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Abstract 

The direct- interact ion approximation is used to find s t a t i s t i c a l l y steady 

states of a system of three modes, vith complex frequencies, coupled by a 

quadratic nonllnearity. These states are compared to the exact predictions of 

an ensemble of realizations with Gaussianly distributed i n i t i a l conditions. 

The direct- interact ion approximation is shovn to be reasonably successful in 

this context. 

DISCLAIMER 
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Many aspec t s of the non l inea r hehavior of low frequency ( e . g . , d r i f t ) 

f l u c t u a t i o n s in plasma as well as in many other dynamical systems can be d e s ­

cribed by the se t of q u a d r a t i c a l l y coupled equa t ions 

^ * k ( t ) + i t y t H = V2 I Mk| J-* ** (l) 
~ ~ ~ k+p+q=0 ~'K.»a, H .3. 

for c e r t a i n (in g e n e r a l , complex) 8, and M, I . Because i t Is well-known 
£ feJE.a 

tha t such equat ions often e x h i b i t s t o c h a s t i c b e h a v i o r , * ' - ' one i s led to study 

the s t a t i s t i c a l dynamics of Eq. ( 1 ) . Ti a d i t i o n a l l y , a n a l y t i c work has been 

mostly concerned with developing evo lu t ion e q u a t i o n s ^ ' ' for low order s t a t i s ­

t i c a l funct ions l i k e the covar iance C, ( t , t ' ) = <6if, (t)6<f>. ( t ' )>, where the 

angular b racke t s denote an average over an a p p r o p r i a t e ( g e n e r a l l y Gaussian) 

ensemble of i n i t i a l c o n d i t i o n s . Although such an approach has the s i g n i f i c a n t 

de f i c i ency of g iv ing l i t t l e i n s i g h t in to the d e t a i l e d under lying phase space 

dynamics ( e . g . , the na tu re of the a s s o c i a t e d s t range a t t r a c t o r s or uns tab le 

fixed p o i n t s ) , i t remains an important t o o l . The exper imenta l ly a c c e s s i b l e 

f l u c t u a t i o n spectrum i s j u s t the Four ier t ransform of C. Furthermore, t r a n s ­

port c o e f f i c i e n t s can be r e l a t e d to the mean i n f i n i t e s i m a l response funct ion 
R ( t ; t ' ) 5 <6<j) ( t ) / 6 r | ( t ' ) > , where y. i s an a r b i t r a r y source added to the 

k k k Tc 

r ight -hand s ide of Eq. ( 1 ) , and 6/6TI denotes the func t iona l d e r i v a t i v e . The 

procedure of ensemble averaging i s the a p p r o p r i a t e one for t h e o r e t i c a l d i s ­

cuss ions of s c a l i n g l aws . 

In the present Note I comment on the use of the d i r e c t - i n t e r a c t i o n ap­

p r o x i m a t i o n 1 ' ^ to find " n o n l i n e a r l y s a t u r a t e d , " s t a t i s t i c a l l y steady s t a t e s 

of Eq. (1) for the model case in which the wavenumher summation i s t runca ted 

so tha t p r e c i s e l y t h r ee modes l a b e l l e d by K, jp, and g i n t e r a c t . This 

work was d i r e c t l y motivated by the r ecen t works of T e r r y 3 and of Molvlg e t 
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al. 7 Terry considered the three mode truncation just described. In add.ltion 

to studying the exact dynamics and demonstrating that certain choices of Q 

and M led to Intrinsically stochastic behavior, he discussed the "random phase 

approximation." He noted that this approximation is inadequate for the three 

m. de problem, since it falls to predict the essential resonance broadening and 

correlation damping associated with the nonlinear, stochastic interactions. 

In view of the extensive literature on statistical descriptions of the Navier-

Stokes and related equations,^ this conclusion la not surprising, and one Is 

led to study renormalized theories, of which the direct-interaction approxima­

tion Is the outstanding representative.^''*-0 

Molvlg et al. attempted to arguf that the direct-interaction and similar 

Eulerlan-based approximations are grossly Inadequate when the underlying dy­

namics are stochastic, and argued for a Lagrangian description. Unfortu­

nately, their conclusion that the direct-Interaction approximation was wrong 

by "orders of magnitude in a measured exponent" was based on a misinterpreta­

tion of a key equation. While It Is true that Lagrangian schemes" can be 

superior to Eulerian ones In various ways, it does not follow that the Euler-

ian direct-interaction approximation is useless. Note that since the argu­

ments of Molvig et al. were based on the properties of stochastic instability, 

their criticisms can be applied as well to theories of the three mode system 

studied by Terry as to the system with a broad spectrum of modes which they 

studied. Fortunately, the three mode model is sufficiently simple chat the 

direct-Interaction approximation for it can be readily formulated and (numer­

ically) solved, with no further analytic approximations except those control­

lable ones intrinsic to a numerical approach. As I will discuss, the results 

of such a program support the assertion that the direct-interaction approxima­

tion is reasonable in this context. 
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Indeed, a very s i m i l a r a n a l y s i s was performed by Kraichnan" many years 

ago . Kraichnan s tudied the th ree mode ve rs ion of the i n v i s c i d two-dimensional 

Navier-Stok.es equa t ion [which a l so has the form ( 1 ) , with 3 = 0 1 , and found 
k 

q u i t e reasonable agreement between the p r e d i c t i o n s of the d i r e c t - i n t e r a c t i o n 

approximat ion and the "exact" s t a t i s t i c s of an ensemble with Gaussian i n i t i a l 

c o n d i t i o n s . Recause of t h i s work and many l a t e r s t u d i e s of Navis r -S tokes 

tu rbu lence ,'•-'> ^ the d i r e c t - i n t e r a c t i o n approximation i s w e l l - u n d e r s t o o d . One 

can argue q u i t e g e n e r a l l y t h a t i t should provide a reasonable d e s c r i p t i o n of 

the low-order s t a t i s t i c a l behavior of Eq. ( ; ) in s t o c h a s t i c regimes with mod­

e r a t e tu rbu lence l e v e l s , except poss ib ly for pa tho log i ca l wavevector t r i a d s . 

There a r e , however, two important d i f f e r e n c e s between the f luid and -he plasma 

v e r s i o n s of Eq. (1) which motivate f u r t h e r s t u d y . 

The f i r s t concerns the way energy i s i n j ec t ed and d i s s i p a t e d . Consider a 

Navier -Stokes problem with v i scous d i s s i p a t i o n , so t h a t Re(Q ) = 0, 

lm(0 •) = uk > 0 . In t h i s c a s e , s teady s t a t e s are obtained by i n j e c t i n g k/ 

energy with a ( u s u a l l y random) forc ing funct ion added to the r igh t -hand s ide 

of Eq. ( 1 ) . By c o n t r a s t , in the plasma case a forcing funct ion is g e n e r a l l y 

a b s e n t , but s ince Im(Q) 5 y * 0, the r a t e of energy Inc rease in the k- th 

node i s i n i t i a l l y ( i n l i n e a r theory) p r o p o r t i o n a l to 2y, <| <t>, | /• Since y 

can have e i t h e r s i g n , s teady s t a t e s can a r i s e when, say , y > 0, y < o, 

y < 0 . If an e f f e c t i v e Reynolds ' number i s defined by the r a t i o of the 

non l inea r term to the l i n e a r terra in Eq. ( 1 ) , the r e s u l t i n g turbulence has a 

Reynolds ' number of order unity 1 -^ and i s thus inhe ren t ly weaker than t h a t of 

the N'avier-Stokes problem, where the Reynolds ' number can be a r b i t r a r i l y 

l a r g e . 

http://Navier-Stok.es
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Another p o t e n t i a l l y important d i f fe rence between the th ree mode models I s 

that; the inv isc id case s tudied by Kraichnan i s i n t e g r a b l e , so tha t the s t a t i s ­

t i c .tl a spec t s are e x t r i n s i c , while the case with complex f requencies i s , in 

g e n e r a l , nonintefrrable and can d i sp lay i n t r i n s i c s t o c h a s t i c i t y in the form of 

n s t range a t t r a c t o r . - In view of the arguments of Molvig e t a l . , the l a t t e r 

c i s t is of p a r t i c u l a r i n t e r e s t . Thus, I have performed numerical i n t e g r a t i o n s 

of the d i r e c t - i n t e r a c t i o n approximation to Eq. (1) with Q t 0, using the 

reasonable ( p r e d i c t o r - c o r r e c t o r ) algorithm f i r s t employed In t h i s context by 

Kraichnnn. ?> A complete p r e sen t a t i on and d i scuss ion of the r e s u l t s wi l l be 

j'.iven e lsewhere . In t h i s r epor t of pre l iminary r e s u l t s , I w i l l emphasize the 

eruTjietics and demonstrate that the d i r e c t - i n t e r a c t i o n approximation p r e d i c t s 

sa tu ra t ed s teady s t a t e s in reasonable agreement with the "exact" p r e d i c t i o n s 

for an ensemble with Gaussian i n i t i a l c o n d i t i o n s , not only for the i n t e g r a b l e 

c a s e , but a l so for one which involves i n t r i n s i c s t o c h a s t i c i t y . 

The node-coupling c o e f f i c i e n t had the form 

where A = z«(pxq) for F ig . 1 and A = 1 for F ig . 2. For comparison ( e . g . , 

FIp. 1) with Kraichnan 's work, x, = k and i = 0. Otherwise, t = i ( t he 

s igna tu re of the compress ib le , ad i aba t i c e l e c t r o n response*-^). The energy­

l i k e quan t i ty a s soc ia ted with Eq. (1) i s w = £ (t+X. j | $. | ; t h i s , as wel l as 

i t s average , i s conserved by the nonl inear term of Eq. ( 1 ) . The quan t i t y <W> 

is a l so conserved by the nonl inear terms of the d i r e c t - i n t e r a c t i o n approxima­

t i o n , both exac t ly and by the numerical a lgo r i t hm. (There i s a l so an e n s t r o -

phy- l ike q u a n t i t y , which I do not d i scuss h e r e . ) 
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Figure 1 represents an inviscid, two-dimensional Navier-Stokes case wh.-r 

Q = 0 and MR i = z.'R*a(q -p )/k , w l t h K = 2 . p = 2, and 0 = SZ • This 

Q 

case corresponds to Kraichnan's Fig. 5; i t is exactly soluble and can be 

reduced to the well-known stochastic osci l lator .1>1* The ensemble consisted ,ji 

5000 rea l iza t ions ; i t s predictions are indistinguishable from th« exact re­

s u l t s . (Kraichnan's result for the exact solution appears to be in error V 

absence of a Jacobian factor. I have succeeded In reproducing the e^so- Lijl 

features of each of Kraichnan's other figures-) 

Figure 2 describes a si tuation similar to one studied by Terry. T!." 

frequencies had the values Q = (0.8349, 0.1600), g = (-1.210 -0.25O01, 

and = (0.4989, -0.0191); also X R = (0.4870, 0.2776), y = (Ooi 'O, 

0.0829), and y = (0.2500, 0.0479). The corresponding mode-coupling coef­

f ic ients were M - (-0.1888, O.J588), M = (0.1448, -0.1562), pn<\ 

!•! = (0.0539, 0.1537), where M = M , . These parameters correspond to ;•. 
0 ' K " K|P,g ' 

regime in which in t r ins ic s tochast ic i ty is expected^; rhis is verifii-.d b; 

exanination of individual rea l iza t ions . The ensemble had 5000 rea l iza t ions . 

Large i n i t i a l conditions were used to avoid an uninteresting linear regime. 

One can see that in each case shown (and in other cases I have studied) 

the final energy states predicted by the di rect - interact ion approximation arc-

in reasonable agreement with the exact s t a t i s t i c a l r e su l t s . (Typically, 

agreement in final energy levels is of order 5% to 305!.) Of course, "reason­

able" is subjective. In the present context, the most relevant comparison is 

to the predictions of tb<; random phase approximation. When Q t 0, this 

invol/es in the nonlinear term the factor 6(Aio), where Aoi 5 V Re(o ) is 
"k k 

the frequency mismatch. It thus predicts no nonlinear effects at all, and 

thus no saturation, unless the frequency mismatch vanishes. The 
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direct-interaction approximation clearly represents a substantial improve­

ment. Of course, quantitative inaccuracies of order unity are to be expected 

in a first-principles theory of this kind. Alternative approxi-

tfattons^'^'^>">*1 may increase the accuracy. This, however, is not the point 

and does not vitiate the conclusion that, as expected, the direct-interaction 

approximation provides a reasonable description of the statistical dynamics of 

three interacting modes (e.g., drift or shear), at least at the level of 

energetics, even when intrinsic stochasticity is present. (The two-time 

information furnished by the direct-interaction approximation is also of 

interest, and will be discussed elsewhere.) One can infer that its applica­

bility extends to the more general and important case of a broad spectrum of 

interacting drift waves. 5>16 Although in the latter case further approx­

imations may have to be made in order to produce a computationally tractable 

problem,15 u ^ s comforting that at least one reasonably solid starting point 

exists. 

This work was supported by the United States Department of Energy 

Contract No. DE-AC02-76-CH03073. I am grateful to Alice Koniges for checking 

sone of the results and for assisting with aspects of the computational work. 
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Figure captions 

Fig . 1: Comparison of the d i r e c t - i n t e r a c t i o n approximation with ,1 Gaussian 

ensemble for an inv i sc ld Navier-Stokes c a s e . See t ex t fvr 

parame t e r s . 

F ig . 2: Comparison of the d i r e c t - i n t e r a c t i o n approximation with a Gaussian 

ensemble for a case with i n t r i n s i c s tochas t l o i t y . Sec- text ; ;•: 

parameters . 
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