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1. Introduction 

In order to chec> the compliance with design codes criteria and safety 
requirements, comple .e piping systems of Liquid Metal Fast Breeder Reactors 
(LMFBR) must be analysed using finite elements programs. The difficulty asso
ciated with pipings and particularly with elbows is that these structural ele
ments behave simultaneously like beams and shells. A large review of the 
simplified methods proposed to cope with this problem, has been done by BOYLE 
and SPENCE [ 1 ]. The principal ones are the following two : 
- The "primary methods" based on beam-type programs I 2 ] using relevant flexi
bility factors derived from analytical works [3], I 4 ]. They are economical 
but supply only global informations. Even if a subsequent determination of 
local strains is possible [ 2 ], [ 5 ], they cannot account for local effects 
like thermal gradients across the thickness of the pipe. 

- The "secondary methods" based on shell-type programs, which differ in the 
choice of discretization of the local displacements fields I 6-9 ]. In most of 
them, displacements are expanded in Fourier series in the circumferential 
direction and polynomials in the longitudinal direction. Such methods are 
rather expensive due to the great number of unknowns and are therefore 
lirpited to a few high-stressed components. In compensation, they supply 
local stresses and strains concentrations and can be used with various 
loadings. 

The best suited method for design purposes should combine the cost-
effectiveness ofa primary method with the accuracy of a secondary method. This 
compromise has b<aen attempted by developing a special elbow element, in the 
frame of the beam program TEDEL [ 10 ] of the CEASEMT system [ 11 ]. 

In this program, the Von Mises'criterion together will Hi.ii»s principle 
are assumed, while general creep laws can be implemented. 

2. Element formulation in elasticity 
2.I Geometry and hypothesis 
The geometry of a typical elbow is shown on fig. 1. The elbow is charac

terized by its mean surface which is defined by two constant curvature radii 
and two angular parameters 0 (circumferential) and ip/longitudinal} A third 
parameter z varies across the thickness e. 

The Love-Kirchhoff hypothesis for thin shells (e << r) are assumed. 
Therefore, local strains at any point M(0, v, z) can be written : 
^ 3 ( z ) = c a 3 ( o ) + z k a 8 ( o ) ( 1 ) 

where ^ag(o) et k g(o) are respectively the strain tensor and the curvature 
variation t B nsor of the mean surface. 

Additional hypothesis first proposed by Von KARMAN [ 3 ] are assumed : 
- plane sections remain plane 
- e-.(o) = 0 ("inextensibility" hypothesis) 
" W z ) " e„/°> V z 

- c-,(z) is negligible 
- y 

- r is small in front of R. 
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2.2 Strains - displacements relations 
The displacements field of a shell is classically characterized by local 

displacements (u, v, w) of the mean surface, as shown on fig. 2. 
The following strains-displacements relations are derived from Love-

Kirchhoff assumptions ( 12 ]. 
, . 1 ,3v A . 

E 0 0 ( o ) = x (36 + w ) 

cW{o) = Rlf ( l + W C O S 9 " V S i n 0 ) 

o / » 1 3u , 1 , :V , ~ . 
2 e 0 * ( o ) " r 30 + R"n (T7 + u s l n 0 ) 

v /«\ - 1 flZ 92Wx 
K 0 0 * ° ' ~ 2 *30 " ~a2} 

r do ~ 
v f«\ - 1 , „ „ n S u ^ w, , s i n 0 ,3w . 
k w ( o ) - ^ 2 ( c o s G 77 ~ T^2> + F T T H ( 30 ' v ) 

o i- /~\ 1 , - 3v _ 3 2 w , 3u „ , , 
2 k 0 * > ( o ) = F R l ( 2 3^ - 2 309* + 3Q cos 0 - u s i n ,) 

+ 1 f ^ «« ~ e - |f) (2) 
where n = 1 +•§ cos 0 

According to the first KARMAN's hypothesis, the local displacement u car. 
be expressed in terms of the global in-plane and out-of-plane variations in 
curvature X i and X_ : 

|H = r cos 0 X. - r sir. I Xrt (3) 
9* l O 
The other hypothesis lead to the following strains-displacements relations: 
£.,.(0) = r cos 6 X A - r sin 0 x Q + ^ (w cos 0 - v sin 0) 
<W°> = ° = £ 0* ( o > 

1 &l (4) 
k00<°> " JS < f j + W ) 

k

w (o) - 0 - k Q ^ (o) 
Local displacements v and w are related through the inexter.sibility 

hypothesis : 
w = - |f (5) 
2.3 Shape functions - Strain energy 
Following a displacements-type method, the normal displace.-.ent w is 

expanded in Fourier série, -he coefficients of which become the r.ew unknowns. 
For sake of simplicity, only the even terms have been kept in the série : 

w(0, <p) = X a
n(^) c o s -— + b

n
( ^ ) s i n 2 n 0 (6) 

n 
The coefficients a„ and b . as v/ell as the curvature varia-ions X. and '•. 

n n 1 
can be chosen linear on the element. In the following, they will be taken as 
constant for sake of clarity drains can be written in a matrix form : 

e = Bq (7) 
where q is a 2n+2 sized vector of the unknowns : 
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q 1 = [X. X a. ... a b, ... b ] i o 1 n 1 n 
and B is matrix the terms of which depend on the parameters (0, <p, z) . 

By separating the global and local variables, the matrix B is expressed 
in a block form : 

B12 
(8) 

B22 
The elastic strain energy per unit length of the elbov;, assuming a plane 

state of stresses, is : 

2 

where E is Young's modulus and v Poisson's ratio, or : 

rdOdz (9) 

-»I q* Bt D B q dS = \ qt K q (10) 
'S 

where D is the Hooke matrix and K is the stiffness matrix of the elbow. 

2.4 Condensation of the local unknowns 
The elbow is loaded by inplane and out-of-plane moments M. and M . Their 

work can be written : 
W e = M±Xi + M 0 X 0 = (X • a) f c x (-g-) = qt F (11) 

The minimization of the total potential energy of the elbow leads to a 
linear system : 

Kq = F i.e. / K n ! K 1 2 1_ , L —, = j — i ( 1 2 ) 
K21 ! K22 

In fact, owing to the orthogonality of the trigonometric shape functions, 
the inplane bending and out-of-plane bending equations are uncoupled and the 
associated stiffness coefficients are identical. 

In order to come back to a global stress-strain law for the elbow, 
between the moment and the curvature variation, the local parameters a are 
condensed : 

a = - K 2 2 K 2 1 X , which gives 
— 1 FT 

M = ( K u - K l 2 K 2 2 K 2 1 ) X - Ç X (13) 
where I is the moment of inertia of the cross section and k is the well known 
flexibility factor v/hich accounts for the increased flexibility of the elbov/ 
when compared v/ith a straight pipe of the same characteristics. 
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3. Element formulation in plasticity 

•3.1 State of the problem 
Due to an increasing loading, plastic areas appear across the wall 

thickness, thus modifying the linear distribution of stresses end strains. The 
non-linearity of the problem leads to an iterative system of the following 
form I 13-14 ] : 

K Aq i + 1 = AF + AFJ (14) 
r 

where AF is the load increment, Aq is the unknown displacement increment and 
K is the elastic stiffness matrix. The problem consists in the determination 
of the equilibrating forces AF P due to plasticity. It requires the calculation 
of the série coefficients a , b at iteration i, thus supplying an accurate 
estimate of the flexibility factor taking account of the state of plasticity. 
A similar technique is used for creep problems. 

Strains and stresses are determined at some points regularly distributed 
all over the cross section, see fig. 3,and inelastic strains are computed wher 
criteria are met, assuming a plane state of stresses. Then numerical intégra
tion is performed over the cross section, leading to the various natrices. 

3.2 Incremental equations 
Starting from an equilibrium state of stresses, o Q, a , the strain energy 

increment can be v/ritten : 
•Ae • H AU = I ( I a de) dV (15) 

where Ac s the total strain increment. 
Assuming a linear variation of the strain increment on the step, and 

noting Ae p for the plastic strain increment, it comes : 

AU = I Aqfc Bfc D B Aq dV - I Aqfc B t (D Ae P - 0°) dV (16) = I Aqfc Bfc D B Aq dV - 1 Aqfc B t (D 
V •'V 

i.e., after integration : 

AU = -| Aqfc K Aq - Aqfc (AFP - F°) (17) 

The external work increment is : 
AWe = Aqfc (F° + AF) (18) 
The minimization of the total potential energy on the increment leads to 

a system which can be partitionned into : 
K l l 

K 2 1 

K 1 2 \ / A X \ / A M \ / A m P \ 
+ I — - ) (19) 

K 2 2 / \ A a / \ 0 / \ A f P / 

The Aa unknovs a re condensed as before : 
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Aa = K~2 [- K 2 1 AX + AfPj 

(K u - K l 2 K~2 K 2 1 ) AX » AM + AM P (2C) 

with AM P = ài(P - K l 2 K~ 2 Af P 

Thus, the formulation is identical to the one used in a classical beam 
program. 

3.3 Thermal gradient loads 
The previous formulation enables accounting for temperature gradients 

across the pipe wall thickness. Indeed, if the temperature distribution is 
known at each integration point, the corresponding Duhamel forces can be 
computed : 

• I B t ° A F t h = I B f c D Ae**1 dV (21) 
V 

where Ae are the thermal strain variations, 
Besides, the temperature variation causes a mean cirromferential strain 

of the pipe, which is given by : 
A~ e00 " A" eeS - A _ C00 - V K , " ^ ~ ̂ J " 2 ) 

where the bar denotes a mean value over the section S : 

-»I û £ee = s A eQ0 d s 

;s 
This additional strain must be accounted for in the calculation of the 

stresses. 

4. Short examples 
Two short examples of application are given below. An industrial applica

tion of the method is presented in another paper I 15 ]. 

4.1 Limit load of elbows 
The limit moment has been calculated for different elbows made of elastic 

perfectly plastic material, with the following characteristics : 
r = 300 mm, R = 900 mm, e = 10 mm X - 0.1 

20 mm 0.2 
40 mm 0.4 

where X is the characteristic parameter of the elbow, i.e. : 

\ e R 

Young's modulus and yield stress are : 

E « 20,000 Kgf/mm2 , Sy = 20 kgf/mm2 
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Figure 4a shows the variation of the ratio between the limit moment M L 

of the elbow and the yield moment My for which Sy is reached in the pipe. 
Figure 4& shows the variation of the ratio between the limit moment M^ 

and the limit moment M^- of a straight pipe of the same characteristics. 
The results are in quite good agreement with the upper bound as calcula

ted by SPENCE [ 16 1, using a creep law ê = B o n with n •* ». 

4.2 In plane bending of an elbow in the creep regime 
This example is taken from reference [ 17 1 : An elbov; with characteris- ' 

tics : R = 3r and X = 0.1 or 0.2, is loaded by a constant in plane bending 
moment. The tensile strength curve is shown on fig. 5. The following creep 
lav; has been adopted : 

e c = B a11 with n = 5 and B = 6,026.10~12 

A sector of 90° was studied using 6 elements, with 3 terms in the Fourier 
série. 

Figure 6 shows the ratio where u is the end rotation and w is the 
end rotation obtained for the elastic limit moment M taken as initial load. 

It may be noticed that the stationary rotation rate is in good agreement. 
Figure 7 shows the inelastic flexibility factor calculated as the ratio 

between stationary rotation rate of the bend and that of a straight pipe of 
same characteristics. 

Figure 8 shows the circumferential stress factor 
* a Q 

y /> = 
G M r 

Mo Ï 
Conclusion 

at thé initial and stationary states. 

A finite element for inelastic piping analysis has been presented, which 
enables accounting for local effects like thermal gradients and supplies local 
states of stresses and strains, while keeping all the advantages of a classi
cal beam type program (easy to use, simple boundary conditions, cost effecti
veness) . Thanks to the local description of the cross section, geometrical 
non-linearity due to inertia modification can be introduced together with 
material non-linearity. The element can also be degenerated into a straight 
pipe element. 
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