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épstract
The direct-interaction approximation is used to find statistically steady
states of a system of three modes, with complex frequencies, ccupled by a
quadratic nonlinearity. These states are compared to the exact predictions of
an ensemble of realizations with Gausslanly distributed 1initial conditions.
The direct-interaction approximation 1s shown to be reasonably successful in

this context.
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Many aspecte of the nonlinear behavior of low frequency (e.g., drift)
fluctuations in plasma as well as in many other dynumical systems can be des-
cribed by the set of quadratically coupled equations1

S (D) + 1906 = Yy ] (1)

M ¢* *
}3+E+ﬂ=0 ,\k.lR'iE, q

for certain (in general, complex) Qk and M Because it is well-known

k klp.g’
that such equatlons often exhibit stochastie behavior,z»3 one is led to study
the statistical dynamics of Eq. (l). Tradlitionally, analytic work has been
mostly concerned with developing evolution equationst"s for low order statis-
tical functicons llke the covariance Ck(t,t’) = (5¢k(t)5¢;([')>, where the
angular brackets denote an average ove: an appropriNate (;enerally Gausslian)
ensemble of initial conditions. Although such an approach has the significant
deficiency of giving little 1nsight into tLhe detailed underlying phase space
dynamics (e.g., the nature of the associated strange attractors or unstable
fixed points), it remains an important tool. The experimentally accessible
fluctuation spectrum 1s just the Fourler transforum of C. Furthermore, trans-
port coefficients can be related to the mean infinitesimal response function
Rk(t;t') = <6¢k(t)/6nk(t')>, where T is an arbitrary source added to the
r:ght—hand sid: of eq (1), and &/6n Tienotes the functional derivative. The

procedure of ensemble averaging is the appropriate onme for theoretical dis-

cussions of scaling laws.

In the present Note I comment on the use of the direct-interaction ap-
proximationl»sr6 to find “nonlinearly saturated,” scatistically steady states
of Eq. (1) for the model case 1n which the wavenumber summation 1s truncated
go that preclsely three modes labelled by K, P, and @ Interact. This

work was directly motivated by the recent works of Terry3 and of Molvig et
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al.” Terry considered the three mode truncation just described. In addition
to studylng the exact dynamics and demonstrating that certain choices of @
and M led to intrinsically stochastic behavior, he discussed the "random phase
approximation.” He noted that this approximation 1is inadequate for the three
m de problem, since it fails to predict the essentlal resonance broadenlng and
correlation damping associated with the nonlinear, stochastic Iinteractions.
In view of the extensive literature on statistical descriptions of the Navier-
Stokes and related equations,5 this conclusion 18 not surprising, and one is
led to study renormalized theories, of which the direct—interaction approxima-

tion fs the outstanding representative.ls4=6

Molvig et al. attempted to argde that the direct—interaction and similar
Eulerian—-based approximations are grossly Inadequate when the underlying dy-
namics are stochastic, and argued for a Lagrangian description. Unfortu~-
nately, thelr conclusion that the direct-interactlion approximation was wrong
by "orders of magnitude in a measured exponent” was based on a misinterpreta~
tion of a key equation. VWhile it 1s true that Lagrangian schemes® can be
superior to Eulerian ones in various ways, 1t does not follow that the Euler~
ian direct-interactioa approximation 1s useless. Note that since the argu-
ments of Molvig et al. were based on the properties of stochastic instability,
thetr critf{cisms can be applied as well to theorles of the three mode system
studied by Terry as to the system with a broad spectrum of modes which they
studied. Fortunately, the three mode model 1s sulficiently simple cthat the
direct-interaction approximation for it can be readily formulated and (numer-
ically) solved, with no further analytic approximations except those control-
lable ones intrinsic to a numerical approach. As I will discuss, the results
of such a program support the assertion that the direct-interaction approxima=-

tion is reasonable in this context.



Indeed, a very similar analysis was performed by Kraichnan? many years
ago. Kralchnan studied the three mode version of the inviscid two-dimensional

Navier-Stokes equation [which also has the form (1), with Qk = 0], and found

quite reasonable agreement between the predictions of the direct-interaction
approximation and the "exact” statistics of an enremble with Gaussian initial
conditions. Because of this work and many later studles of Navlar-Stokes
turbulence,lo'11 the direct—-interaction approximatisn 1s well-understood. (ne
can argue quite generally that it should provide a reasonable description of
the low—order statistical behavior of Eq. (i) in stochastic regimes with mod-
erate turbulence levels, except possibly for pathological wavevector triads.
Therc are, however, two important differences between the fluid and :he plasma

versions of Eq. (1) which motivate further study.

The first concerns the way energy 1is Iinjected and dissipated. Consider a
Navier-Stokes problem with viscous dissipation, so that Re(Qk) =0,
Im(Qk) = uk?' > 0. In this case, steady states are obtained by i:jecting
ener;y with a (usually raundom) forcing function added to the right-hand side
of Eq. (1). By contrast, In the plasma case a forcing function is generally
absent, but since Im(Q) = v # 0, the rate of energy increase in the k-th

mode is initfally (in linear theory) proportional to Zyk<|¢xk‘2‘/. ince \

can have elther sign, steady states can arise when,2 say, Yk > 0, Yp <0,
Y4 < 0. If an effective Reynolds' number 1s defined by :he ratio ~of the
n;nlinear term to the linear term in Eq. (1), the resulting turbulence has a
Reynolds' number of order unityl? and 1s thus inherently weaker than that of
the Kavier-Stokes problem, where the Reynolds' number can be arbitrarily

large.
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Another potentially important difference between the three mode models is
that the inviscid case studied by FKraichman is integrable, so that the statis-
tical aspects are extrinsic, while the case with complex frequenciles is, in
pencral, nonintegralile and can display intrinsic stochasticity in the form of
2 strange attractor.2 In view of the arguments of Molvig et al., the latter
cise is of particular Interest. Thus, 1 have performed numerical integrations
af the Jirect-interaction approximation to Eq. (1) with Qk # 0, using the
reasonable (predictor~corrector) algorithm first employed L: this context by
Kraichnan.9,10 4 complete prescntation and discussion of the results will be
piven elscewhere. In this report of preliminary results, I will emphasize the
energetics and demonstrate that the direct-interaction approximation predicts
saturated steady states 1In reasonable agreement with the “exact” predictions

for an ensemble with Gaussian initial conditions, not only for the Integrable

case, but also for one which involves intrinsic stochasticity.

The mode-coupling coefficient had the form

i = Aly = Y )
“klp,g 'q P LN

vhere A = ;.(Exq) for Fig. 1 and A =1 for Fig. 2. For comparison (e.g.,

2

Fig. 1) with Kraichnan's work,9 k and 1 = 0. Otherwise, . =1 (the

Xy =
signature of the compressible, adiabatic electron response13). The energy-~
like quantity associated with Eq. (1) 1s W = E (\+xk}|¢k‘2; this, as well as
its average, 1s conserved by the nonlinear term cof Eg. Zl). The quanticy <W>
is also conserved by the nonlinear terms of the direct-interaction approxima~

tion, both exactly and by the numerical algorithm. (There is also an enstro-

phy-like quantity, which I do not discuss here.)



Figure 1 represents an inviscid, two-dimensional Naviler~Stokes case wher .-

@ z0 and = zepxq(q2-p?)/kZ, with K =2, P =2, and O = /T . This

M
3 klpsg
case corvesponds to Kraichnan's Fig. 5; it 1s exactly soluble? and can be

reduced to the well-known stochastic pscillator.ls1# The ensenble consisted of
5000 realizations; its predictions are indistinguishable from the exact re-
sults., (Kralchnan's result for the exact 3olution appears to he in ervor 1o
absence of a Jacobian factor. I have succeeded in reproducing the ceso-tial

features of each of Kralchnan's other figures.)

Figure 2 describes a situation similar to one studied by Terry. Thi

frequencies had the values QK = (0,8349, 0.1600), QP = (=1.230  =0-2500%,
and ﬁ'\’.‘ = (0.4989, ~0.0191); also Ty = (0.4870, G.2776), ¥p = (0,347,

5 ~ ~

0.0829), and y,. = (0.2500, 0.0479). The corresponding mode-coupling coci-

Q

ficients were M}, = (-0.1888, 0..588) , Mp = (0.1448, ~0.1562), and

Hy = (0.0539,  0.1537), where

~5

el . These parameters correspond o o
' = "klr.g ’
regime in which intrinsic stochasticity is expectedz; rhis is verified b

exaunination of individual realizations. The ensemble had 5000 recalizations.

Large initial conditions were used to avoid an uninteresting linear regime.

One can see that 1in each case shown (and in other cases I have studied)
the final energy states predicted by the direct-interaction approxtmation are
in reasonable agreement with the exact statistical results. (Typically,
agreement in final energy levels is of order 5% to 30%.) Of course, "reason-
able” 1is subjective. 1In the present context, the most relevant comparison is
to the predictions of th: random phase approximation. When Qk # 0, this
involvres in the nonlinear term the factor &(Aw), where Aw = ’;""kRe(Ql-;) is

the frequency mismatch. It thus predicts no nonlinear effects at all, and

thus no saturation, unless the frequency mismatch vanishes. The
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direct-interaction approximation :learly represents a substantial improve-
ment. Of course, quantitative inaccuracies of order unity are to be expected
in a first-principles theory of this kind. Alternative approxi-
mationsls4,3,8,11 may Increase the accuracy. This, however, is not the point

and does not vitiate ‘the conclusion that, as expected, the direct-interaction
approximation provides a reasonable description of the statistical dynamics of
three interacting modes (e.g., drift or shear), at least at the level of
energetics, even when Intrinsic stochasticity {s present. (The two-time
information furnished by the direct-interactior approximation 1s also of
interest, and will be discussed elsewhere.) One can infer that 1ts applica-
bility extends to the more general and important case of a broad spectrum of
interacting drift waves.15,16 Although 1in the latter case further approx-
imations may have to be made in order to produce a computationally tractable
problem,!> it is comforting that at least one reasonably solid starting point

exists.

This work was supported by the United States Department of Energy
Contract No. DE-AC02-76-CH03073. I am grateful to Alice Koniges for checking

some of the results and for assisting with aspects of the computational work.
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