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1. Introduction

In order to chec@c the compliance with design codes criteria and safety
requirements, comple .e piping systems of Liquid Metal Fast Breeder Reactors
(LMFRR) must be analysed using finite elements programs. Tie difficulty asso-
ciated with pipings and particularly with elbows is that these structural ele-
ments behave simultaneously like beams and shells. A large review of the
simplified methods proposed to cope with this problem, has been done by BOYLE
and SPENCE [1]. The principal ones are the following two :
~ The "primary methods" based on beam-type programs {2 ] using relevant flexi-

bility factors derived from analytical works [3], [4]. They are economical
but supply only global informations. Even if a subsequent determination of
local strains is possible [2], [5], they cannot account for local effects
like thermal gradients across the thickness of the pipe.

- The "secondary methods"” based on shell-type programs, which differ in the
choice of discretization of the local displacements fields [6-9]. In most of
them, displacements are expanded in Fourier series in the circumferential
direction and polynomials in the longitudinal direction. Such methods are
rather expensive due to the great number of unknowns and are therefore
limited to a few high-stressed components. In compensation, they supply
local stresses and strains concentraticns and can be used with various
loadings.

The best suited method for design purposes should combine the cost-
effectiveness ofa primary method with the accuracy of a secondary method. This
compromise has been attempted by developing a special elbow element, in the
frame of the beam program TEDEL [ 10 ] of the CEASEMT system [11 ].

In this program, the Von Mises'criterion together will Hill's principle
are assumed, while general creep laws can be implemented.

2. Element formulation in elasticity

2.1 Geometry and hypothesis

The geometry of a typical elbow is shown on fig. 1. The elbow is charac-
terized by its mean surface which is defined by two constant curvature radii
and two angular parameters 0 (circumferential) and w(longitudinal) A third
paraneter 2 varies across the thickness e.

The Love-Kirchhoff hypothesis for thin shells (e << r) are assumed.

Therefore, local strains at any point M(©, ¢, z) can be written :

t.3(2) = eaB(O) +z kae(°) (1)
where ;aB(o) et kaB(o) are respectively the strain tensor and the curvature
variation tensor of the mean surface.

Additional hypothesis first proposed by Von KARMAN [ 3] are assumed :

plane sections remain plane
£..(0) =0 ("inextensibility"” hypothesis)
£¢¢(z) = €¢¢(o) Vz

e.,.(z) is negligible
4

~ r is small in front of R,
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2.2 Strains - displacezants relations

The displacements fielé of a shell is classically characterized by local
displacements (u, v, w) of the mean surface, as shown on fig. 2.

The following strains-displacements relations are derived from Love-
Kirchhoff assumptions [12].

_1 3y
€@ = ¢ Gg + ¥
e (o) = A (EB + w cos 2 - v sin 0)
vy Rn v
_ldu, 1 v ;
2 eew(o) = T3 TR h (5; + u sin 0)
2
=1 dv _ 37w
kggl@) = =3 (35 3)
r 30 2
1 cu _ 9w sin 0  dw _
kpp(0) = —37—3 (cos € == ? *Try Go -V
R n 3*5
.1 v _,232w  3u - u sin
2 k0¢(o) TR (2 ) 2 YE) + 70 cos O u sin ?)
+ 2—51372 (v cos © - EL (2)
R2 n 3y

where n =1 +§cos o)

According to the first XARMAN's hypothesis, the local displacement u car
be expressed in terms of the c¢lobal in-plane and out-oZ-plane variations in
curvature Xi and Xg ¢

Ju .

3% = r cos © Xi - r sir ° Xo (3)

! The other hypothesis lezé to the £ollowing strains-displacements relations:

= - - = ) l’. - 4
c¢¢(o) =r cos G xi r sin € Xo + R (w cos O v sin 0)
eee(o) =0 = EO¢(°)
c]¢; ) 362
k¢¢(o) =0 = k@¢(o)
Local displacements v and w are related through the inextersibility
nypothesis
A
w o= 55 (5)

2.3 Shape functions - S+<rain energy

Following a displacemerzs-type method, the normal displacerent w is
expanded in Fourier serie, =z coefficients of which tecome the rew unknowns.
Tor sake of simplicity, onl: the even terms have been xept in t-e serie :

w0, ¢) = X an(v) cos 2n: + bn(¢) sin 2n0o (6)

n

The coefficients an ans bn, as well as the curva:-ure varia=ions Xi and .

can be chosen linear on the eglement. In the following, they will be taken as

constant for sake of clarity' Strains can be written ir a matrir form :
€ = Bg (7)

where q is a 2n+2 sized vector of the unknowns :
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t _
q- = [%; Xo @ --- a_ b, ... bn]

and B is matrix the terms of which depend on the parameters (0, ¢, z).

By separating the global and local variables, the matrix B is expressed
in a block form :

Sop (2) Byi ¢ B2 X
] , - (8)
tog (2) 0 v Bz a

The elastic strain energy per unit length of the elbow, assuming a plane

state of stresses, is :
e

2% +;
_1 E 2 2
U—2 J J 3 [€¢¢+€00+2V€66 sw,] rdGdz (9)

2
where E is Young's modulus and v Poisson's ratio, or :

U=%IthtDBqu=%thq (10)
S
where D is the Hooke matrix and K is the stiffness matrix of the elbow.

2.4 Condensation of the local unknowns

The elbow is loaded by inplane and out-of-plane moments Mi and Mo. Their
work can be written

- = (xtayt x (Mo =4t
We =My Xy +MJ X, = (X1a)" x (-5-) =q F (11)

The minimization of the total potential energy of the elbow leads to a
linear system :

[}
Kg = F i.e. K11 : K12 X M
------- o————— ——— = -— (12)
K2l ! K22 a 0

In fact, owing to the orthogonality of the trigonometric shape functions,
the inplane bending and out-of-plane bending equations are uncoupled and the
associated stiffness coefficients are identical.

In order to come back to a global stress-strain law for the elbow,
between the moment and the curvature variation, the local parameters a are

condensed :
-1
a = = K22 K21 X which gives
- - -1 = EL
Moo= (Kpy = Kjy Kyp Kpy) X = 5 X (13)

where I is the moment of inertia of the cross section and k is the well known
flexibility factor which accounts for the increased flexibility of the elbow
7hen compared with a straight pipe of the same characteristics.
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3. Element formulation in plasticity
3.1 State of the problem

Due to an increasing loading, plastic areas appear across the wall
thickness, thus modifying the linear distribution of stresses tnd strains. The
non-linearity of the problem leads to an iterative system of the following
form [13-14]

K Aq;

AF + Apli’ (14)

where AF is the load increment, Aq is the unknown displacement increment and

K is the elastic stiffness matrix. The problem consists in the determination
of the equilibrating forces AFE due to plasticity. It requires the calculation
of the serie coefficients a, bn at iteration i, thus supplying an accurate
estimate of the flexibility factor taking account of the state of plasticity.
A similar technique is used for creep problems.

Strains and stresses are determined at some points regularly distributed
all over the cross section, see fig. 3,and inelastic strains are computed wher
criteria are met, assuming a plane state of stresses. Then numerical integra-
tior is performed over the cross section, leading to the various ratrices.

3.2 Incremental equatio.is

00

Starting from an equilibrium state of stresses, o° 0’

Y the strain energy

increment can be written :

Ae
AU = j (J G de) a4v (15)
\") (o]

where Ac s the total strain increment.

Assuming a linear variation of the strain increment on the step, and

noting AP for the plastic strain increment, it comes
AU =j sqt 8% b B Aq av - j aqt BY (D 4¢P - ) av (16)
v v

i.e., after integration :
w =1 aq" K 8q - ag"° (aFP - F°) (17)

The external work increment is :

t, = aqt (F° + 4F) (18)

The minimization of the total potential energy on the increment leads to
a system which can be partitionned into :

s P
Kll : Kl2 AX AM Am
""" ‘e == = == + "5 (19)
K21 : K22 Aa 0 AE

The Aa unknows are condensed as before :
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-1 [C P
ha = K, [ Ky, 8X + afP)

- -1 - p
(K11 K12 Kzz KZI) A = AM + AM (2C)
wri P _ - -1 P
with AM AmP K12 K22 Af

Thus, the formulation is identical to the one used in a classical beam
program.

3.3 Thermal gradient loads

The previous formulation enables accounting for temperature gradients
across the pipe wall thickness. Indeed, if the temperature distribution is
knownat each integration point, the corresponding Duhamel forces can be
computed :

Apth = J B D Acth gv’ (21)
v

th are the thermal strain variations.

where Ae
Besides, the temperature variation causes a mean circomferential strain
of the pipe, which 1is given by :

_ ~th —pP — — th —P
00 = AE@O - AcOO -V [Aeww - Aa¢¢ - Leww] (22)

where the bar denotes a mean value over the section S :

o =1
AE@O =3 .[ AEOO ds
S

This additional strain must be accounted for in the calculation of the

stresses.

Ae

4, Short examples

Two short examples of application are given below. An industrial applica-
tion of the method is presented in another paper [15].

4.1 Limit load of elbows
The limit moment has been calculated for different elbows made of.elastic
perfectly plastic material, with the following characteristics :

r=300mm, R=900mm, e =110 mm A=10.1
20 mm 0.2
40 mm 0.4
where A is the characteristic parameter of the elbow, i.e. :

y = &R

R2

Young's modulus and yield stress are :

E = 20,000 Kgf/mm> , Sy = 20 kgf/mm2
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Figure 4a shows the variation of the ratio between the limit moment My

of the elbow and the yield moment My for which Sy is reached in the pipe.
Figure 4b shows the variation of the ratio between the limit moment ML
and the limit moment MLS of a straight pipe of the same characteristics.
The results are in quite good agreement with the upper bound as calcula-
ted by SPENCE [16 ), using a creep law ¢ = B 6" with n + .

4.2 In plane bendirg of an elbow in the creep regime

This example is taken from reference ({17 ] : An elbow with characteris- '
tics : R=3r and A = 0.1 or 0.2, is loaded by a constant in plane bending
moment. The tensile strength curve is shown on fig. 5. The following creep
law has been adopted :

o3 n

€ =B O 12

with n=5 and B = 6,026.10
A sector of 90° was studied using 6 elements, with 3 terms in the Fourier

serie,
: w=w
Figure 6 shows the ratio

where w is the end rotation and Wo is the
end rotation obtained for the el8stic limit moment My taken as initial load.
It may be nuticed that the stationary rotation rate is in good agreement.
Figure 7 shows the inelast.c flexibility factor calculated as the ratio
between stationary rotation rate of the bend and that of a straight pipe of
same characteristics,

Figure 8 shows the circumferential stress factor

o
%
Sg = Or at the initial and stationary states.
Y% 1
3. Conclusion

A finite element for inelastic piping analysis has been presented, which
enaktles accounting for local effects like thermal gradients and supplies local
states of stresses and strains, while keeping all the advantages of a classi-
cal ceam type program (easy to use, simple boundary cond.tions, cost effecti-
veness). Thanks to the local description of the cross section, geometrical
non-linearity due to inertia modification can be introduced together with
raterial non-linearity. The element can also be degeneratei into a straight
pipe element.
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