's law and can be written :

239 e~ frre M os v,
or else :
o = s (1w + g Trr(@) 1),

where E, (respectively v), is the Young's modulus (respectively Poisson's
coefficient).It corresponds to isotropic homogeneous material.

They "satisfy for mechanical reasons [14]
(2.36) E>0, 0<v<g.
Let us define che set of admissible displacemencs by :

!f = (v = (v‘), (in the system of coordinates (0; xl, xz, x3)):

vie Hl(ﬁc); v’ =0, on rg},

and the stress fields set by :
. 1 2 3
Lc r {r = (1..); (in the system of coordinates (0; x , ¥, x)), such
1

- 2,.¢ -
Fha: 5 € L°(R7) and Tji " Tij}‘

Then we introduce a bilinear form B(.,.) defined over E° x !E by

B(r, v).- - / Tr(t . -:—;;- .
‘zC

The Principal of Virtual Work (!2] (2] , can be written when the

displacements are supposed to be small enough :

2.37) v e¥, B(o, v) = F(v) = - / fv- /c g5 v
qf réurs

where o is the stress field on 0%

1f we set for arbitrary clements v, o of the space QF
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alo, 1) = j c 1 ; Y oTe(g . 1) - Y Tr(o) . Tr(1r),
o E

then both equations (2.35) and (2.37) can be resumed in Hellinger-Rzissmer's
Principle which consists in fiading an element (o, u) in the space

E: x EE such thac :

1 | veegf, a(s, 1) +B(r,u) =0,
(2.38)
2 {VYvel, B, v) =F).

The classical variationnal formulation of the equation’of alasticity
where ouly the displacement u appears is obtained by eliminating s from

the first equation (2.38).
The existence and uniqueness of a solution (g, u) ta (2.38) is very
classical. With the Hellinger~Reissner's Principle it can be obtained

from Brezzi's Theorem [4], that we recall hereafter.

THEOREM 2.1 (Brezzi). Let I and V be two Hilbert's spaces with norms

" . ”Emd ” M " !'

Letca: ExE+R;B: gxV+R F:Y¥~+MR;g:L~+Rbebilinear and

linear continuous forms satisfying :

(2.39) vTeg;a(r,r)zcur]lz,
* B(t, v)

(2.40) Vv velV; sup L 2Clivll ,,
ez 170 g X

(C denoting strictly positive constants independent on t or v). Then

there exists a unique element (o, u) in the space [ x ¥V such that

¥teg, a(o, 1)+ B(r, u) = g(1),

¥vey, Blo,w) = F(v).
']

In the cagse of the elasticity we set g =0, L = Le , Y= !c
and a(.,.), B(.,.}, and F(.) are defined above. Inequality (2.39) is
a consequence of (2.36) and (2.40) is a consequence of Korn's inequalicy [}
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In the following sections we make use of the spaces :

; ' Vi = {ve !E; Nve=0},

ve

“ {ve xs; 1va=0},
Zi = {r¢ gs; TogN=0, Noll =0, No N =0},

with the norms induced by !a or £F.

3. - THE KIRCHHOFF-LOVE'S ASSUMPTION

In order to simplify the model (2.38), Kirchhoff and Love {[14]

have introduced kinematical assumptions which should be satisfied

by the solution u of (2.38) for a thin shell.

This assuwmptions is :

i y'(u) - ol
(3.5)
v (w) =0,

where (see section 2) :
-9u 3
-t -1 3 -1 3N
LW gty wm T e

du
-3
¥y (W) ?’G .

As we shall see this is the only mechanical assumptions needed for
deriving the Budiansky-Sanders's model from the three dimensional one.
First of all we have to characterize the Kirchhoff-Love displacement
field.



-
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£

THEOREM 3.1. Let us denota by VKL

field defined by :

the Kirchhoff-Love displacement

KL

Then !§L

subspace), is isomorphic to the space :

!s = {v e 25, such that: Y,(V) =0, Yn(v) = 0},

which can be equipped with the norm of !E(because it is a closed

EE a (v = (vt, v3); such that vg € Hi(m) and

v
v, = uy < % s;- where ¥, € !t}’

which is equipped with its natural norm :
1/2

: 2 2
v~ {lvll + vl g 3
2730 gy et ¥

Proof : There will be two steps.

STEP 1. Let us solve the equations (3.4) for an element v of 2”. From
the second equation we deduce that vy is independent of the coordinate
x5 Then the first equation leads to : )

v, I I DR 3v,
3x3 u 3am 't m ’
or else :
e 2w, . 2%
v ax3 v m t u m ’
- 9 -1 N
and then because '32—3' u ey
v
3 1 _.=2 3
LA

This is an ordinary differential equation with respect to the

. P
coordinate X3, where the unknown is u u,.



o

-7 ~

The general solutiom is the sum of a particular solution and an
-1 3v3
element y independent on x,. One can check that - x5 u =~ 5= is

precisely a particular solution and therefore :
& . —
3v3

Ve THE T X35 ¢

Then it is clear that the elements of !;L are the same as those

of ﬂe. We have thereiore algebraically :

€
Vg = ¥

STEP 2, Let us denote by j the natural embedding from Ee into !;L both

equipped with their respective norm. It is clear that j is linear and

one to one. From step onme it is also onto. Hence from Banach's

_Theorem [22]1,j is an isomorphism and this completes the proof cf Theorem

3.1,
]

We define now the space of stress fields which have no normal

components by @
(3.6) L={tef i1 ,=naN=0, 7 =Hcd=0}
and which is equipped with the norm of E¢

A key point in the sequel is the :

THEOREM 3.2, There exists a strictly positive comstant C such that for

any element v in the space !§L we have :

B(r, v)
(3.7) % 2 C
A 1] o
Tef; z o= .

Proof : First we motice that for amy (v, v) in the space 55 x !e we have
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- B(t, v) -}' {Tr (v, () + 0y « ¥ ) + o« v (M}
¢ :
where
v v .
1 t =l -1 t N =]
Yt(V)"-f(lIFu +y ?n:_“)+v3am“ .

and v (v), v (v) are defined in (3.5).

Hence for any element v in the space !;L we have :

sup B(z, v} _ sup B(z, v)
€ =T € € I €
2 :

and the Theorem 3.2 is a consequence of Kora's inequality, (section 2).

REMARK 3.1, As a consequence of both Theorems 3.! and 3.2 there exists
a constant C strictly positive such that for any element v = (}rt. v3) of

. v, .
the space Y, with v, = A have :
1/2
o sp BEDacy il sl 3
et Il L 2 )

4. = THE KIRCHHOFF-LOVE SHELL MODEL

If we introduce the Kirchhoff-Love assumptions; the approximated

model is defined as follows.

The displacement u® is an element of the space !EL and the couple

(¢®, «®) of the space gc x Z;L.should satisfy the equations :

€ (] o
vt ef, 5alo, v)+B(r,w) =0,

(4.1)

(4.2) vvel¥ ;BG% v) =),

~
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where :
g, = g
t n -

REMARK 4.1. We don't assume that the stresses are plame (ie. a: and GZ

are not null), But the constitutive equation (4.1) is a weaker form

of (2.38)1 because we consider only the projection of (2.38)l on Si.

The main result of this sectiom is the :

THEOREM 4.). Let us assume that the medium surface of the shell w» and

the forces applied are “"smooth enouzh'. Then equations (4.1) = (4.2)

: s . o o, . €
admit a unique solution (0", u’) in the space ™ x Yere

Proof : There will be three steps for the sake of clarity.

STEP 1. Let us restrict in the equation (4.2) the elements v to the

space !EL' We have then :
Yve ¥, 5(02. v) = F(v).
We consider the following problem :
. o o € €
find (ct, u ) element of the space-zt x vKL such that :

€ 22. l(az, T+ B(rt. u®) = 0,

(4.3) .V T,
(4.4) VveVe, Blog, v) = F(v).

"We shall deduce from Brezzi's Theorem [4], the existeace and uniqueness

of a solution to the equations (4.3) - (4.4).

It is clear that a(.,.) and B(.,.) are respectively two bilinear
bicoutinueous foras on EE x EE and Ei x !Z. The coercivity condition for
a{.,.) is clear because Ei is a subspace of Ec' and for B(.,.) it is given

Hy Theorem 3.2,

ru_ﬁ.-<_
i
;



. - 20 -

As F(.) is a linear continuous form on v it is obvious that F(.)

~

is also linear and continuous on the subspace EEL of ¥°,

STEP 2. We have determined -at step | an element (c:, u°) such that the

equation (4.1) would be Qa:isfied. We are now going to determine a:
and c: such that the equation (4-2) would be satisfied for any v in the

space y_e and not only in !lil.‘

Expliciting (4~2) we obtainm first :

v
4 €, =0 - z e - LY [
(4.5) V. v, € 00 f: 3, Y (v,) [e E v o+ freur’:gt v, /E Tr (s Mgz s )
Q Q + - Q
and because
v
t -1 3N - 3 -1
OO TE Y m e T TG O v

3

setting Q. = u-1 Ver the equation (4.5) leads to :

£ =0 3 z e
(4.6) ¥V g ¢ ¥, [ a’u-ﬁ'(qt)'fcfcuq:* fe eBp U 9,
o 3 Q T ur_

.7)

' o 3 -1
/ Tr (o, Mg-(ug) v )
£
Q
Then a simple computational procedure leads to the differential

equation (see the introduction).

. . .
__3_(u c: det y) = u‘ft det u + div (u 1 g, det u)} R

3x3 )
o m -y when x, » = ¢
s L 3 ’
o + . .
o, " 8, when Xq =+ E.

From the first two relationships we deduce that :



. u_l x3 /?\ - o »
: (4.8) a - - g / (£, * div(u ° o, det u)

de: TR

For xg = + ¢ we have :

%+ €) = /“: - dlv(].l_l 0° det w):
s st de:u t Wi

multiplying this relacion by u ¥, for any ¥, in the space !t ve obtain :

_ ) } oy
]I‘E gglre) wygy =~ ]re B WX - /ne foux, +/nr:h(°:n3§(“ AR b

+*

which is equal to

[T
€ “t ~t
r#

because of the equation (4.4) where ve choose v = (u v , 0).

"’t‘

Therefore :

o +
a (+e) = 8> .

and the equation (4.5) is alvays satisfied with :r: defined in (4.5).

-]
has

Furthermore the smoothness of the data allows us to assume that a’

its components in the space Lz(ﬁc).

STEP 3. Expliciting (4.2) we have then :

av
v o 3. i £y, - [ 3° 3
i vy € VE’ /can ax3 /c £3 vy * /l‘eul‘e 33 V3 /ccs L™
I3 Y + - Q

which leads to :

Fl o /,\ -
- (det p %, ) f3+ div (u ! o: det )

3x3
(4.9) ° e~ g7 when x, = -
. . % g3 en X €,
[} +
o, " &3 when Xy "€



The first two equations (4.9) give :

o -
LI A

P e B N
“div( ‘gg det u)
detyu =¢

and therefore :

1 *E/\
(4.10) oQ(+) = - g5 + / v ™! 0 dec w)
det  “-g

Multiplying this relatiom by vy we obtain

3v
o - -0 -1 3
/ean(n) vy ¥ /ng Va / Is¥  3m
T_ r- ot

which is equal to *

v
because of che equation (3.4) where we choose v = (- %y 3;2, v3).
Finally

o +
o,(+e) = g,
Here again the smoo:bness of the data allows us to assume that a

is an
element of the space 12 @)

Finally the equation (4.4) is satisfied for any v in the space V
and the proof of Theorem 4.1 is completed.

5. ~ THE BUDIANSKY SANDERS' SHELL MODEL

The problem of which (az. u°) is the solution is in fact three
dimensional because of the presence of y = and det u in the expression
of B(.,.).

As the thickness is swmall compared to the radius of curvature of w.

e can write :

(it does not mean that ¢ is small with respect to be derivatives of == Bm »

fr—— -



N
u=1l+ x3 3 Id,
and
w1 e,
det u=1.

This approximation leads to an approximation of the Kirchhoff-Love's
model which is kpown as Budiansky~Sander's one and which is bidimensional
in the sense that the unknowns can be expressed with respect to a finite

number of functions defined on w.

We set for arbitrary elements 0,5 T3V

o l+v v
a (at, Tt) = l [ Tr(o . rt) - -E-Tr(a:) . Tr(rt),

° [ .3v:
B (rc, v) = - /w /-c‘tn (t: n F) + Tr (rt am) vy

The Budianiky-Sand.eu': model consists in finding an element (&:°, u®)
in the space Z *Va such thar : :
€ o, 00 o ooy .
(5.1) v c_gc, a (crc » ‘tc) + B (rt, u ) 0,
(5.2) ¥ oveVg, B, v) = FV).

0 . s .
The chear stress 0: and the normal compouent a:° being still given

by the formulas (4.8) and (4.10).

THEOREM 5.1. Under the same assumptions as in Theorem 4.1, there exists
a_unigue solutiom (Uzo, u°°) in che space Ei x .Y.EKL to the equations
S.1) - (5.2).

]

Praof : Once more it is a consequence of the Brezzi's Theorem [4) for

which we have to check the coercivity of the bilinear forms (.,

and 8°(.,.), (section 2).



-

First w have for any element T, in LZ

€
. a°(.,.t,.,t) - [ }' BRATR 7 (1, T) = \_E{ Tr (Te)z

w‘EE

.] g A2 i) - E e 2 ol )l 2
£

¢ det u
Q L
Next for any element v in the space !E:(L :
°6_,v) [ [ Tr (1‘ H—) + Ir ('aTn'T:) vy
-y
t

sup -—”-—H———- sup

€ T N € ~
Tl t .E; Teele ”‘t” €

- ~t .
av
t -l _ 3N -~
T, Rggru » [ TG ST vy
o ‘qf .
a -t lII) C. sup
. el
£ €
* Teele . 2t
B(‘tt, v)

= (=i ¢ sup | e

Teel, vl €
~t
and from Theorem 3.2 this last quantity is lower bounded by C ||v|}

<

The proof of Theorem 5.1 is then obtained from Brezzi's ThecremE"]y-.

4 direct proof (which does nmot use the three dimensional Korn's
_ inequality) has been given im [3] for a slightly different model known

as Koiter's model.

* We have set :

N 1/2
"I HI - 5“PfT1' ( - 3} and therefore :
By

e =w fF = < N3
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We give now an explicit form of the Budiansky~Sanders shell model
as defined in (5.1) - (5.2) using a curvilinear system of coordinates

(see sectiom 2).

The tangential stress field uzo will be written :

oo _ & 8
(5.3) ) a, gg a3,
the tangential displacement
OO- (-]
(5.4) u. uta
which is such that .
' 3u®
00 00 _ 3 . a _ ay B _ af \
(5.5) u” =w g -y {06y —xy b)) W o-xg g Y30 %
ther -* ‘re

[ BN 2 : ay, B _ af
u (68 xq bs) u X3 8 Ugags

(the upper script index °°, is omitted on the components for sake of

clarity in the notations).

. We set

00 , 00
u
oo 1 ~t ~t a B
(5.6) y(u .) =3 (I =t 1 Yg 3,4,

. 1
with Y(IB 7(‘.‘0'3 + uﬁla)'
and
aN oo a 8
u,

6.7 3™ =y @)+ pu mxga, 2

rAEh Yog % Yag T Oap %37
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Introducing the tangential retation 8 by

(5.8)

we have @

—auoo
oo _3N oo 3 a
A I

af }

- - o B
O mmig v uy,

and the change of curvature operator is defined by :

(5.9)

with

p

Then equation’ (5.1) which can be also written

aB ~
{5.10)
leads to :
.0 o _E
% )

1=y

We usually set :

(5.11)

6 (u®%) = 1(°% -pg a, a

--1 Y
2 {bay X

{(1-v) ;g + v Y: 6:) +

o'+ b, o

s * bay]B ¥ %o’

E

~

I=v

3

3 s a

B

u'}

.

T “3]a8"

1+% 00 _ 9. oo - 0o 00,
oy —F Il Iy I(U )+ % 00

E x,
; {{1=v) p’; +v p: 6:}

which are called the resultaot stress and bending moment.

Then equation (5.2) can be written @

- 26 —-
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(5.12) Vo= (&, v) € Go)? x W),

2 . .
a 8 E o g i o
n y(v)+——jm p(v)-fI-‘v.-va
/m B o 3 w 8 a w i o 3,2
where 1;(v) and p:(v) are the components of y(v) and p(v) and where

wve have set @

s :
a1 8 (& a - Ay
F o= by ([_E f (GB x3 bB) l 5ﬁ x3 bD |}

.8
[N T T TR SR
+—§-'2_—(68 t-:bB) J Gu 'Bbu]

~B .
() a o A X
(5.13) : f—%—t——(dsd' cbp) | & sebl |,
. -
+€ gdrg
31 A A 3% 8
Foogr | BlS -mb |+,

+€ +. 0 L, -0
a_1 a ko A (g) =(2)
o B

-

{the notation [d;[ , denotes the determinant of a tensor d: ).

The Budiansky-Sanders's model consists in finding an element

2 2
u = (,ga', u3) in the space (Hol(w))- x H;(u) satisfying (5.11) and (5.12),

For a homogeneous material which follows the Kooke'’s law, equations

(4.11) can be explicited as follows :

as '—E—z- (1) I + v y: 6:}

By ~

(5.14)
a E ; a [T
o —E . (=) ¢y oY 5}
8 (l-\lz) 8 u g

where E and v denote the Young's modulus and Boisson's coefficient.
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REMARK 5,1. Error astimates between the three dimensional solution (s, u)
and (o°°
: : - [ s

discussion rests on the boundary conditions on l‘o on the regularity of,the

medium surface w and on the forces applied as well.

R u°°) can be obtained via the asymptotic methods [7], the

It would be too long to detail these results here. We mention a
basic discussion concerning the validity of shell models by

M. Dikmen [10].

6. ~ THE MEMBRANE THEORY FOR A THIN ELLIPTIC SHELL

We analyze in this section the asymptotic behaviour of che Budiansky-—
Sanders' shell model when the thickness is very small when compared to
the other dimensions of the shell (radius of curvature, maximum length ...).

For sake of simplicity we consider as befors that the membrane shell is
made in 2 material which obeys Hooke's law. But the results could be

extended to various materials.

The equitiona (4.14) and (4.12) can then be written in a variational
form as follows. We defins for arbitrary elements (n:, pt) and (':' qt)
of the space £ x L., the Tollowing bilinear forms :

- [ Iy -2
ao(n:, Pc) ]u 3 Tr. (n: p:) 3 Tz (n:) Tr (p:),

6.1) .
1+y v .

‘2(":' qf.) = [u T Ir (-t qt) t Ir (nf-) Ir (qf.)'

and for a,rb'i:rar; elements (nt. 't> of the space ;t x };t and v = (!t,'vs) ‘of

the space 1: x Ho(m) :

. aN
(bylmg, v) = = [“‘!,'1.'2(11t 3 - lm Tz, (o, 0) ¥y

(6.2)
) .. 3 M
bylaes V) 3 /u e 13g G !:))

v
vq [ ek e
w
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With these new notations the problem (4.1) (4.2) can also be written
as follows : (the old hpperscript must be forgotten from now on),

. ) 2
find (nt, mt), (gt, u3) € Lt x Et x !: % Ho(w),

such that :

Ve, cE sa(n,p)+b(p,u) =0,
(6.3) Vg el 2@, aq)+b(, v =0,

Vvs= (vc, v3) € !c x Hi(@), bo(nt,v) + 52 bz(m:,v) = F(v}

The advantage of this notation is that the small parameter € appears

explicicely.

We set a priori :

(6.4) (n:l ) !:: “3) - (nz: ﬂz- Et. ug) + ez(n:,’ﬁi. Q:: Ug) * .

Introducing the exprassion in (6.3) and by equating the terms of sare
power in £ in the resulting expression, for arbitrary elements (pc, Qe V)

we obtain :
a, (.u:'. )+ by (pys u®) =0,

6.5 3, (ag, a,

) * byla,, v =0,
b, (a7, v) = F(v).

The first question concerns the existence and uniqueness of a solution

to the equations (6.5).

This is a non trivial problem and it is very connected to the nature

of the medium surface w, (parabolic, hyperbolic or elliptic). Whatever the

case the second equation (6.5) leads to the relation :

(6.6) al = E

= ((1=v) p(® + v Te(p(u®)) 1d},
-v%) .
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and (n:. u%) are to be determined from the first and the third equation

(6.5).
From the third equation (6.5) we deduce im particular that :
2 o aN - {
(6.7) Vv, e B2@), / e a2 3 o, / P v, = Ly
W w (]
whére F3 and M have already been defined im (5.13).

This leads to :. 3 1-

£ +|——-7—2- (M_ulglllz). a

1 .
gl aN o P o
- —-_—+qn =0 +n
(6.8) % T (ﬂ ﬂ) am  ~t t ~t
" Y% " 3
where
© o 8N
(6.9) Tr (gt '3—m) =0,

we introduce the space of tangential stress field satisfying (6.9) by :

(6.10) Ve " (rp € B T (x5 = 0h

Then the first equation (6.5) can be split into the following two

relationships.

s o o
(i Vo, e 2 a o, t)+b(r,u)=0,
and
es o 3N 3N o
(ii) -ao(nc -ai-) + bo(-a—ﬁ’ 1) = 0.
The last one enables “; to be determined by :
o 1ty o 3N, _ v o 3N,
(6.11) ug = (¢ Tr (n: ﬁ) -E—Tr (nt) Tr (am)
[+] .
u
aN ~t EL 3N
-'l'l'(a—iﬂ-a—m—))/"z‘(s'a.ﬁ.

Then we have to solve the following system:find (g_:, EZ) € yz x !:

such that



- 31 -

T ) +b (rt. ~t) - - ao(ng, T,

(6.12)
o - - p -
bo(ler X¢) by (res X¢) fu Fe o X

where Ft = % a, F being defined in (5.13).

One can check straight forwardly that if there exists a solution

then the component nz is unique.

But that is not so clear as far as the component E: is concerned.

This leads to the concept of inextensional movements [14].
We say that ¥y is an inextensional displacement field if :
o .
(6.13) vTt.€eX, _bo(Tt' !:) =0, .

another way to write (6.13) is :

v v v
~t I~ o, 3N 3N t N aN,
. (6.18) T = im n-2 s Tr (—a T TR ) [ Tr ( -—-) 0.

Using a system of curvilinear coordinates (6.14) can also be written :

(6.15) v .tV

al8

- u 6 (THR PO
8la” 2 s "lu)- (b5 B = 0

where we set :

If we consider the system of coordinates generated by the lines
of principal curvature [13], (6.15) leads to :

oL, V2 2y .o,
R R

v
it
] R] + R,
(6.16) ) a1~ 0
2
R R v v
172 11 2{2
Vs - (o + —5) = O
2{2 2'+R2 R R ’
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where %— and %— are the two eigenvalues of the curvature operator.
| 2 .

It is a basic point of the membrane's theory that for a given shell

the boundary conditions should be such that no sclution of (6.14)

would be adwissible. Otherwise the membrane's theory should be

rejected. Non linear models should then be used.

As a matter of fact non linear terms would become predominant

and the hypotheses of small displacement is certainly not valid.

In order to prove an existence and uniqueness Theorem for the
equation (6.12) we make use of Brezzi's Theorem [4]. Because the
bilinear form ao(.,.) is obviously coercive on the space Et we have

only to prove the so~called Brezzi's condition i.e. for any ¥, in the

space Zt H
) b (t., v.)
6.17) sup —”—Tr-—o Lzl
TN Te L. LR

where C > 0.

This inequality is not always true. It will be proved for an

uniformly elliptic medium surface in Theorem 6.2. Inequality (6.17)

will ensure when satisfied that the shell does not admit inextensional

movements and we have as a consequence :

THEQREM 6.1. -If the medium surface w of the shell is such that (6.17)

is true, then the mewbrane equations (6.12) have a unique solution

o o

(a.» ¥.) in the space Ye x ¥,

~t'
]

In order to satisfy (6.17) we assume first that the modium surface

of the shell is vniformly elliptic. If we denote by %— and %— the two

eigenvalues of the curvature operator g%, it means that %— and %— have
1 2

the same sign and that everywhere on w we have :

1 1
(6.18) nin(|z=—{; |g={) z¢_> 0.
Rl Rz -]

where co is a scrictly positive constant.
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The surface curves which are tangent at each point of w to the

eigenvectors of %g are called the lines of curvature.

In the theory of surfaces it is proved that every surface can be
referred to lines of curvatures, i.e., the lines of curvature of any
given surface can be used as curvilinear coordinates of that surface.
The cocrdinates curves are thus, in general, uniquely determined. The
exceptional case arises when the surface has regions of constant
curvature. Such regions represent parts of a sphere and on a sphere

every curve can be considered as a line of curvature.

It is now proved that the inequality (6,17) is satisfied for a
surface u satisfying (6.18). For this purpose the following functiemal

space is introduced :

A
v’ Tr(au i 3m )
6.1 Y, = (v, ¢ § egtn-2 8 S et
<R cqilg tyg 1 ® Trisg - ErL
It is equipped with its camonical norm : v
—  STCLIE )
2 v, . v, ay —2m_ 3™ 4 s
(6.20) |lv flgr = dlvlly +lgm+gmn-2502 - " o T E
~t =t T'.(E . am)

The first result proved hereafter concerns the definition of a
.

trace on the boundary y of w of an element Ve in the space g{.

THEOREM 6.2. Let v_ = v* a_ be an element of the space % defined in

t a ~t
(6.19). Then the restriction of v* (Sr vu)' to the boundary v of w is
-2 - "

continuously defined as an element of H (v).

Proof : let v_ = v a, be an element of the spacaZW The components
= ¢

v, or v, are elemen:s of the space L (w). But expressed with respect

a
to the coordinatas (E , & ),va are also elements of the space L%(ﬁ).

From :
3N t
v v Tr(am 1 am )
1-—-0.—5‘]‘[-2231 T N 3 € Eer
3m am in r(a—m am)

using a system of curvilinear coordinates we obtain :
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v, (v}
N - uv 't 2
(6.21) Ya.ﬂ(vt) buB' ———-——b € L ().
Hv
and for the system of coordinates generated by the lines of curvature
the curvature temsor is diagonal and the equations (6.21) can be

explicited as follows :

2
R, R v v
172 11 V2]2 2
v - (e + ) € L (u)
1 2+ K R ’
1 2
(6.22) |2 * Vo € 12w
2
R, R
1 11
Y201 T3 2'2‘&’ * 2|2)‘L()
R] + Rz 1

One ‘can observe :ha: the third equation (6.22) is equ:.valenc to the

first one., Because v;\ € L (m) and :
va|B --v - l‘x V.
a a,8 as’A?
then from (6.22) we obtain :
R, v, =R, v, e L)
1 V1,1 " %2 V2,2 ’
v +v € Lzﬁn)
1,2 2,1 ‘

Taking the derivative of these equations with respect to & and §

we deduce on the one hand :

v 31w 16

& 1,10 1,22 ¢ i
(6.23)’

v, € Lz(@)- .
and on the other

Ry -1

(T(T VZ,Z)’ 2 + Va1 € 16,
(6.23)2

2
v, €L @).
As Ry and R, have the sane sign, and satisfies (6.18), vy are

solution of an ellipric problem (set om 5).



For any function @ element of the space Hz(dl‘) n Hl(ﬂ), we define

the continuous linear form.
"(‘/’)"‘(—" RUDLA T E T ‘P')‘*fl’zz
where <, > denotes the duality betweec £(&) andQ(u‘?). For any function @

element of the space H:(ﬁ’) we have Ll((p) = 0, Hence Ll(qD) depends only

on %;q, (normal derivative of § on the boundary ¥ of @).

2
Let g be an element of the space H]/'(?). There exists [17] a

continuous mapping from H”z(?) into Hl(ﬁ‘r) a Hz(ﬁ), say.ﬁ, such that :

. R
1 ] 3
6.24) EZ- b, 'aTI' 3, (8)*+ b, ?52- -ﬁ,(s) =g,
b= (bu) denoting the unit outward normal to the boundary ¥).

/

We define a linear form on El 2(?) by :

£ =1, (&)

which is clearly continuous, (because of the continuity ofﬁ‘) Therefore

2 can be identified with an element, say, L, of the space H l/2(?) We
1 1

say that the trace of v, on the boundary 7 of J is 2.

Because of (6.24) we check straight-forwardly thac this definition

is identical to the classical one when v is smooth.
It is clear that the trace of v, can also be defined in a siwilar way.
From :

R
(€-25) <8 sz o SRATCTS =8 (&) = v, (E';'Qi(“-n)-n + & (2199

R
1
T 00 T G

we deduce



r

SV 8 gy

+

6260 llvill 5~ = swe LTV 20y w2 s e vyl ,
5 g2 L4(@)
g€ ¥ “8" 1/2
| M €9
R
"(§ Vi)t vl a"(;.;-))'
and in a similar way :
26, flo,l vl 2w, I
(6.26) v, - s c( v, hi +ll=v, )y, +v _ ).
2 M2l o1z gy 2! e R V2,202 7 V2,0l ey

Combining (6.26)l - (6.26)2 and using the fact that cthe derivation
is continuous from. L°(5) into H-IQS); we deduce the continuity of

trace of Ve element of yg'in:o (H-‘/z(?))z. This .completes the proof of

thgorem 6.2,

We define now the space :
6.27) W=, e v =0ony},

and W, is closed subspace of g{ from theorem 6.2. The next result is

very similar to Korn's inequality [11].

THEOREM 6.3. Under assumption (6.18) the spaces !t and Ec are isomorghic.

" Proof. Let us demote by j the natural embedding from !t into Et’ (it is

clear thac !t c Et)' As j is linear, ome to one and continuous we shall
prove that j is an isomorphism iff we prove that j is onto, (Banach's

a
Theorem [22]). Let vV a bean element of ¥,-

On the one hand vy is an element of the space Lz(ﬁ) and v, 0 on ¥.

On the other from (6.22).
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(-R—‘v ) +v )
R, 1,171 1,22 ¢ ’

v, € Lz(ﬁ).

2.
vzeL(u).

Let us introduce the element ¥, of the space H;(ﬁ) such that :

R : R

A 1
(Fg L0082 ('ig Lo T Ve

2
Because the operator A = - —I' (— ——( D)) - —(—%- , is elliptic,
£l 2 BE (3¢ ) .

then v, is luniquely def.ined. Ve set
(6.28) v = vl- -y s
Thus : . i ' CN
v, € LZ(ZD.
.A w, =0,

1
P
wl-Oony.

He assume now that the operator A is an isomorphism between L (@
and H (@ n H (2. This is in fact a regularity assumprion. It is
sat:.sf;ed as soon as R are elements of the space d(u), (this is
satisfied as soon as the map ¢? is an element of the space 63(1.\))

The regularity of the boundary ¥ is also needed (Gl), ynless D is a

convex set [17].

2. - oulea 2,
Let £ be any element of the space Lz(m) and @ the element of 'ﬂo(u) L

such tftat'AgD'- #. Then Erom (6.25) :

<w‘, f> = <wl,A¢> - - <A wl,(p> = 0

(where <, > denote the duality betveen,®(%) and £ (T)).
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As a consequence we deduce that v, = 0. Hence from (6.28) vy belongs
to the space H (w) A similar proof ensures that v, is also an element of
the space H;(m) and cherefore v, = v a, is an element of g:. The embedding
j is thus onto and because of Banach's Theorem [22], is an isomorphism

between ¥ anﬂ H .
B

REMARK 6.1. The proof of Theorem 6.2 rests upon the fact that Ve * 0
on the boundary of #. Otherwise the trace of v, is only an element
of H l,2(1). and v would not be in gemeral an element of che space H (@) .

In order to prove the imequality (6.17) for a uniformly ellipctic

surface W, we prove now @

THEOREM 6.4. Under the assumption (6.18) and if the Christoifel’ sywbols

r:s are small enough in 6° porm, then the mapping :
— Tr(aN nl ))
6 av: 1 N Jm “
— - — ’
(6:29) v, e ¥, Il“ M 2w @, %go e

is a norm on the space !é which is equivalent to the canonical one defined

in (6.20), (because of Theorem 6.3).

Proof. The way the proof is given is very classical, (G. Duvaut, J.L. Lions
[11]). We first prove that (6.29) defines a norm and by a compactmess
result we establish the equivalence between the norm (6.29) and (6.20).

STEP !. Let.us consider the equatiom

v
N t
(am T 3= 3m )

v v
t [ AN 0.
Lo el Sl Tt(a“ . %E

Writing this relation in a system of coordinates gemerated by the

lines of curvatures we obtain (see 6.22) :



—
!

This is equivalent to :
Ry vijy “ Ry vpqp = 0
vl|2 + VZII "0-

From the formula :

Yal8 = Ya,8 ~ Tag 2 ?

we deduce

Ry R

-—vV -v ® = I,V
Ry i, 2,2 R, I

v

‘And finally, we obtain :

R
1 A
(6.30) - ((R—z' Ve ide t V000 " Ty

A
Yag v vy ) m My v

)
6.3 - (Ev, ,
‘ 1 2

Let us now introduce two bilinear forms defined for arbitrary

elements Ues v of the space Vc, by

(6.31); alu., v} = f.ll YooYt
o R2

* [.-‘-‘-z Y2%20% %,V

w R‘

and

=
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TRALE

R
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(6300, bluey v = [ @ T} - By ) w2 L 23
; ' 1. R

W
- 2 rl u, (v v
LS T2 o + Yy,2),
W
where

wosuwa , v = v a .

Equations (6.30) - (6.31) are equivalent to find ac element v in

the space !t' such that :

(6.32) LA !t’ a(ut, vc) =- b(“:’ v:).

Because the radius of curvature Rl and Rz have the same sign and
satisfy the inequality :

min (?Rll, IRZI) ¥c >0

on the whole domain w, the bilinear form a(.,.) defined in (6."31)l is !t
elliptiec, i.e. there exists a strictly positive conscant Ao such that :

.

' 2
(6.33) vu eV, alw,u)zir |ful v

But if we set :

- mex(max(|R, I}, =R, Ihl 2 |1}, L2l o,
A U@ . L™ (w) L™ (w)

then there exists a strictly positive constant Al such that :
(6.34) bla, u) s A lluli v flu Ml .
1
pt Xe
Comparing (6.32) ~ (6.33) and ((6.34) we deduce :

t

»

i
Huglt s 2 =lull
thy e 1,

A .
and if g L is smaller than 1. We must have u_ = 0 which proves that

t

(6.29) defines a norm om the space V

Y.. It is worth noticing that the

eonditiocn :
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A
1
E—c<l, .
A
. Al
has a sense. It means that Z and o does not vanish at the same time.
-]

This is a consequence of the following two properties :

A

(i) the functions £ and A—I are both continuous with respect to
the map @, °
M
(ii) when w is planar (i.e. @ is linear), then £ = 0 and v 0.
. o

STEP 2. We know that ¥ can be equipped with the norm (6.20). Hence the
equivalence between (6.20) and (6.29) rests on the inequality i3y

. 3N t

, W T gy o
6.3V v, ¥, “":"u sClingge -+t 25 PP T N
Tt *Gz * W £

where C denotes a strictly positive constant which of course should be
independent of V.- ’

Let us assume that (6.25) is not true. Then of ‘any integer n, there
exists an element v: of the space Y, such that :

(i) Hv:“ -1,
v
. ~t a
. Y
Cn aN t
.. v v N TG - T i 1
) g mn1-245 T I ) Nosg-

am am ~t

From (i) and the weak compactness of the unit ball in an Hilbert'
space [11] and from the compact embedding of Lz(m) into Hl(u). we deduce
that we can extract a subsequence still denoted by v: such that :

n P

a) v, -V in Et strongly,
n x 3

b) v, » vy in !t veakly,

and


file:////v-sr*

-
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——— aN t
av? av: 3 g T 55

t
O llaggrsgn-2?

As a noxm is a convex function, it is also semi-continuous for the

weak topology (22].

Hence :
v
* * @8 p L
ESADRAI Rk’ -l
am am am r:(ﬂ o, |£
om Jm t n
: v
B n 3N [
v v Tr(z— I —=
s lininfl[f—t+ tm-238 m_dmy .,
m 3m am Tr(-a‘—‘ 3N, .
3m * m 3

From step 1 we deduce that v: = 0 and the contradiction appears
between a), and (i). This completes the proof of Theorem 6.4.

As a consequence of Theorems (6.2) - (6.3) - (6.4) we formulate :

THEOREM 6.5. Under the assumptions (6.18) and if the Christoffel's swvmbols

are small enough in &° norm, then inequality (6.17) holds.

7. - A COMPARISON BETWEEN THE BUDIANSKY~SANDERS' SHELL MODEL AND
THE MEMBRANE MODEL

The equations (6.5) constitutes the membrane model for a thin shell.

As a practical rule the solution of this model is done as £ollows.

The tangential compoﬂencs of the displacement, ~g and the resultant
tangential stress nz are solution of the equations (6.12).

) The normal displacement is then given by (6.11) and the bending
moments are given by (6.6). In this section we aim at giving a convergence
result between the solution of the Budiansky-Sanders's model and the one
of the membrane model. This will give a sense to the assumed asymptotic

expansion (6.4).
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Error estimates would be wuch more complicated because of a boundary

layer effect wich appears or the displacement uy 73, Cis].

THEOREM 7.1. Under the assumption of Theorem 6.) the following convergences

occur when £ tends to zero :

a8 in £ strosgly,
o :
7.1 8, e, ip ¥V, stromgly,

uy > ug in Lz(u) strongly.

where (n:, o u3) is the solution of the B~S’ model defined in (5.11) -
(5.12) and (nz, gz, ug) is the solution of the membrane model defined in

(6.5). .
:  §

REMARK 7.1. The convergence of the bending moments is a consequence of
(7.1) and of ‘the following equality valid for aay €:

@ = 27::7- ((1=v) g(u) + v Tr(p(u)) 1d}.

But this convergence is very weak. The expression of p(u) involves
second order derivatives of ua.'From (7.1} we can only deduce the
convergence of the components of o, to the ones of mt in the spaca
o (m) As a counsequence we observe that a membrane sdmits concentrated
bending moments (i.e. Dirac’'s distributiom). It is also the case for ins-
tance when %% is disgon:inuous, {see 5.9).

Proof of Theorem 7.!. There are three steps.

STEP !. "A priori Estimate”. Let us consider the equations (6.3) of
which (n:, 9., ~E
.th‘z.:x‘. xH(m)

. us) is cthe unique solution in the space



—— e

@ flal o« Pilmll s i

Ve € B » 2 (n, p) +b (p, 0) =0,

7.2) - va, € L, o &(m, q.) *+ bylq,, u) = 0,

Vv = (v, vy € ¥, x Hﬁ(g). b(a, V) + ¢ byta,, V) = (v

Choosing Py = B 4, =W, and v » u we obtain by combining the

equations :
a (n n)+eza(m m ) = F(uw
o t’ 't 2 e e
or else because of the assumptions on the applied loads :

el .

o
~t L%(w)

t . %t

Let us come back now to the first equation (7.2). If we choose

for- P, any element of the space Ye defined in (6.10), we obtain :

¥YP, € %, bo(p:. u) £C ”fl':"JE . "PtHE

t t
or else
b (p_, v)
Ps:)P' l—on'fn—s ¢ ||ﬂc||2 ,
1334 i, t

and from assumption (6.17) with u= (_5:, u3) 1

(7.4) gt s clingdl
~t . t
We now choose Py " Yy -g% and we obtain from the first equation (7.2) :
-
2 aN 3N, | N, _ SN ~t
. Iw uy TrGo . 52) = a (n,, vy 3R /w'rt(am T 52=) ug,

which leads to the following relations because of the assumption (6.18) :
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7.5) logl s cClllagh  sllg,l ) - :
Lz(u) Et xt .

Finally from (7.3) = (7.4) and (7.5), we deduce there exits a

constant C independent of ¢ such that :

wellml wllsdell  sc

(7.6) lingll
P t t Lz(w)

t

STEP 2. "Weak converg;ence". The unit ball of an Hilbert-Space is weakly

compact [22]. Hence from (7.6) we deduce there exists subsequence still

denoted (n:’ 8., u3) such that when € goes to zero :

2 +n dng weakly,

[4 t ~t
* R *
. B>y, in "_Y: weakly,

s 12
Uy > uy  in L™ () weakly.
By takiog the liwit in the first equation (7.2) :

* * )
a.n ' Vo, € Lp» 308, pJ + b (p, v) =0,
(remembering that in the expression of bo("‘) given in (6.2) there is

no derivative of u3).
The third equation (7.2) leads to :
2
(7.8) Vv =g, V) e ¥ x B, b (af, v) = F(0),

(because from (7.6), 52 o, tends to zero).

The relationships (7.7) ~ (7.8) are nothing else but the membramne

. . * * * o o :
equations. Hence (“t' Y uy) = (n:, Lo u3) and from the uniqueness

of the zolution we conclude by a standard justification {11], that all

< o o
> Ety u3)-

the seciuel (n, . u3) tends weakly to (nt

t’ EC
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STEP 3. "Strong. Convergence”. From (7.2) = (7.7) and (7.8) we obtain :

-o%

2
: ° o
(7.9) ¢lin, - ogll : $a(a, -a,n -0

t

[ o o

- - bo(nt B, u) + bo(nt n., u )
L] ez b,(m , u) +b (o, - n%; u¥)
2Y e o't .t )

As a consequence of step 2 and (7.6) this last expression tands to

zero with g.

Hence
(7.10) lim ”“c - n:1| “ 0.
0 b3
~t
.Then from :
o o
(7.1 Vi € L » bo(’:' u-u)w- I(ﬂ: =0 T
First of all we deduce with (6.17) :
. o
b (7, u="u)
¢ ”,‘3,; '3:” s ?“P-—"—T%.—l'f——s ¢ "ﬂc = “:"
Lo Tl t P £
and therefore :
’ : o
an . La fa, = “!: - 0.
o, 9N . .
If we set Tc (u3 u3) 3m I (7.11) we obtain :
Gan [ oy - 1e@E 2
: Y37 Y3 m 3
LW .
o
s Cllng = ol ey = gl gl - 3l
=t . . L (w)

Finally from (6.18) = (7.10) - (7.12) and (7.13) we conclude :

. - ° -
lim fluy = ogll 0
€ L @)

and this completes the proof of Theorem 7.1.
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8. - CONCLUSION

An answer is given in this paper to the following three questions

which arise in thin shell theory :

(1) what are the assumptions needed for deriving the Budiansky-

Sanders' model from the three dimensional one ?

(ii) what is the behaviour of the Budiansky-Sanders' model (in-

solution), for a very thin shell, (membrane Theory) ?

(iii) what is a variational formulation of the membrane wodel, and

how does one prove the existence and uniqueness of a solution ?

The answer ‘to the first question is given in section 3 and 4. We b
showed that Kirchhoff.Love kinematical' assumptions are sufficient for

deducing ‘the Budiansky-Sanders model from the three dimensional one.

The asymptotic behaviour of the Budiansky-Sanders's model lead us

to the membrane Theory in section 5 and 7 where a mathematical justcifi~

cation is given. The variational formulation was particularly efficient

for the analysis of the membrane model done in section 6.

An existence and uniqueness Theorem is given for a uniformly convex
shell. But the procedure given can be extended to other shapes of shell,
as for instaace shelis of revolution. This will be done in a forth
coming paper. Finally let us outline the advantage of the membrane
Theory. Instead of solving Budiansky-Sanders’ wodel which involves the
bending effects and therefore complicated finite elements [9]. It is
prefered to solve the membrane model which involves less variables and

a lowver order of derivatives.
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