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- I - Purpose of the test 

CHARACTERIZATION OF BRITTLENESS EITHER INTRINSIC OR INDUCED (EMBRITTLEMENTS) IN A WIDE RANGE 
OF EXPERIMENTAL CONDITIONS. 

- I I - Main advantages 

• ONLY ONE KIND OF SPECIMEN CAN BE USED FOR INVESTIGATIONS 
- AT TEMPERATURES BETWEEN - 196 AND + 1000°C 

8 1 
- AT STRAIN RATES BETWEEN 0,2 AND 2 X 10 S* 

(50,000 TO 0,005 BAR.MN" 1) 
- AT FREQUENCIES BETWEEN C I TO 0,005 HZ DURING LOW CYCLE FATIGUE 
- OF MATERIALS PERMEABILITY TO GASES 
- OF SPECIFIC PARAMETERS E.G. WELDING 

• THE OPERATION IS LITTLE TIME DEMANDING/ SIMPLE AND ITS COST LOW, 



- I l l - Principle 

- DETERMINATION OF THE BURSTING, RUPTURE OR CRACKING PRESSURE OK CLAMPED DISKS, UNDER A FLUID 
PRESSURE. 

- COMPARISON OF THE RUPTURES ACHIEVED UNDEP EMBRITTLING (E) AND REFERENCE NON-EMBRITTLING 
CONDITIONS (PEF). 

- COMPUTATION OF 3 EMBRITTLEMENT CONDITIONS : 
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AVERAGE REFERENCE RUPTURE PRESSURE 

MAXIMUM REFERENCE RUPTURE PRESSURE 

AVERAGE RUPTURE PRESSURE UNDER BRITTLE CONDITIONS 

MINIMUM RUPTURE PRESSURE UNDER BRITTLE CONDITIONS 

AN EFFECT GIVES VALUES LARGER THAN 1. GENERALLY 2 IS CONSIDERED A LANDMARK ABOVE WHICH THE EFFECTS 
APPEAR DANGEPOUS. SOMETIMES VALUES WELL IN EXCESS OF 10 CAN BF ACHIEVED, 

- COMPARISON OF THE INDEXES BETWEEN THEMSELVES AND A THRESHOLD VALUE. 

WHENCE ONE CONCLUDES TO THE POSSIBILITY OF USING OR NOT, MATERIALS UNDER SPECIFIC CONDITIONS, AND 
THE REPRODUCIBILITY OF THE MATERIAL-*-*-FLU ID INTERACTION. 

- OBSERVATION OF THE MACROSCOPIC RUPTURE (FIG.?.) MODE AND INDICATIONS ON MATERIALS RESIDUAL 
DUCTILITY. THEY ARE SUPPLEMENTED BY LIGHT AND ELECTRON MICROSCOPY. 
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"FLOWER" 
E.G. : 316 SS/HE, H 2 

B2 
CENTRAL CAP 
OUTSTRIPPING 
4330 / HE 

C3 
PARTIAL CAP 
OUTSTRIPPING 
LS 4330 / H 2 

D21 
REDUCED BULGE 
CRACKING AT THE 
ANCHORAGE 
INCONEL 718 / H9 

FIGURE 2 - TYPICAL ASPECTS OF FAILED DISKS ! PLASTIC DEFORMATION 
(DUCTILITY) BEFORE RUPTUREV BRITTLENESS OR FMBRITTLEMENT 
INCREASES FROM A (VERY DUCTILE BEHAVIOR) TO E. 



- IV - Test sensitivity 
IHE EXPLANATION OF ITS VERY HIGH SENSITIVITY HAS BEEN DERIVED FROM TWO COMPLEMENTARY APPROACHES 

INSTRUMENTATION AND DIRECT MEASUREMENT OF CHARACTERISTIC VALUES 
MODELIZATION MEANS OF FINITE ELEMENTS 

" I-§I_y__-I_II_N' 
• MEANS OF PRESSURE-LOADING AND UNLOADING CYCLES, DETERMINATION OF THE PRESSURE AT THE 

ONSET OF PLASTIC FLOW : TT 0. 

• DRAWING OF THE PRESSURE-CENTRAL DEFLECTION CURVES. 

• GAUGE-DETERMINATION OF STRAINS AT VARIOUS SITES OF THE DISK SURFACE. 

• !5Ç|!:I?ÇI191!!§î!l!§.2LEINIILItl!î§!!§ <FIG.3.>. 

• WITH THE SAME MESHING, IT HAS BEEN CARRIED OUT ON 4 ALLOYS WITH TYPICALLY DIFFERENT 
MECHANICAL BEHAVIORS 

MATERIAL NATURE E 
MPA 

V 
MPA 

N ^YO 
MPA 

UTS* 
MPA 
— 

E %* 

_ _ _ _ _ _ _ 

35 NI-CR-MO 16 HS STEEL 200,000 0,3 3 450 0.113 1 170 1 800 5 • 

20 CR-NI-MO 10 MS STEEL 210,000 0,3 930 0,.104 350 700 25 

304 I METASTABLE 
Y-SS 

210,000 0,3 *• •* 240 600 50 

0.2 % V - U URANIUM 150,000 0,21 1 450 0,211 150 900 ' 20 ' 

•jfc DO NOT CONTRIBUTE 
TO THE COMPUTATION. 

-JV^ATCURVE ENTERED 
POINT BY POINT, 



FIGURE 3 - MESHING. 

ANCHORAGE 
POLE 

EDGE ANCHORAGE POLE 



Mechanical results 

A - COMPARISON : CENTRAL DEFLECTION W 0 / STATE OF PLASTIFICATION / EQUIVALENT STRESS a AT 
THE UPSTREAM POLE (FIG. *i, 5). 
4 STAGES /RE CONSIDERED : 

• STAGE I 

• §I A. G.§_IH 
• STAGE IV 

ELASTIC BEHAVIOR TYPICAL OF A THICK PLATE : ".HE STRESSES ARE SYMETRIC 
ON EACH SIDE OF A NEUTRAL FIBER. 
PSEUDO-SYMETRIC ELASTO-PL.ASTIC BEHAVIOR ! AREAS IN TENSION AT THE 
ANCHORAGE UPSTREAM AND THE DOWNSTREAM POLE GO ON SPREADING, 
ELASTO-PLASTIC BEHAVIOR : PROGRESSIVE DISAPPEARANCE OF THE AREA IN 
COMPRESSION AT THE POLE UPSTREAM, 
GENERAL PLASTIFICATION IN TENSION, 

B - KINDS OF STRESSING MODES : 

PRESENTLY WE ARE CONSIDERING THE LARGER PRESSURES/ NAMELY STAGE IV, 

• POLE : PLANE STRESS CONDITION. RATHER SIMILAR TO THAT IN A PRESSURIZED THIN SPHERE, 
• ANCHORAGE : PLANE STRAIN CONDITION BECAUSE OF THE VERY REDUCED METAL SLIP UNDER THE 

ANCHORAGE, THIS HELPS TO PROfOTE BRITTLE FAILURE, 
HYDROSTATIC COMPONENT IN TENSION AND HIGH, ENHANCES THE INGRESS OF INTERSTITIALS, 
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C - DEFORMATION ENERGY (FIG. 6) : HIGHER AT THE ANCHORAGE THAN AT THE POLE, EXPLAINS THE 
MAJORITY OF THE FAILURES AT THE ANCHORAGE, 

D - STRAIN RATES (FIG. 7) : REMARKABLY, AT ODDS WITH A TENSILE TEST, THEY TEND TOWARDS A CONSTANT 
VALUE AT THE END OF THE TEST. 
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FIGURE 6 - DW * F (P) 
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FIGURE 7 - € • f (p) 



E - TYPICAL PRESSURE RATIOS . THE RATIOS BETWEEN THE RUPTURE PRESSURES AND TT 0 (AT THE ONSET 
OF PLASTIC FLOW) ARE VEPY HIGH : 10 IN CASE OF HS STEELS TO MORE THAN 300 IN CASE OF AbSTENIT! 
STEELS. 
IN CASE OF A TENSILE TEST THE RATIO UTS/Cy SELDOM EXCEEDS 3, 
FOR FRACTURE TOUGHNESS TESTS THE RATIO K ^ / K ] ^ SELDOM rvCEEDS 4, 

ACCORDINGLY PLASTIFICATION AND EMBRITTLEMENT PHENOMENA TAKE PLACE EARLIER DURING THE DPT, 
IT IS EMPHASIZED HOW EMBRITTLEMENT CAN REDUCE A MATERIAL ABILITY TO RESIST CRACK GROWTH, BY 
LOCALIZED PLASTIC STRAIN. 

Instanc9s of 9xp9rimental 9mbrittl9m9nt data 

A - TYPICAL INFLUENCE OF THE PRESSURE INCREASE PATE ( A P / A T OR C ) 

THERE ARE 4 AREAS ! 

I - WHERE IT DECREASES AS € INCREASES, 

II - A MINIMUM (FIG.8) OR A PLATEAU/ WHERE H DRAGGING BY DISLOCATIONS IS MAXIMUM, 

III - WHERE IT DECREASES AS £ INCREASES/ BUT H TRANSPORT BY CLASSICAL DIFFUSION PROGRESSIVELY 
TAKES OVER ,,. 



THE TIMES SEPARATING THESE ZONES ARE RELATED TO VARIOUS FACTORS SUCH AS H DIFFUS!VITY 
AND MATERIAL SENSITIVITY TO HE CONDITIONS, 

B - INFLUENCE OF TEMPERATURE : CASE OF TZM MOLYBDENUM ALLOY (FIG, 9), 

C - INFLUENCE OF MECHANICAL PROPERTIES : 

• ON HYDROGEN GAS EMBRITTLEMENT (HGE), SEE ALSO THE EFFECT OF H2 PRESSURE (FIG, 10), 
• ON THE RELATIONSHIP BETWEEN HGE. HE BY DISSOLVED H AND BLISTERING OF CATHODICALLY 

CHARGED STEELS (FIG, 11), 

D - LOW-CYCLE FATIGUE IN THE PRESENCE OF FLUIDS (FIG, 12), 

E - ANOMALOUS BEHAVIOR : 
• PALLADIUM HARDENING, THEN HE AS A p / A T DECREASES AND H ABSORPTION INCREASES (FIG, 13 

F - OTHER INSTANCES : 

• STRAIN AGING AT 200°C, DUE TO RESIDUAL 0 IN COLD WORKED TANTALUM THIN DISKS (FIG, W, 

• DUCTILE TO BRITTLE TRANSITION IN XC 18 S FERRO-PEARLITIC LS STEEL, 
CENTER-NOTCHED DISKS (FIG, 15), 

• STRESS CORROSION CRACKING OF 10 WT X Mo URANIUM STAINLESS URANIUM ALLOY BY HUMIDITY Q 
IN AIR DOWNSTREAM (5} IN COMPRESSED HE UPSTREAM (FIG, 16), 
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FIGURE 8 ~ INFLUENCE OF A P / A T ON HYDROGEN GAS EMBRITTLECENT (HGE) 
OF 12 X N I FCC ta ALLOY. 
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FIGURS 9 - INFLUENCE OF TEMPERATURE ON HGE OF TZM Mo ALLOY 
AT A P / A T - 100 BAR/MN. 
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FIGURE 10 INFLUENCE OF ̂  CAS PRESSURE ON HGE OF 4330 STEEL 
HEAT TREATED TO VARIOUS STRENGTH LEVELS. 
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FIGURE 11 - RELATIONSHIP BETWEEN HGE. HE BY DISSOLVED H AND 
BLISTERING OF CATHODICALLY CHARGED STEELS WITH 
VARIOUS STRENGTH LEVELS. 



FIGURE 12 - LOW-CYCLE FATI6UE. SYMETRICAL DEVICE» 

abs.H: 510 ppm 

FIGURE 13 - H STRENGTHENING (RIGHT) AND HGE DUE TO 
H UPTAKE BY PD DISKS STRAINED BY ^ GAS 
PRESSURE. 
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FIGURE l ' l - STRAIN AGING AT 200*C IN COLD WORKtD T A THIN DISKS. 2 0 0 
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FIGURE 15 - DUCTILE TO BRITTLE TRANSITION IN AN 0.18 I C 
FERRO-PEARLITIC LOW-STRENGTH STEEL. 
CENTER-NOTCHED DISKS. 

FIGURE 16 - SCC IN 10 I (Jo U ALLOY DUE TO (î) AMDIENT AIR MOISTURE 
DOWNSTREAM Q ) RESIDUAL HUMIDITY IN PRESSURIZED HE UPSTREAM, 


