
T 4 £ 
THE DEHSITy OF STATES FOR AlHOST PERIODIC SCHRP"INGER OPERATORS 

AMD THE FREQUENCY MODULE ; A COUNT?i-FXAHPLE 

J. BELUSSARD » and E. SCOPPOOA «* 

He exhibit an example of a onc-dincnsional discrete 

Schrodinger with an almost periodic potential for 

which the step of the density of states do no„ belong 

to the frequency module. This example is suggested 

by the K-theory [3] -
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INTRODUCTION 

The problem of investigating the spectrum of quantum 

aJmost periodic hamiltonian operators, increased very recentJy in 

importance due to new informations obtained by several authors, 

Among these progresses, the integrated density of sta

tes Tfe [E] has been interpreted in the algebraic framework 

19» 3) : the trace of the spectral measure associated with the ran

dom hamiltonian as an element cf the canonical associated von 

Neuniunn algebra j~2j . If the energy belongs to the resolvent set, 

where t&{£) is locally constant, the density of states takes 

values in the K0-group (precisely in its image by the trace) of 

the canonical C*-algebra constructed form the quasi periodic ha-

railtonian. 

In the case of a one-dimensional Schrodinger operator 

with an almost periodic potential V , this group coïncides with 

the frequency module of V [6,3]. In this short note, we exhibit 

an example of one-dimensional Schrodinger operator with a "discon

tinuous quasi-periodic" potential for which the K-group is diffe

rent from the frequenc module, and we show that the values of t0c) 

at the steps are really not in the frequency module. 

To be precise we deal with an hamiltonian (."»•') tT 

acting on JL%QB) by 

where \TÉ *6 C T ) and 0 is an irrational number. The 

spectral density in this case is defined by 
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It has been proven that it t€) exists j it is in

dependent of T L Ê T S J R / Z , and it is a continuous increas

ing function of E f9J* Moreover, it is locally constant on the 

resolvent set of H which in this case is independent of x . 

If 9 w * s rationnai, H would be periodic, and U*%lB) 

could be interpreted as the BJ.och wave vector, whereas C^ltT'ffc) 

would give the dispersion law for the energy as the function of 

the frequency. As it is well known a gap in the energy would 

occurs eventually if It belongs to the reciprocal lattice, which 

would be here £.*- BH . 

If now 0 is irrationnal, the sane kind of results 

occurs : the eventual gaps appears only if 1{,(£)£ X+B2L flfat]. 

This result could be heuristically obtained by a perturbative ar

gument following the line of the periodic situation. In the con

tinuous analog of this model, the set 2.+ & 2 L is the frequency 

module of V , i.e. the group of frequencies in 1R. appearing 

in the Fourier expansion of V . Then, the perturbative arguments 

can be sharpened to prove this results |_6J. In j 3J it 

has been related to the K-theory of the C^-algebra attached 

to H = IH*J T-
 l n t n e example 1.1 this C*-algebra is (J[g 

first described in |_6j, and for which it has been proven that (_4,7j 

Kta„ )= 2 , + e z . <i.3) 

If now we replace V by a function on T which has 

some points of discontinuity.the K-theory is no longer equal to 

2 * 0 2 , because the hamiltonian 1.1 does belong to d# 

In this paper we illustrate this fact by the case 

V6c)= <X Y ,_ (*) 3>°, « T (i.4) 
j-e,oj 

where A denotes the characteristic function of I , and Q 
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satifies 

R.I.) 1, 6 , 6 ' , are rationnally independent numbers, satisfying 

O < 0 - E < B ' < 8 e d 

for a small enough £ (section II)-

Theorem 1 

The density of states for the almost periodic operator on 

where 6^0' satisfy R.I., admits steps at the values m*n0*-pP' 

! m,»y p * 2 & , where p jt 0 provided ^ is big enough. 

The proof of this theorem will be done by hand without 

reference to the CK-algebraic approach. The Section II is devoted 

to some facts on number theory , the Section III concerns the 

proof of the theorem. 
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II. CODINC T BÏ AW IRRAT1QNNAL ROTATION 

We need first to recall some well known facts about the 

continued fraction expansion of an irrationnal number I 5J. 

•.it D be an irrationna] number in ]0,«[ . We then 

define Q ^ by 

<*i = [%] (II.1) 

where [ x j denotes the biggest integer dominated by x • We put 

8 1 = 6 " - CL± ( H . 2 ) 

and we can define recursively 0.2r t^;»-

Now we precise the assumption R.I. . 

R.I.) -1-0.©' are rationnaly independent and 

< G - e a , e 2 < 6' <e (ii. 3) 

In what follows we shall denote £a,b£ the set of points of Its 

IR/Z.- S^ , between a and b when we run along the circle in 

the anticlockwise direction. 

Lemma II *1 

Let t be a p o i n t i n [.<>;©£, then smallest in teger - t f x i ^ o 

such that CCrf-vB belongs to ^Pf&f\_ i s : 

i) lM-. OI?1 x fii if x e l , = [o , e© 4- l+Wl 

2) A W = 2.0.+4. = l* if x c i J = [ee, -e*e', ee, [ 

3) X.WM o , ^ » if x fel3= C B 6 i / e T 
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Proof 1) Let us assume X.&X, . Since ©>© we get 
X+.£d#[o,e'C as fa- as A ^ i i<^, for 0<l&$ O^BKI and 

•X.+ Ï64 96+ -(.6-B')-HX,B4 d - (©-©') < A (U-4) 

due to 

a.±& * e e 4 = i (1J.5) 

Since (everything is given modulo 1) 

o< tp,+t)e « x+a.fi+e< e-e©1*-ee,-e+e,=8' <n.6> 

which proves 

j l l j r d^ r i (11.7) 

2) If % & X & , we get in much the same way for - i i i i a ^ 

since t < 0fî , 

Thus -EWia^+i • However since Tu felx 

e'.ee^-e*e' + (ekl«)S-^"x-+M)0-l < 0 (".-9) 

Therefore . In order to come back to the interval 
[OyG'C we need to turn again of ajj at least. For i f apSfttZQ, 
we get 

x+ 4ô-l<^-a0e $ a,6 < 1 (ii.io) 

On the other hand, for 4»2«i+4. ) w e obtain 
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o< e-efii ^^ + l?o,+os-a < 6+046-1 < 6' an!) 

thus 

i ( 0 = 2 0 | t 4 . (11.u) 

3) At l a s t i f - X . e l 4 and © * I « Oj -1 

BB4< *+*e < e' + (^.00 = ©'-©+ 4-es,<4. m.13) 

whereas 

«^•x + ûiâ-4 < e'-efi,<e' m.io 

Thus 

. * ( * ) * « * . (II.IS) 

Definition II.2 

Let A be a subset of St. The density of A is the number (if 

it exists) 

d(A)= £m w [2N-ti.)" a>ré[An[-N,tf]) 

Ke get the following r e s u l t . 

Lemma I I . 3 

Let I be an in te rva l of T and 0 be i r ra t ionna] in Jo.lf-

If 

N | r ) s | i n j Z i -m0 h^d±) £l] ( 1 1 . ) 6 ) 

the densi ty of N(I) ex i s t s and i s given by 
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d(H(») - |l| (11.17) 

(where 1- | denotes the Lebesgue measure). 

Proof : We define by * the Lebesgue measure on Y . by "^V 
the probability measure . 

/.Jflz^mT'^ Sue) ftWT) (n.18) 
If •fk.)=CK$-mm,), clear]y we find by hand that t„ (f) "» dff) 
for N-»eo . Since •Ĉ - and C are probability measures, a 
3-£ argument shows that this is true for any f in £(TJ< 

Now we see easily that 

d(M(l))=- -thn ^ ( ^ j ) (II.19) 

Since 1 is an interval there is an increasing sequence [fn ) 
and a decreasing sequence 13»}»» in *6flT) such that 

. s u P *B W « "Xx to = *»f $ > > x * 9 I ( I I ' 2 0 ) 

n 
This implies 

*lf.) « W *» W < ^ ^l) « *fj.l (11,21) 

Taking the supremum of the l.h.s. and the infimum of the r.h.s., 
the dominated convergence theorem shows that the limit in (11.19) 
exists and is equal to «(?(r)r 11] • 

An immediate consequence is : 
Corollary I I .4 

Uor 3L £ T we put N t U } = {*r>t"Z j m S - x e l i j . Then 
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i) d(Nito)* l*J 

ii) Z d (WtW) = B ' 

Corollary 11.5 

If \.ikth\U7Z, j 3 m tN";!») , i n < ( < i S j , where in denotes 
the smallest integer such that m < m and im © - -x. £ Co,0'£ / 
then : 

i) d(LiW)s Wi-1) Hi I 

"J 2 dCuw) = i -e* 

Proof- : By Lemma II. 1, if m e (JfW then -rn-Trir-C^ . Thus 
for each m S N;bl) there are -t^- d points in Lj ('xj which 
proves that 

dtutaU C*-i) <i(w.-hj)s y . - l j l j (11-21) 

ii) follows from the fact that a partition 
of 2.- (J M/ht) , and of the Corollary II.4, ii). 
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I I I . COHPUTIHG THE DENSITY OF STATES 

We come back now to the random operator H(jl)s L*T%1«VJ^.*T 
defined by eq.(l.'S). We see easily that H_Wi> -I ' l l . We 
claim that HIS) converges in the norm resolvent sense if H T«o 
For ! 

Lemma II1.1 

Let H be a positive bounded operator on the Hilbert space *h* 

and P be a projection. Then 

exists in the norm sense. 

H) in?.-)- (Hrfi^Br'lU r 1 (-u UH*<JII)S 

i i i ) V[m)2a 7 Rfr») - « and the restriction of 
1?(-> to the subspace UTfcY is ( {fi-2)H&-P) » fl)"1 

Proof : We denote by "Rfr) the operator ( H t f l + ^ 2 ) 
Then TH"S) i s decreasing in 1. . If 1 \ 0 we have 

But we have, since 'Rfj.^'fl, 

l !£R(x- ) l l= «GPWH+il)'RI* ,;-lHt1l)R{»:0!l^l-*ttHTlllJ u i i . 2 ) 

This gives i) and i i ) . 

From (III.2). if x —a> 0, we get 

5 R W « Î W P s o - , ">?(=.).(.«-2)-RWfcO-£) ( m . 3 ) 
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Now let cp belon,""! to "Jv ( then for any 3 i o : 

\fis}f • u wtH*«*afl&-B)y = v(50(H+u)(p-p;y ( m . 4 ) 

If S-"&"« we get together with (111.3) 

($-Pjcy » 1?l..)(«-J)[H + *)Jyj-Wcf (m.S) 

which is the end of the Lemma. 

If now H is replaced by ^ ^Ho^-i » with 

H„^(-nî= ^ l w « + ̂ (-»-i> (in .6) 

and P by X ]•"$-*) we get 

Corollary III.2 

If «̂  Tco ^ f-1 ^"N converges in the norm resolvent sense to 

the Laplace operator A-2»=-H^ with Pirichlet boundary con

dition on 

The spectrum of H is very simple, due tn: 

Lemma III.3 

i) The restriction of H ^ to X l ( Z - N " W ) splits into 

where "•$* r̂* is the Laplace operator £1-3, on the in

terval [a,b3 with aerr boundary conditions at ^a\ and \b\ 

2) ^ 3m, A T * s «nitarily equivalent to •^n 0É-t *** 

m Ê N. (K) . 

(111.8) 
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3) The spectrum of H ^ (restricted to <£*(Z- N(*>) ) Is 

(I1I.0) 

Proof : 1) follows from the fact that Z-N(x) is partitionned 

into U 3 m > n H i since by Leiwna II1.1, "Ri») leaves 

JL [ S ~ M p O j invariant and that the Laplace operator has only « 

nearest neighbours interaction, we get the decomposition (III.S). 

2) is eJementary. 

3) comes from the explicit calculation of the spec-

trum of H j à W l = 

<r(H^ c l)= |2.Cos(feTr(b-aV) ; t. i,2,.« ,t-«-d ]. (m.io) 

We define now 

The reduced density of states for rt^ will be 

The reduced density of state consists formally in taking the den

sity of states of H » when we extend it on X? (Nhrt) by the 

operator equal to 4 «o m 

Proposition III.4 

The reduced density of states is given by 
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%, le) = \[e) [ue'- M*)* VeHP-tf> +*., le) {»'-*.* qtG) 

and O ^ ^ f f ) *? 4-B' (111.13) 

Proof : Instead of picking the interval £-N,N1 in (111.12), 

we can pick any interval of the form fm,m'3 with m,m' 6 N(x) 
and m'-rn -*'ta . Then, the number of eigenvalues of 

H * r"J* {fc.->TMn Tin i T»']) smaller than E, is equal to the 
number of such eigenvalues for ffi H Ï « f j which 

».»* W(%) 
is equal to 

(ÎÏW A (111.14) 

where C ^ ' i 111 c o u n t s t n e number of time an m" belonging 

to Ni (x) occurs in Jm.m'J fj N(x) . If m*-m -> PO the 

ratio di t">-«dconverges to the density of N (x). By Corollary 

II.4, and Lemma II.1, one can easily compute this density which 

gives (111.13) if we take into account the identity 

ee 4» 4 -a»© (in.is) 

ÏI52Ï SÎ_î-55r£!î_i ! W e ,' e n<' t* by r the smallest distance 
between two eigenvalues of " R W : iim ^H7Jfl)+3r' 

By Lemma I1I-3, we get 

r.Inf^Sî'-^n; Bt/E^&U)o^] } ( I l l l l 6; 

because JO J is an eigenvalue of *i?f») He recall that 

04, A 4 4 (111.17) 
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Thus, due to the Lemma III.l, with H = ̂  , and Ta /J- _„ fjlO-*-) 

wc get 

B(Kw*5r -fiwiusfc^ 1

 ( m.,8) 
If we define 3. such that 5tST »r/l) , the spectrum of 

•R (îO for ^i'i, is certainly contained into the disconnected 

intervals EÎ.-P j V + £ J vhere a.. belongs to the cigen-

vrlues of 1?fo • This choice of *' t%m says that each of these 

intervals is disconnected from each other. The number of them 

is equal to 

-l 1-4>V*+-ti-4+4" 4di " (in.19) 

due to the eigenvalue Jo} for "KM . 

This implies the existence of 4a< disconnected inter

val containing the spectrum of H-W- Among then 4^ -1 are 

closed to the points of Sl««) . The last one is at a distance 

bigger than 7*/it -3 . Since the norm of H x frl is dominated 

by ^+2. > it is certainly contained in Jp^-Î/ >f2j. 

Thus, there is a sequence ( £*** s 3/«-3) 

E | l > W E ; l > ) < C l > ' ) <« I r - ' ^ i - l (in.20) 

such that 
«ia,-l 

O-(H»W) e l l &W;w]o&4v*«**]•«&) (m.21) 

How if ££2fo) the density of states U ^ E ) of H^tS) 

is locally constant and independent of S £ ^ 0 (see, fh] ) i 

therefore it is given by the Proposition 111.4» which is precisely 

of the form 

•u,,lE)= m+ n S + p S ' » i n j p € 2 . (111.1:2) 
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In order to prove that the last term is effectively pre

sent, we remark that if 

C-. <£< P /^ S 

(111.23) 

then 

%leU 4-e' (111.24) 

due to the Proposition 111.4 

REMARKS 

1) The other part of the spectrum of H x f a ) have not boon in

vestigated here. A nowhere dense spectrum is expected. If "à$oo 

. it is true that H^fB) have no eigenvalue of infinite multi

plicity. Thus E"h* It [Bj is a continuous ii.creasing function. 

2) From heuristic arguments this SchrBc'lnger operator is expected 

to have a pure point spectrum as far as A>oLlOj, at least 

if 0 and 8 ' are chosen in a right way (for instance • 

they have good diophantine properties). 
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