FR#201065 él\/ RS_CFT__ 3,{_{)_/{3/[;1_

| , T4

—
THE DENSITY OF STATES FOR ALMOST PERIODIC SCHRO™NINGER OPERATORS
AND THE FREQUENCY MODULE : A COUNTE i-EXAMPLE

J. BELLISSARD # and E. SCOPPOLLA" #*

ABSTRACT : We exhibit an le of a one-di

1 discrete
Schridinger with an almost periodic poteatial for
which the steps of the density of states do no. belong
to the frequency module. This example is suggested
by the K-theory [J] .
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INTRODUCTION

The problem of investijating the spectrum of gquantum
almost periodic hamiltonian operators, increased very recently in
imdortance due to new informations obtained by several authors.

Among these prdg‘resses, the integrated density of sta-
tes ﬂ{E) has been interpreted in the algebraic framework
[9,3] : the trace of the spectral measure associated with the ran-
dorm. hamiltonian as an element cf the cﬁnonica] associated von
Neumuan algebra [2] . If the energy belongs to the resolvent set,
vhere 1‘L[E) is locally constant, the density of states takes
values in the K -group (precisely in its image by the trace) of
the canonical C#-algebra constructed form the quasi periodic ha-

miltonian.

In the case of a one-dimensional Schrédinger operator
with an almost periodic potential V , this group coincides with
the freguency module of V [6,3}. In this short npte, we exhibit
an example of one-dimensional Schridinger operator with a "discon-
tinuous quasi-periodic" potential for which the K-group is diffe-
rent from the frequenc module, and we show that the values of fg[:?}
at the steps are really not in the frequency module.

To be precise we deal with an hamiltonian (Hl)‘ «F
acting on .21‘(2) by '

Hop e i) s + Vie-n8d ) -

where Ve (T and ©  is an irrational number. The
spectral density in this case is defined by

11[E) = :li'ru LZN',‘)" card &u‘rn\n\nﬂ of H, ‘:'.lf'".") < E} (1.2)
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1t has been proven that L LE) exists ¢ it is in-
dependent of 2 eT= R/Z , and it is a continuous increas-
ing function of E [9]. Moreover, it is locally constant on the
resolvent set of H,_ ,which in this case is independent of x .

If O was rationnal, H would be periodic, and 'u"‘(E)
could be interpreted as the Bloch wave vector, whereas E=44'(f&)
would give the dispersion law for the energy as the function of
the frequency. As it is well known a gap in the energy would
occurs eventually if £ belongs to the reciprocal lattice, which
would be here Z+ OZ .

If now B is irrationnal, the same kind of results
occurs : the eventual gaps appears only if H(E)€E zd-Bano,iJ.
This result could be heuristically obtained by a perturbative ar-
gument following the line of the periodic situation. 1n the con-
tinuous analog of this model, the set Z+0 Z  is the frequency
module of V , i.e. the group of frequencies in IR appearing
in the Fourier expansion of V . Then, the perturbative arguments
can be sharpened to prove this results [6] Iin [3] it
has been related to the K-theory of the Ci#-algebra attached
to H= [H*):ut' in the example I.1 this C*-algebra is ({g '
first described in| 8|, and for which it has been proven that [4,7]

H.(aa)z: Z +04 (1.3)

If now we replace V by a function on T which has
some points of discontinuity.the K-theory is no longer equal to
Z+OZ , because the hamiltonian I.1 does bejong to (T .
In this paper we illustrate this fact by the case

V)= 2 'Xj-e‘,a] () Mo, eT (.2)

- . ¢
where XI denotes the characteristic function of I , and @
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satifies
R.I.) 1,0,8' , ave rationnally independent numbers, satisfying

0<0-£<B8'¢Bc4

for a small enough & (section I1).

Theorem ]

The density of states for the almost periodic operator on 'Ll(z)

H o plnd= plneid + imed +- 2 Xy 0B fln) 1)

where 9,9' satisfy R.I., admits steps at the values vm-neo-FD'
mm,p € Z , where p #£0 provided A is big emough.

The proof of this theorem will be done by hand without
reference to the C®-algebraic approach. The Section 11 is devoted
to some facts on number theory ; the Section 111 concerns the
proof of the theorem.
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II. CODING 'I" _ BY AN IRRATIONNAL ROTATION

We neced first to recall some well known facts about the
continued fraction expansion of an irrationnal number [5]

o2t B  be an irratiomnal number in ]0,![ . We then

define Q, by
a, = [4/91] (11.1)
vwhere ['.r.] denotes the biggest integer dominated by % . We put
6, = e*. (=9 (11.2)
and we can define recursively a,, ez,...

Now we precise the assumption R.I. .

R.I1.) 4_‘819' are rationnaly independent and
8-666,< 8'<® (131.3)

In what follows we shall denote [a,b{ the set of points of T=
Riz- S1 , between a and b when we run along the circle in

the anticlockwise direction.

Llemma I1.1

Let x be apoint in [O) 9'[, then smallest integer “!1)&0
such that x#{B belongs to [0,0°[ is :

1) ) aprd = £ it = e7T=[o,08,- 5+0'[
2) Lfx)e 2a+h=4, i €L = [66,-6+8" 00, [
3 Ll a,= A if % el3= [BB,, e’
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Praof : 1). Let us assume 1&14 . since 958’ we get

x+ 804 fo,0 as famas 4¢ Lgay) for oclOg g B<d and
2+10¢ 06, -(6-80+a8 ¢ 4-(0-6) <4 (11.4)
due to
aaé v 89, =1 (11.5)
Since (everything is given module 1} - '
o< (@ )® s x+a, 048 < 0-06, +86,-0+0'=8' (11.6)
which proves
L) = ay rd (11.7)

2) If er* , We get in much the same way for 152‘(11,
since 2 < B,

o< 2+l < 68,+ a,06=4 (11.8)
Thus 2[-4)1%4-4, . However since R &Ly -
9'.881—9-.-9’-»[9.‘9\)9-15 »+ )01 < & (11.9)

. Therefore L) #4,#4 . In order to come back to the interval

[o,e‘[ we need to turn again of a’.O at least. For = if a'o-l‘ede,

ve get
n+ £0-4¢L-a)8 5 a6 < 4 (11.10)

On the other hand, for l=2a,+4- s we obtain
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o< 6'-88 <% +20#)0-2 < B+a,0-1 < O (11.11)

thus
ded)= 20,+4 (11.12)
3) At last if wely and o< lga-1
88, ¢ %+ 20 < 8' 4 (a8 =6"-6+ 4-88, <1 (11.13)
whereas
ogn+a8-4 < O~ 08 <6 (11.14)
Thus
A=) = aq. (11.15)

Definition 11,2

Let A be a subset of & . The density of A is the number (if
it exists)

diA)= lm - (2W+4)” card (A [ax1)

We get the fellowing result.

Lemma 11.3

Let .1 be an interval of P and © be irrationnal in Jo,:[.
1f .

NII)= g'melj m0O [modl) € IB (11.16)

the density of N(I) exists and is given by
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d(N()) = hi (11.17)
(w-here \. ' denotes the Lebesgue measure).

Praof : We define by 'e the Lebesgue measure on T ) by -L”'

the probability measure .
N
2, (£)=(2n+1) ‘mz___" Flm8) fe@(T) (11.18)
11 f&)- uP@.;llm), clearly we find by hand that 8., ['F)" Lif)
for N-»o . Since N and t are probability measures, a

3E& argument shows that this is true for any f in E(T).

Now we see easily that

= i x

d(N(I) {}‘1’« -ﬁu [ ;) (11.19)
Since 1 is an interval there is an increasing sequence (_‘fn ) hz0

and a decreasing sequence (sn)nzo in “fT) such that

Csup HBO= A b= 42{‘ gal») + 49  (r.20)
n
This implies ~

e < 'lg'm_,"gf L, [)< l';"’f‘_‘,? &) < 2(3.) (11.21)

Taking the supremum of the l.h.s. and the infimum of the r.h.s.,
the dominated convergence theorem shows that the limit in (XI.19)
exists and is equal to -elXI\:- IIl .

An immediate consequence is :

Corollary ¥1.4
lFor x € T wve put Ni{")= imez‘;me-tt-l';]. Then
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i) d(N;('l))” ‘Ii'

. !

ii) 2 d(N;)= B
i24,2,3

Corollary 11.5

1f L;(ﬂ:&!ez; FmeNt)  mclerd } , where T denotes

the smallest integer such that m <M and " @-2 € fo,8'f ,

then :
i d (L) @o-1) 130
i 2 allil) = 4-0'

Proof- : By Lemma I1.1, if wme N:{l) then '7'7‘1-’"\ :-é‘- . Thus
for each meg N;\-‘_) there are 1.‘-'-4‘. points in L4- (x) which

proves that

dltit)z (4-1) dvt): &) (11.21)

ii) follows from the fact that LL4 tx) )1,4‘;.3 is a partition

of Z-U N , and of the Corcllary 11.4, ii).
[EIR 5N

CPT-81/P.1317



III. COMPUTING THE DENSITY OF STATES

We come ‘back now to the random operator H[a): U’L._()))._g'r
defined by eq.(1.5). We see easily that H_ [W)» 24 . we
claim that B( A) converges in the norm resolvent sense if 9 f-o

For :
Lemma  IJ1.1

Let H be a positive bounded operator on the Hilbert space 'hb,
and P be a projection. Then

i) ‘R(n)gglﬂ (Hﬁ‘ﬂ-l-a?)-.l exists in the norm sense.
1) BR(w) - (He0+2B)'llg 2% (44 wHe20)®

i11) R« Pa PR =0 and the restriction of

Ri=) to the subspace (2 7’5‘1 is (L‘D-P) H@'P) Oﬂ)"l

Proof : We denote by RI3)}  the operator (H +9+2P )4

Then R{A) is decreasing in Q4 . 1f A% A  ve have

WREY-RIXNW sgj;\w ll'mu)?mv)l)sg:bdx nE R o
But we have, since R{2)¢1l,

BE Rz = WEw's ) REY) - (HrDREM < 1-;IIHOﬂll (111.2)
This gives 1) and ii). ' |

From (II1.2), if x —» O, we get

PRW) 2z R Pzo = TReo)a(@-B)RI){E-2) (111.3)
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Now let (P belorss to Ty s then for any Az
@.p)(f =R fa) TH+0422]0-D)p = RIN(H+ D) O-B)g (111.4)
If A-=>® e get together with (111.3)

@-B)g = R (E-2) [H+ D) (@-2)p (111.5)
which is the end of the Lemma.

If now H is replaced by AaHo+2 , with
H,yn)= 'LH;»i) s Y int) (111.6)

and P by 'xcp’é,r[ﬁ-x) we get

Corollary 1I1.2

If fN R H_L [’.\) converges in the norm resolvent sense to
P . is
the Laplace operator A-2= H.’; with Dirichlet boundary con-

dition on

Nz {meZ ) mo-x e [oeC]

? . .
The spectrum of H_._ is very simple, due ta:
Lemma 11I1.3

i) The restriction of H_f w 2*Z- N'[z)) splits into

(111.8)

Ho=

where Hg&:\-t is the Laplace operator A-Q, on the in-
terval [a,b] with zerr boundary conditions at {al and {b;

H?
meNly  dmeAl

2) Ht:\n.r':\l'_ is unitarily equivalent to HgO‘ L if
mE Ni(x) . -
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3) The spectrum of H.'._’ (restricted to l"z- Nlt)) ) is

Sleo)= .,!J"m i :.c;:(h &Y 42:4.1.---,-2;-4} (111.9)

Proof : 1) follovs from the fact that Z-N(x) is partitionned
into U Im ,tﬁ[ ;5 since by Lemma I11.1, ’Rlﬂ) leaves
LYUTN

J."(Z-N['x)) invariant and that the Laplace operator has only «
nearest neighbours interaction, we get the d:composition (I11.8).

2) is elementary.

3) comes from the explicit calculation of the spec-
trum of H;u.\vt:

q.‘H-?.h-\t): { 2(‘05{&“ (b-d\ﬂ) Pl e 42,-« ,L-ﬂ-ﬁy ] (111.10)

We define now

11;,(5) 3 f-a"d(\'k‘[i:!;'in;‘ 2&'5(%“‘;) <t g (111.11)

The reduced {density ;f states for H.:’ will be

M, (€)= )‘}:‘-o (anrd)™ cand {dsemraluu *'E’f;.,z,m‘,mﬁzj (Ir1.12)

The reduced density of state consists formally in taking the den-

sity of states of H,’; vhen we extend it on {2 (Nh\) by the
operator‘equnl'to 40 .

Proposition YYY.4

The reduced density of states is given by
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M, (€) = mle) (148" (ap06) + m, (€)(8-67) + 7, [€) ('-44 a2, B)

and O sﬂ,[F) < 4-8 (111.13)

Proof : Instead of picking the interval FN,N] in (111.12),
we can pick any interval of the form [m,m'] with m,m' & N(x)
and m'~m »-¢x . Then, the number of eigenvalues of

HPM{ Z-Npynlmymi])  smaller than E, is equal to the

s , s
number of such eigenvalues for lhem"c"“ H e, 0L , which
- mEg Nfz) -
is equal to
n () d:
t-zsl.u : ( A (111.14)

where (d.)‘ sz Counts the number of time an m” belonging
to N; (x) occurs in [m m]nN(x) . 1If m-m =» eo the
ratio d.l'm—n)converges to the density of N (x). By Corollary
11.4, and Lemma II.1, one can easily compute this density which
gives (111.13) if we take into account the identity

89> 41-a,0 (111.15)

Proof of Theorem I : We denote by T the smallest distance
between two eigenvalues of “Riw)s ‘;g“ (H,._’.‘J)+3)'\ . .

By Lemma I11.3, we get

e 1.,;&](51455'- E,3)'); E,,E, €SWuin] } (111.16) ’
because 103 is an eigenvalue of 'R[n) . We recall that
0g A £ 4 (1I1,17)
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Thus, due to the Lemma III.1, with H = A, and 2P Xt.le,[(ﬁo“)
we get

.

H(H,@43)" - R il ¢ 36 27 (111.18)
1f we define A,  such that s eriy , the spectrum of
R(X) for Az, is certainly contained into the disconnected
intervals E&-‘E ’%’”E] where :ﬂ belongs to the eigen-
velues of ‘R[-g . This choice of © QQ  says that each of these
intervals is disconnected from each other. The number of them
is equal to '

by-dedp-de -1 44 v‘ids. . (111.19)
due to the eigenvalue {03 for R [w) .

This implies the existence of 4a, disconnected inter-
val containing the spectrum of H‘(;). Among them 4a, -1 are
closed to thz points of S(=) . The last one is at a distance
bigger than 2/3¢ -3 . Since the norm of M, [2) is dominated
by A42 , it is certainly contained in [afy-3, ’,\fZJ.

Thus, there is a sequence (E"‘:‘ = xg-3)

EL ¢ E{C EL ) de 44y (111.20)
such that
tiact ] [
e (K ) Fzgt By, Efm] o PAc3, 2] =80) (111.21)

Now if E‘Qb) the density of states ﬂa{E) of H.._[:)
s locally constant and independent of Az7, (see, [8] ) s
therefore it is given by the Proposition I1II.4, which is precisely
of the form

"I‘l,,[E)= m+ n9+P9' m.n,PGZ (I.II.ZZ)
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In order to prove that the last term is effectively pre-

sent, we remark that if

Py 1 R
Ean.-n <E<¢ /-3 (111.23)

then

N, (e)= 4-0' (111.24)

due to the Proposition I11.4 .

REMARKS

1)

2)

CPT-81/P.1317

The other part of ‘the spectrum of H.‘_ [3) have not been in~
vestigated here. A nowhere dense spectrum is expected. 1f Qoo
it is true that H,._['A) have n~ eigenvalue of infinite mu)ti-
plicity. Thus Ep» ‘m’[E) is a continuous iicreasing function.

From heuristic arguments this Schrdcinger aperator is expected
to have a pure point spectrum as far as ;\>o[10], at least
if ® and B! are chosen in a right way (for instance
they have good diophantine properties).
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