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1. 

Abstract 

A general scheme of constructing boson expansions that was 
proposed in earlier work is applied to a number of examples. The 
Fukutome expansion is obtained by considering the spinor represen
tation of the S0(2N-M) group. Its herraitian, Holstein-Primakofr-
type version is also derived. The generalized Dyson expansions 
for even and odd fermion systems are given in terms of two spinor 
representations of the S0(2N) group. For fixed fermion number sys
tems the relevant boson expansions are obtained by considering the 
fundamental representations of SU(N) while for fixed seniority 
those of Sp(N) are concerned. The collective boson expansions cor
responding to the Ginocchio model, the interacting boson model of 
Arima and Iachello and the Elliott model are given for the symme
tric representations of SO(8) and SO(1+1) and any representation 
of SU(3). 



I 
j 2. 

1. INTRODUCTION 

In the previous papers , hereafter referred to as part I 
and II, a general method for constructing boson representations 
of fermion Hilbert spaces was given. The method allows one to 
relate in a definite way a boson state to every fermion state 
while the fermiou operators may be presented in the form of boson 
expansions. Infinitely many boson representations can be obtained 
each being valid for the carrier space of an irreducible represen
tation of a semisimple gioup. 

The present study aims at giving a few examples of the cons
truction of boson expansions to illustrate the general method and 
to provide the relation with previous approaches. The examples 
based on the allowed representations of the Lie groups S0(2N+l), 
S0(2N), SU{N) and Sp(N), symmetric representations of SU(1+1) and 
S0(8) and all representations of SO(3) are investigated. Such a 
choice is dictated by two possible ways of utilizing boson expan
sions when describing the collective excitations of a fermion 
system. The first one is to map a "large" space of fermion states 
onto the boson space ani then to search among many bosons for the 
collective ones. The kinematic step, i.e. boson mapping, preceeds 
in this case the dynamical one which consists of reducing the 
number of bosons based on the properties of the Hamiltonian. The 
boson expansions for the chain of subalgebras S0(2N+1) z> S0(2N) Z> 

SU(N) p £p(N) provide the mapping of "large" fermion spaces 
which are the entire fermion space, the subspaces for even and 
odd fermion number and the subspaces with both fermion number 
and seniority fixed. The generators of algebras in the above chain 
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are known combinations of fermion and bifermion operators. The 
number of individual boson excitations is large, each of them 
corresponding to some individual fermion or two-fermion excita
tion . 

The second way to utilize boson expansions for the descrip
tion of collective motion is to perform the dynamical step be
fore the kinematic one by picking up the collective space first 
and then mapping this "small" fermion space onto the boson space. 
The sections dealing with the SU(1+1), SO(8) and SU(3) algebras 
examplify such a mapping. One obtains the boson spaces with a 
small number of different collective bosons. 

Sect.2, concerning the S0(2N+1) algebra, contains a rather 
detailed rtiscussion of the method ; the same scheme is utilized 

in the other sections in a more compact form. All sections 
are independent of one another and in particular symbols like 
E^, H, , j, la>, |C> and w(C) may have a different meaning 
in every section. 
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2. ALGEBRA so(2N+l) 

The orthogonal algebra , û = so(2N+l), is composed 

of all fermion and biformion operators 

<£M , «V ., o^a^ , a ^ a ^ , 2 C ^ - ^ O - M I 2 * 1 ' 

where the indices u.., -0 number N single-particle {or s-'ngle-

quasiparticle) states. The Cartan subalgebra is formed by the N 

generators 

A i. + 
"yU. = 2. ~ <*-/* °»/*. » (2.2) 

and the rank 1 of Jj i s equal to N . Algebra so(2N+l) i s 
2-4) 

the algebra B, of the standard classification '. The 
root vectors belong to N dimensional Euclidean space and 

2-4) 
can be expressed in terms of the unit vectors vu^ 

w^ = (0,0,-.., 0,4,0,.. .,0) , (2.3) 

with the unity on the «*th place. The root is called positive 

(negative) if its first non-vanishing component is positive 

(negative). To every root tf. corresponds the generator E ^ 

and for positive roots this correspondence reads 

K = < v / / r f°* *-XM> ( 2- 4 a ) 
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Ê£ * V ^ >*</*> fr^A+Jlk» (2.4b) 

É * « a* a g , * </* , frr^-W^-W (2.4o) 

The hermitian-conjugations of this generators correspond to 

negative roots: 

K = CL+ /{T *V * = S/* > (2.5a) 

The irreducible representations of,/) are determined by the 

highest weight j, which is the N dimensional vector of eigen-
A 

values of the Cartan generators H, 

a >i> = j IJ."» . 
(2.6) 

while the highest weight states, |j> , are the corresponding 

eigenvectors. The allowed representaions (part I) of J) can 

thus be found by examining the spectra of H , eg.(2.2). As 
+ ^ 
a., a. are the particle number operators, they can have in 

r, /* 
the fermion space only the eigenvalues 0 or 1 ; hence the 

highest weights j must have components equal to i-4. 
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The only highest weight with this property is for the clas
sical algebra B, the weight 

and thus the only allowed representation is the spinor 
representation ' of S0(2N+lj. Evidentl 
state is equal to. the fermion vacuum 
representation ' of S0(2N+lj. Evidently , the highest weight 

! j > = I 0 > . (2.8) 

Every state of this representation can be obtained by suc-
cessive action on |0> with the generators E , eqs. (2.4-5), and 
thus the representation space is equal to the entire fermion 
space. 

The roots w and w + w \)<u, are positive and 
nonorthogonal with respect to thf=. highest weight j, and 

A 

the corresponding E .generators, eqs.(2.5ab), determine the 
generalized coherent states (part I) : 

\C> = expf £1 « a ; + Z_ C aVVFjflo>.<2.9> 
1 0,̂  = 1 ~ /A.= 4. y J 

The total boson number is thus equal to M= N(N+l)/2 which 
includes N(N-l)/2 bosons represented by complex numbers 
C . , and N bosons represented by C,f . 
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It is convenient to consider the ccmplex numbers Ci as the compo-
T ._ 

nents of an antisymmetric matrix C = - c , and c = C..//2 as 

the components of a N dimensional column vector C. The cor -

t t t 
responding boson operators are denoted by b' , b' -~^u^ t 

and b ' , respectively. Alternatively, one can group the 

N(N+l)/2 complex numbers C. and C into the antisymmetric 

matrix c in N+l dimensions : 

*V = °V •(<>*• V * = d,2,...,N, v2.10a) 

^\?tf+i = "" ̂ *M,S> = ^ V î (2.10b) 

* • & ' . ) • 
and the corresponding bosons are denoted by b , b ' = 

- b j v , V,JA= 1,2,..., N+i. 

( 2 . 1 1 | 

+ + As the genera tors a , , commute with a . a,, one has 

I O - U + £ ô;a^)exp[|Z= Cî^a>^j|0>, (2.X2) 
yu=± ' ' ' ^ »,/*=! 

where use was made of 
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Based on the formulae (3.6) of the next section the norm of 

generalized coherent states can be expressed as 

<c\c> - de tV + CC*)QL+ZL C*(I"<&JLC£ ) , ( 2 a 4 ) 

(N) -
where I is the unit matrix in N dimensions. Considering C 
to be the column vector one has 

<C\C>= àtt(lCNlcô++ CC*)^(J%CC+) (2.15) 

or 

<C\C> = d e + ^ I ^ t C c O ( 2 ' 1 6 ) 

for ? given by eq.(2.11). 

Summing up the positive roots which are not orthogonal 

to j one obtains the specific weight (part I) related to i : 

/^ «J N M (2.17) 

Thus the weight function w(c), determining the scalar product 

for the functional representation (part I ) , reads 

2 W t d 
.&+*) ~ ~. v-)~ 2. 

de-t(.T + S # + ) J (2.i8) 
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V =(|) Jl <J2*-0J! , (2.19) 
where the formulae (3.11) and (A.12) of part I were used and W 
WAS determined by direct integration using methods of ref. . 

The Kick theorem allows us to calculated the functional 
images (part I), and thus the boson images, of the many-fermion 
states | <f > j 

ls>> = a* . . . o ^ | o > , u - 2 0 > 

•4 A 

i . e . 

-* T + 

lW> ~)V)= All 4 r , v . . . i > . - | 0 ; ; A e^,(2.2la) 

I4»> ~ !M' ) *CA^) i i "U4v- - - i V-v1 , 0 ) ; A o d J > ( 2 " a i b ) 

where the square bracket denotes the antisymmetrization of all 
enclosed indices. 

The action of generators (2.4-5) on the generalized 
coherent states |c>can be in terms of the identities 

9&>"*>'$je> ^ ^ ' ^ ' I f ^ ) ^ ' <2'22ab> 
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(a' "is*a^}exp^ ê-& ^a^io> * ° i2'22ci 

represented by first-order differential operators ; the formu

lae given in part I can be used as well. In this way the Dyson-

type boson expansion of generators (2.4-5) is obtained, which 
~î t t expressed in terms of b,,. or b , and b" bosons reads r V/A MLU ft-

*£* ~ t ~ £• t 
OU,*"» 6 . ~Z-.)o &*„ = V*,-2-. &>„&*„ , (2.23a) 

a » «-» 4 . ^ r ^ K» t>x«+A ~ £- K* *>* x- ^ r - (2.23b> 

' S T = 4 . ( 2 . 2 3 c ) 
N + a. »"J 

-&-£C&wZ(.&&-tiiU*. s£=± X=4. 

(2.23d) 

O-V <*,/* *"* b/AO 9 Jo/*>3 . (2.23e) 

This i s the f i n i t e and Loson-like non-Hermitiàn expansion 

derived by Fukutome . A s l ight ly , d i f f e r e n t expansion was 
8) t 

given by Okubo who did not consider the opera tors b ^ , bp. as 
represent ing idea l bosons. 
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The fermion states ty>, eq.(2.20), form the orthonormal 

basis in the fermion space. The overlap matrix Q (Part II) can 

thus be determined in terms of the boson images | V ) , eq. (2.21) . It 

turns out that Q is diagonal and 

. ( A - / i ) i ! ; A 

A. ' ! . A odd < 2 2 4 > 
eve >o , 

or 

(V 1^) = C2 M B - 4 ) ! ! y (2.25) 

where Ng denotes the number of bosons in the state lyf), while the 

total boson number operator is expressed as 

N 0 = ZL bLbu.+Z_ ûMt>M e s> ̂ =1 »/* ~V* pZ± /• ^ 
( 2 . 2 6 ) 

' < / * 

(round hat denotes the operator acting in the boson space). 

The orthonormalizing operators G„ and G F defined in 

part II are thus diagonal in the boson basis and their eigen

values depend only on the nuniber of bosons . Introducing 

the symbolical notation G ,for the matrix element of G between 
nn 

the physical boson states with N_ = n and N_ = n', one has 

-L i. 
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As discussed in part II, the above relations can be fulfilled 
by many different forms of the G„ and G_ operators. For 
example, one can choose G_ as 

4. 
GF = 7L [(2,-A)![] Pn , (2.28) 

= y \I^V\-A J• * I I".. 

where P projects the boson states on the subspace with numbar 
of bosons N_ = n. The boson expansion of P , 

Pn= •• NgAUexpf-NeJ: , ( 2 3 

(and therefore that of Gj?) is infinite and convergent . 

An other form of the G_ operator which also fulfills 
condition (2.27b) is 

& F = £. [C2»-±)!ff P n , { 2.30) 
where m = N B is the maximal boson number in the physical 
space, which is always finite. Evidently, the two forms, eqs. 
(2.28) and (2.30), differ only outside the physical space. A 
third possible form of Spr 

4. 
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which makes direct use of the square root Taylor infinite expan
sion is always faced with convergence problems. 

As it was argued in part I, a • finite expansion for G f 

can always be given . This is so because one has to fulfill only 
a finite number of conditions for the matrix elements of Gp 
and G B with respect to the physical space. As in many examples 
these conditions have the form of egs.(2.27ab), the general 
method for finding the G p and G B operators can be presented as 
follows : 

Define the operators F(X nj depending on the sequence 
of numbers X n, n = 0,1, . ..,mi, as 

1 J k=0 tt (2.32) 

where the coefficients Y , can be determined in terms of X„ 
from . 

t*k ^9=0 • J (2.33) 

and the coefficients {, |< J ' 0 ̂  k ̂  1 , resembling the Newton 
coefficients ( p J, are determined by 

(2.34) 
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and have the property 

z {?Jt = n ( t*o 
k=0 k.-i ( 2 , 3 5 ) 

for every t . I t i s a matter of simple algebra to prove that 

Fnn'fàn] = Zv^'Xn , v>,.o'=0,4,...,m. 
(2 .36) 

Hence conditions (2.27ab) can be fulfilled in terms of finite 

expansions : 

5 6 . Ffrû-4'jfj , S p « Ffl&,-0jj|*j . «•"•»> 

In view of the identities 

P „ > W l V d , P , ^ ^ (2-38) 

one has 

(2 .39) 

Se*1"©, - F{(2«-i)"*iA -

and thus the Holstein-Primakoff-type expansion is obtained from 
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the expansion (2.23) by multiplying the terms which Increase and 

decrease the boson number by ?{{2n-\)~*j and p£(2n+l) 2j, respec

tively- Hence the hermitian and finite expansion for the gene

rators (2.4-5) reads 

i. M . 
<V ** F^dfj 6̂  - I ^ V , (2.40a) 

^ . t .t . 7 £ . t , 
40b) 

1 r" i 

rt+ n «_=, T- . I J + / , i , (2.40d) 

o-4. 

The maximal boson number m, for which the V operators should be 
determined, eqs.(2.32), (2.33), is in this case equal to the 
integral part of N/2, 

•"*»* r N -, 
Wl - N& = L X" J • (2.41) 

Notice, that expansion (2.40) is hermitian and forms 
the so(2N+l) algebra only with respect to the physical space. 
By choosing the nonsingular form of the G p operator, eq.(2.28), 
and its inverse, for the G B operator, 

& 6 = f . [ ( 2 « - i ) ! ! ] 2 P n , <»-«i 
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one can obtain Holstein-Primakoff-type bosons expansion for 

the generators with the commutation r e l a t i o n s f u l f i l l e d in the 

e n t i r e boson space . Then however, the expansion becomes i n f i n i t e . 

The i n f i n i t e and hermit ian Garbaczewski-type expansion can be 

obtained from t h a t of eqs . (2 .40) by us ing the opera tor P p ro jec t ing 

boson states onto the physical space as discussed in p a r t XI. 

Al l boson ann ih i l a t i on opera to r s a re physical ; 

t h i s i s obvious for b ^ , e g . ( 2 . 2 3 e ) , and can be e x p l i c i t l y 

checked for b in terms of ea.(2.21). Hence the R projection of a boson 
/* 

state (part II) can be obtain by using the £ operators in the functional -

representation, 

^ = 3 ! P , (2.43) 

(cf. eq.(5.21) of part II) or the corresponding operators B ' , 
OS. 

SJ - £ P , (2-44) 
+ 

in the boson space. Note that b is not the boson creation ope-

rator as it is the hermitian conjugation of b . in the fermic;i 

sense. For the feriuion hermitian conjugation given by the weight 

function w(C) of eq.(2.1R) one obtains 

^ U V = ( V > "J-fa* Aî6~ ^VS)? , (2.45) 

t t 
which can be easily expressed in terms of b' and b' bosons. 

J ,/UV A*-
Thus the R projection of a boson state can be obtained by repla-

~t cing every boson creation operator b ' by the corresponding ope-
§ t /* 

rator B • 
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3. ALGEBRA so(2N) 

The bifermion operators 

(3.1) 

form the orthogonal algebra,J} = so(2N), which is the classical 
D. algebra with the rank L = N. The Jartan subalgebra and the 
correspondence between roots and E generators are identical as 
for so(2N+l), eqs.(2.2) and (2.4bc), (2.5bc). Again, the highest 
weights of allowed representations must have components equal 

4. 5) 
to ± — . For S0(2N) there are two spinor representations ' which 
fulfill this requirement, namely 

M 
J - o £ _ # - {z,Zi"'9 9. 7 2. ) 

and 

1 T ti/ -*-U / d d 4 4. \ 
(3.3) 

The boson expansions for then are considered separately in the 
subsections 3.1 and 3.2. 
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3.1 Representaion j = (•*, -j, ..., -j) 

The fermion vacuum 10 > is the highest weight state for 
this representation. The generators (3.1) can only create pairs 
of fermions ; the representation space thus contains all fermion 
states with even particle number. 

The roots w +w •,•*)</*.,are positive and nonorthogonal 
to the highest weight. Hence the generalized coherent states 
are given by 

where again the complex numbers C., are considered as the elements of 
V* 

m 

the antisymmetric matrix/ C = -C. The corresponding- M bosons, 
M = N(N-l)/2, are denoted by b^ , bj = _ t $ v • F o r t h i s repre
sentation the generalized coherent states are identical to the 
Thouless vacua . It is worth noting that the alternative form 
of Thouless theorem presented by Ring and Schuck examplifies 
the general relation, eq.(A.8) of part I, between two different 
parametrizations of generalized coherent states. 

The norm of |C> reads n ' 1 2 ) 

<C? I 6> = defc*(l + CC+) , (3.5) 

Despite the square root,<C|C> is a polynomial ; this is 
so because above determinant is always the square of 
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a polynomial. In terms of the identity (2.22c) one has the formula 

utilized in sect. 2. 
= ( i M

+ f l % ) - t « « w > 

The specific weight is given by 

•J N 
(3.7) 

and thus the weight function w (C ) reads 

*(C)= v [ d e K r ^ c r c r + ; ] 
2W-1 

.2 (3.8) 

JL\ n ^ . . A \ \ \ < 3 - 9 > W = (£) H t*»'AV} • 
O.-t 

13) 
The same result has also been obtained by Suzuki ' who proved 
the unity resolution using assumptions different from those given 
in part I. 

The generalized coherent states of the present section, 
eq.(3.4), are equal to those of sect.2, eq.(2.9), when setting 
C = 0. Hence in the present case the boson image I4*'} of the 
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fermion state IwO, eq.(2.20), is given by eq.(2.21a) while the 
boson expansions for the generators (3.1) are given by eqs. 
(2.23c-e) with the bosons bt , b.. disregarded. One obtains 

14) the generalized Dyson expansion derived by Janssen et al. and 
the corresponding expressions will not be repeated. The genera-

14) lized Holstein-Primakoff expansion can be obtained as in 
sect.2. Its finite version is given by eqs.(2.40c-e) and (2.26) with 
the bosons bt , b disregarded again. 

3.2 Representation j = (•«, -j, . . . , —~) 

The highest weight state for this representation is 
the single-fermion state 

U > = a* \o> s I a +

N > . (3.10) 

Which fermion state is occupied depends only on the convention 
adopted for the numbering of the fermion states from 1 to N. 
Each state can be called the N-th one, and the approach is in
dependent of this choice unless approximations are made. For 
applications, e.g. when one tries to reduce the number of different 
bosons, this choice may be important. 

Generators (3.1) creating pairs of fermions can trans-
f rom |a^ ̂  into any other odd-f ermior. state. Hence the represen
tation space contains odd states and is the orthogonal complement 
of that considered in sect.3.1. 
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The roots w + w , v^yu< N,and w - w N , 0 < N , are 
positive and non-orthogonal to the highest weight j, eq.(3.3) 
The corresponding E, generators, eqs.(2.5bc), determine the 
generalized coherent states 

or 

ic>-- (i+jIe*o^a r t)^p{izi*6" a+

v^iQ+

M> (3#12) 

in obvious analogy to eqs.(2.9) and (2.12). The antisymmetric ma
trix C, C %,M = -C ,)in'N-l dimensions and N-l dimensional column 
vector C, c\, = C^jcan be presented in the form of antisymmetric 
matrix C in N dimensions, as in eq.(2.11). The boson operators 
bt.. = -bt . are related to the components of the matrix C, while 

t^ My _ 
bt and bt are related to C^ and C , respectively. 

The generalized coherent states lc> , eq.l3.ll), are 
now the Thoulsss vacua with respect to the quasiparticle vacuum 
|a N> for the quasiparticle annihilation operators <X, : 

ls/-A (3.13) 
y » <^V - ^ N ? > * ' •*• j • • • • 

r > * -4» 

Similarly as in sect.3.1 one has 

http://eq.l3.ll
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2 / (ro) <ij Cy + • 
<ô\6>= olePd 1 Vc2 + ) < 3 - > 4 > 

and in view of the expression for the specific weight, 

M-d. N-4. 

i ' J ^ A ^ + £ i ( * - -a^- ^N-"U • ,3'151 

the weight function w(C) is given by eq.(3.8) after the substitution 

The boson image of the fermion state I ^f^ , eq.(2.20), for odd A 

reads 

u 2 3 A-*AJ (3.16) 

|^>^ 1V) =(A^)!.
I^ J^...4 vj'°) ^ ^*

K/-
Hence to the A-fermion state corresponds the (A-l)/2 or (A+l)/2 boson 

state depending on whether the N-th single fermion state is occupied 

or not . The boson vacuum lo) corresponds to the single-fermion 

state |a*S , eq.(3.10). The bosons b+ , M u < N, and bt , >?<N, 

play a different role. The former . add pairs of fermions while 

the latter transport the fermion from the N-th state to all other 

states. " 

The boson expansion for generators (3.1) can be presented in 

the form of the generalized Dyson expansion : 
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r+,+ /O JL J ' y TT— Ç~ T C + ^ 

3s o - A 

•J 
( 3 . 1 7 ) ^ ^ ^ £ i . E ^ E » * •> 

/ • c 

& , , O-/* * * ^ > ^ 
where 

7 ' (3.18) 

As the norm of the boson image \ty) , eg. (3.16), reads 

(i?\ v) = C 2 « ^ B - / < ) ! ! (3.i9) 

for 

•>></* (3.20) 

the Holstein-Primakoff-type expansion in the odd fermion space is iden-

tical with that in the even space when the quasiparticle operators a . 

and a. , eq. (3.18) , are taken instead of the a and a .operators. 
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4. ALGEBRA su(H) 

The particle number conserving bifermion operators 

constitute the unitary u(N) algebra. After the particle number 
A 

operator K/p , 

2 

is removed from the algebra, the remaining N -1 generators form 

the unitary unimodular algebra c/} = su (N), which is the classi

cal A algèbre with the rank i = N - 1. The Cartan subalgebra 

is formed by N-1 linearly independent generators chosen from among 

N generators 

^ (4.3) 

/» 
For simplicity, one can use all N generators H bearing in mind 

A*-
that the set 

can be used as well for any Ç. This ambiguity requires the identification 

of every two weigth vectors differing by £ 4. , 
/•*•» 

M ( 4 . 5 ) 
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A 

The roots oL and the corresponding E generators are given by 
eqs.(2.4c) and (2.5c). The components of weights related to the 
A 
H operators, eq.(4.3), can only be equal to 0 or 1. Thus the only 

' 2-4) 
allowed representations are the fundamental ones , for the 

highest weights 

A 
and the one-dimensional identity representation for 

i - o (4.7) 

Decomposing the spinor representation of S0(2N+1) 
(full fermion space) in.to the irreducible allowed representations of 
SU(N) one finds the identity representation appearing twice for 
the highest weight states 

I j > = \0> o.^d lj>= cf ... O^ IO> , 
A""* (4.8) 

where the nonuuiqueness with respect ot addtion of vector d, 
eq. (4.5), should be used. The highest weight states for the fundamental 
representations read 

Similarly as in sect.3.2, the choice of occupied states is immate
rial for general considerations and may become important if some 
approximations are made. 
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As generators (4.1) do not change the fermion number, 
the representation space sonsists of all A particle states for the 
A-th representation. The roots w. - w are positive and nonorthogonal 
to the highest weight j, eq.(4.6), (the indices l, I = 1, ..., A 
and m,n = A+l, ..., N denote the hole and particle states, respec
tively) and hence the generalized coherent states read 

*• VU\ I* J 
•I c ... - , 

v*L •J (4.10) 

Again, these are the quasiparticle vacua for the particle nuiriber 

preserving version of Thouless theorem. The complex variables C ̂  are 

considered to constitute the rectangular matrix with A rows and 

N-A colums ; the upper index i s introduced for future convenience. 

These variables determine M, M = A(N-A) , bosons b. ' . The well-
I» 

known formula for the norm of IC> reads 

where the absence of the square root in comparison to eq.(3.5) 
should be noted. 

The specific weight is given by 

where the vector A 1 was disregarded. Hence the weight function 
w(C) reads 

-N-4 

w(<?)--W[d&+(T ( Ald<? f;)] , (4.13, 
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_-A(N-A) N-A ,, + . N, 

"*=*- "° # (4.14) 

and is identical to that obtained in r e f s . 1 3 , 1 5 ) . 

All states of the considered representation are ob
tained by creation of particlo-hole pairs in the vacuum state 
|HF>, eq. (4.9), i.e. 

lu»>«(a + „oO. . . (<£ , <xi ) I H F > (4.15, 
A * k k 

and i n t e r m s o f Wick t heo rem the boson image o f |<V> i s g i v e n by 

where the square bracket denotes the antisymmetrization of the enclosed i n 
dices . The boson expansions of generators (4.1) , or ig ina l ly derived by Howe 
e t a l . 1 6 ' , read 

(4 .17a) 

(4 .17b) 

+ C- T - it """t « '•* ( 4 .17c ) 

In terms of these expansions the fermion number operator Np, 
eq.(4.2), is identically mapped onto the number A, as it should 
be for the representation in question. The boson images iMf) of 
the orthonormal fermion states |v/> are orthogonal and their 
norms read 
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V.N- / S- / K . - J\J^ . (4.18) 

for 
(4.19) N = 2 1 fc. TJb-

3 i^L "- *-
Hence Holstein-Primakoff-type hermitian and finite boson expan
sion corresponding to the Dyson-type expansion of eqs.(4.17) is 
obtained by multiplying from the left-hand side the images of 
eqs. (4.17a) and (4.l7d) by 9{l/-f^j and sfc+TJ , respectively , 
while leaving those of eqs.(4.l7bc) unchanged, i.e., 

i 

a* aj *•* Sci ' 2L A ^ ^ T > (4.20c) 

(4.20d) 

i. 

The F opera tors should be ca lcu la ted as given by eqs . (2 .32-33) with 

the N E opera tor of eq. (4.19) and the maximal number of bosons 

VA. - W U V» { A , N - A j . (4.21) 
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5. ALGEBRA sp(N) 

Suppose N is an even integer and each single-fermion 
stateju^is in correspondence with some other state \Z7, u£p, 

p. mu. . Let the phase factor s = ± 1 be defined for each LA. in 
such a way that s- = -s„ . Obviouslv, the above conditions are 
fulfilled for the time-reversed fermion states which is indica
ted by using the usual notation. The reference to time-reversal, 
however, is not essential and is not used in the followino. 

A 
The operators B . ^ , -/Ay 

A 

form the symplectic, J) = sp(N), algebra which is the classi
cal 'algebra C. with the rank I = N/2. Let the JW-th state be 
called positive (negative), U > 0 ( u<0) , for s^ = +1(-1). The 
Cartan subalgebra is given by 

A A • . 

/* JA.J* /*• s* /* /* ~ / y (5.2) 

while the E^ generators are related to positive roots as 
/ •** 

A A 
E ^ = B ^ > °'"*>*• > *" &"2"-£/+ 

(5.3b) 

and to negative roots as 



30. 

with the relation between both cets : 

E^ = E.^ , S ^ = B ^ . (5.5) 

The components of th» «eight v<=ctor of an allowed representation 
can only equal to 0,*1 ; hence only the fundamental and identity 
representations arc allowed : 

j = O (5.6) 

j = r . w v « (i)ir..)ilor..p) , (5.7) 

where tilde distinguishes the seniority quantum number ' from 
the sinqle-particle index -0 . For the given highest weight j 
many highest weight states |j "> can be found in the fermion 
space. In the subspace with particle number A, however, the 

r* 5) 
highes t weight s t a t e s are unique and the allowed values of v a re 

3 s A,A-2,...,4 (d) ( 5.8) 
being the maximal number of decoupled particles in a given 
xepresentation. 

Let the positive index d = 1,2,..., ̂  number the sta
tes decoupled in the highest weight state, and the index p= v*-l, 
, ..., N/2 the empty or paired states forming the seniority zero . 
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core, i.e. 

Hd ' i > - 'i> ' (5.9) 

H p|j> - O C5'10) 

(cf. eq.(5.7)). 

The positive and nonorthogonal to j roots, w d - w 0 and 
w d + w « (d ̂ / A ) , single out through eqs.(5.4) the generators 

which determine the generalized coherent states : 

ic^pfrê'Aaf/^MU^ . "•", 

where the factor (1+X, ) *• , eq.(5.4a), has been included in 

«V* *^ the definition of C ^ . Hence the boson representation involves 

M = 2v (N/2 -v ) + ^ ( V + I ) ^ different bosons. The specific 

weight reads 

and thus the weight function w(C) has the form 

(5.13) 

In the case >) = 1, when the representation space contains 

states formed by one fermion coupled to an even core, one 

has with obvious notations 

icj> = f z : c £ i 3 T + tf*âî|j> , (5.i4) 

<6i6> « L+ Z. ( C l ' + *il6tZ , < 5* 1 5 ) 



1-M ~N-± 

u(d) = 4M! fi. <tfi£> 

and the boson expansions for generators (5.1) read 

6« * - A A f a - N 6 ) , 

32. 

(5.16) 

(5.17) 

&y»ï *• ^ t ( d - P e ) + 2s/i>t,t>^ %>*• \M\>1 , 

B ^ ** & £ ^ + s^s^Jb^Jb^ V I H ^ ^ . -
where the bosons b* and bl" correspond to complex numbers C and 

/* 
C., , respectively, and 

N L = j b ^ + z : J ^ X ^ . 

Creation of the bcsons bt and b corresponds "to the excitation of the 

odd fermion from the s t a t e 4. t o ju. and to the f l i p process 1—*1, 

respectively. 
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6. ALGEBRA so(8) 

171 The algebra so(8) has been studied by Ginocchio ' 

in order to provide the microscopic justification of the inter-
18 ) acting boson model . It is composed of the monopole and qua-

drupole fermion pair creation operators, 

A A 
the corresponding p a i r ann ih i l a t i on ope ra to r s S and-D ,̂ and the single-

A l A A+ A A r _ , 

particle operators So = --g(Jl- N )» s 0 = s0 a n d p/* -J*"1'2'3 > 
*r+ /* A_ F 17» 
p ^ » (-1) P r ,as defined in ref. '. The integer number 

"^ 3 

k defines the j values included in the valence shell, k+w $>j 
£|k-||f while Jl= 2(2k+l) is half of the number of the valence 

r -iJ 
states. The brackets L J denote the standard angular momentum 

A 
coupling and N F is the valence fermion number operator. The 
commutation relations between above generators, as given in 

17) ** 
ref. , can be presented in the canonical form for the H and 
A 

E generators defined as s 

•V--4 > û2 = -(2P^PJ)/*fr, ( 6 2 a b > 

H ^ - f P o 1 , H j = - ( 2 P ^ + P j ) / 2 r r ) (6.2cd, 

&, = D + /{F £ - D + / / T (6.2ef) 

F - V i ' - o M ( 6' 2 g ) 
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Ê (o , - M ,o)--^3> Êco^oH^-^)^' <*'2hi) 

(oritO,±i) ^a*1*/'»-* , ho.q-A^V^i w ^ ^ - ^ / " ( e . ' a j k ) 

where the four-dimensional root vectors j£_ are written explici-
A 

tly. The E . generators for positive roots can be obtained by 

henni tian conjugation. Due to the high symmetry of the Dynkin 

19 ) 
diagram ' corresponding to SO(8), five other equivalent solu-

A /» 
tions for the H and E ^ generators can be found by means of 

**** ^w 

rotations in the root space which do not mix the positive and 

negative roots. The state |core^ , for which all valence 

single-particle states are unoccupied, is the highest weight 

state with the highest weight j : 

j=(f-,0,0,6) . U\co^>= j|to-e> . <6'3-b) 

Only the generators S and D , eq.(6.2e-g), corres-
/* 

pond to negative roots nonorthogonal to j and thus the genera-

lized coherent states read 

2 

L 
5 

The complex variables C and C„ correspond to six boson creaction 

operators s* and ù* , respectively. For the eight-dimensional 

fundamental representation with j = (1, 0, 0, 0), i.e. SL= 2, 
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the overlap ̂  | C^can be calculated by explicit expansion of the 

exponential function in eq.(6.4). Alternatively, one can rotate 

the root space so as to transform the weight m-j'into the spinor 

fundamental weight m ̂  = (-j/̂ 'l'l' a n d t h e n u s e eq.(3.5) for 

N=4 by identifying the variables C and C with the six indopen-

dent components of the 4x4 antisymmetric matrix C ^ . 

Based on eq.(A.12) of part I one obtains the overlap 

<C |C> for arbitrary SI : 

,u--2 yu-2 ~^ ^ 

while knowing the specific weight j , 

1 * (6,0,0,0) , 

the weight function w(C) can be presented as : 

(6.5) 

(5.6) 

-— -Q 

yz-2 A--2 r 

(6.8) 

The Dyson-type boson expansions for generators can be 

obtained by expressing their action on the generalized coherent 

states in terms of differential operators. As the operators S 
A + 

and D commute, one has 

£+lÔ> = 3 * | C > , C £ l C > = ^ J £ > , (6.9ab) 

where 9=A/ôCf iO.=-'c)/c)C1. . Calculating the commutators of 

S with 
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C = C*%* + £ C^ D + ; (6.10) 

(6.11a) 

lb) Le, là ,ë}] - -iCt-£(t SX-c")j*, "-1 

one obtains in terms of eq.(C.l) of part I 

--[cla-2Ca"-2tc;%)-(ÈlX£- *")*}'c>> 
where the abbreviation C = (-1) C was used. After simi-

lar considerations for the generators D s and p*" the Dyson-

y*- o /* 
type boson expansion oan be expressed in the form 

where d = (-l)d and Nn is the boson number-operator 

In eqs.(6.12bd) one should note the appearance of the boson 

pair creation operator £jd a ~ 5'S' corresponding to the 
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similar expression in the weight function w(C), eq.(G.7). 

The above expansion is identical (up to an unimportant 
20 > 

factor) to that derived by Geyer and Hahne ' . They used the 
generalized Dyson expansion (sect.3) for the generators of the 
so(8) algebra, which requires the introduction of collective as 
well as non-collective bosons, and then truncated the boson 
space by retaining only its collective part. Our derivation is 
based on the properties of the so(8) sublagebra only and does not 
makes use of the non-collective bosons in the intermediate steps. 
The equivalence of both methods hinges on the fact that the so (8) 

A 

generators E ,eg. (6.1) ,for U-j >0 and j given by eq.(6.3a) are 
at the same time the generators E^^ of SO(2N) , eq.(3.1), for 
d.j>0 and j being the spinor highest weight, eq.(3.2). Hence 
the so(8) generalized coherent states, eq.(6.4); for the discussed 
representation can be obtained from those of so(2N), eg.(3.4), by 
setting some complex variables C,^ equal to zero and expressing C 
and C by the others. On the level of boson expansion this corres
ponds to removing the non-collective bosons. 
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7. ALGEBRA su(1+1) 

4 
Suppose that one can find (1+1) linear combinations of 

of fermion and bifermion operators which fulfill the commuta
tion relations of the unitary, ir£,= u(l+l), algebra : 

*" y •> ̂ W V L J ~ °jw)t^i,lo_ 0 £ n ^ w j ; (7.1) 

B^j = B;i , i,j, *•, «a - O, */•••> L • 
18) Such a supposition is essential for the interacting boson model 

which makes use of u(6) algebra (1=5) expressed explicitly by 
Schwinger representation in terms of six boson operators BT and 
dt , M= -2, ...,2. One can relate the index i = 0 of eq.(7.1) 
to the monopole s' boson and i > 0 to the other multipolarities. 

Similarly as in sect.4, the linear Casimir operator 

* LA 
E = ZZ 8;: (7.2) l=0 

will be kept throughout with the convention allowing the addition 
of the vector , 

A. * ZL ul i .. 
to every weight vector v/ith an arbitrary factor. The Cartan 
subalgebra is given by 

A A 

H . = B i, il < 7 - 4 > 
A 

and the correspondence between E generators and roots «C reads 
«C JVM* 

(7.5) 
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Examining the spectra of H^ operators diagonalized in 
the full, fermion space one could pick out all allowed 
representations. Let us assume that the symmetric representations 
with the highest weights 

j - M w 0 .- (K/ ;0 r..,o) <7'6> 
are the allowed ones. Then the positive and nonorthogonal to j 
roots, w - Wj_, i = 1,2,...,1, determine the generalized coherent 
states , 

<- i= A. "^J A * ~ * (7.7) 

and thus the boson expansion involves 1 different bosons/ 
bj. *-» C.̂  ; e.g. five bosons for the SU(6) group of the interacting 

17) boson model 

The norm of |c> reads 

<d\d> -~ ( 1 + 21 | d - l ) (7.6) 

and after calculating the specific weight j , 

J - r ( w „ - u . > . ( w ) u 8 - J . î f L^j , «•»> 

one obtains the weight function w(C) 

w(cO' = V(ltilc! l| 2)" N" l''\ (7.io) 

W ~~ It"1 (N+L)!/Ni . ( 7' U ) 
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The boson expansion of thegenerators Bj_j has the form 

s *•* H - N 6 , 

8„- *-» * i Y*r i>0 , 
A ' 4(M-RB) $Ov J > 0 , 

B e ; " AH \o*- ; j > o, 

(7.12) 

where the total boson number operator Ng is given by 

L + 
N,, - Z- b'. b: . (7.13) 

In order to transform Dyson-type expansion (7.12) into 
the Holgtein-Frimakoff type the normalizing operators will 
be found by a method alternative to that used in 
the previous sections. It is easy to check that all holomorphic 
functions! normalizable with the weight.w(C) , eq.(7.10), must 

be polynomials of Cj, ,.,, Cj of the order not greater than N. 
Hence the physical boson space S B is represented by functions 

which form an orthonormal basis (in the bo&on sense). These func
tions are also orthogonal in the fermion sense while their fer
mion norms obtained by direct integration read 

(N-N/ô)! <f|f> «/ddwftOlff- ( " , ' . <'."> 
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Thus the orth©normalizing operators are given by 

ê B . F{r^-)!/^.'jTj , a^f&iiAM-)0Tj 
(7.16ab) 

for the F operators calculated with the use of egs.(2.32-33) 

and (7.13) for the maximal boson number m =N. Using formulae 

similar to eqs. (2.39) one obtains the finite and hermitian Holstein-

Primakoff-type expansion : 

00 » ' (7.17) 

Bu j « ^ JOT : j>0 . 
If in place of the F operators the infinite expansion 

-f^^B « 21 Yk NB , ( 7 p l B J 

i s inse r t ed then expansion (7 .17) becomes infinite and identical 

(for 1 = 5 , i . e . for SU(6) group) to t h a t proposed by Janssen 

21) e t a l . . Evident ly, the s e r i e s in e q . ( 7 . l 8 ) diverges for 

N B >N. 

In view of the expression for <clc> » eq.(7.8), the 

R projection operator ( the boson counterpart of the differential 
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operator 1̂  defined in part II) reads 

R * : U + N 6) e»cp{-Ns]: , (7.19) 

or in terms of boson number projection operators, eq.(2.29) : 

* *TL , > l ' / l r * YV- J-Kl . (7.20) 

In this way the operator P projecting the boson states onto the 

physical space can be calculated in terms of G B, eq.(7.16a), 

which is consistent with the previous observation concerning 

the riormalizability of polynomials with the weight w(C) of 

eq.(7.10). The Gsrbaczew&ki-type expansion (part II) is 

obtained by multiplying expansion (7.17) by P from the right-

hand side , 

&00 ~ ( N - N S ) z: P, OO » ." O / r •* V\ 

B o l «-» ) z_ C t J - ^ ^ J %>i -for i>o} 

fen ~ * Î ^ £ A *~ c>*>0 

with the boson expansion for P n as in eq.(2.29). 

A A 

Boson expansions for spin operators Jo# J+ can be 

obtained from eqs.(7.12), (7.17) and (7.22) by making use of the 

isomorphism su(2) =̂ so(3). 
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8. ALGEBRA su (3) 

In this section the unitary algebra of sect.7 is stu
died in more detail for I- 1, while the allowed representations 
are not restricted to the symmetric ones. The well-known example 
of the su(3) algebra consturcted in terms of bifermion operators 

22) is given by the Elliott model ' . 
2-4) The two fundamental weights of SU(3) are ' 

* * » ! * ' ' ,***»•*• ' (8.1) 

and thus the highest weights are determined by two integers, 
usually denoted by A and /*• : 

j = 4*?i + / U ^ i z «(4+/*,/^0). (8.2) 
Depending on whether fl or u or both are nonzero integers the 
highest weight is related to one of the three specific weights : 

7 =^+2^=CV,Q) J* btO^tO, (8.3a) 
J = 3m, =(3,0,0) &>, *k*0t/*.0, (8.3b) 

Three types of boson expansions are thus possible for su(3) 
each of them being valid for the class of representations rela
ted to the common specific representation. 

For ̂  j* 0, /A j* 0 all roots are nonorthogonal to j and 
the generalized coherent state reads 

,* £ IC> *vP{C0 B^ C, &„ * CI B20] I J > , (8.4) 
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where the notation of sect.7 is preserved for the B^j generators. 

Hence the boson expansion obtained makes use of three different 

boson operators bl, b{, bî related to three complex numbers C Q , 

Cj, C2- The norm o£ the state |c> can be obtained from eq. 

(A.12) of part I in terms of overlaps calculated for the two funda

mental representations. Both of them have only three dimensions 

and after a simple derivation one obtains the weight function 

(8.5) 

(8.6) 

A 
where eg. (8.3a) was used. The boson expansion for the Bj_j 

generators reads 

(8,7) 
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The boson images of the B ^ generators contain the single-boson 
terms which annihilate and create bosons for i<j and i > j , 
respectively. The complicated additional multi-boson terms ensure 
the proper symmetry conditions. 

For •% £ 0, p. = 0 the positive root <-C = wi - w? becomes 
A 

orthogonal to the highest weight j and thus the generator B21 
does not enter the generalized coherent state, eq.(8.4), any 
more. This can be formally achieved by setting Co complex varia
ble equal to zero.Consequently, the boson expansion in the pre
sent case can be obtained by setting 

in eqs.(8.7). Condition (8.8b) results from the fact that CQ should 
be set equal to zero after all differentiations bQ <-» rb/'oC!0 

are completed. 

Evidently # as ̂  ^ 0,u = 0 represents the symme
tric representations, the resulting boson expansion is identi
cal to that of sect. 7 for {, = 2. The weight functions w(C) 
cannot be obtained from that of eq.(8.5) by setting C 0=0. This 
is so because by removing the bT boson one removes 

o 
the integration over CQ from the scalar product in the functional 
space. The standard way of determining w(C) in terms of j, 
eq.(8.3b), gives again the result already presented in sect.7. 
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For 7* = 0 , ^ 0 the root <JL = wo - wi is orthogonal 

to j and the above considerations can be repeated in order to 

remove the bj boson from eqs.(8.7) by setting 

*I-o > \* K^t 
(8.9) 

After changinç: the nunbering of complex numbers CQ = C2, CÎ = CQ/and 

that of the corresponding booon opera tors / the boson expansion 

can be presented as 

(8.10) 
B a 2 *» M s , 

B - 2 ~ ^ JjO^ i <z f 

B2L *+*>}{/*-9B) •£>>/- L < 2 , 

f o r B,j - ^ j - fc'tfci $&*• •w ^£ 

a» - *'.T *; + *:K , 
while the weight fanction reads 

W « 0 = V(l+ltf+l<. , Z) y t t" 3, (8.12) 

W = Tt (/*-M)0 + 2) . (8.13) 
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9. CONCLUSION 

It was shown how the most- previously known and also some new 
boson expansions can be derived by using a general method presen
ted in the first two parts of this work. Clearly, besides the appli
cations presented here for the Lie groups S0(2N+1), S0(2N), SU(N), 
Sp(N), SU(1+1), SO{8) and SU(3) many others can be deduced for dif
ferent choices of the underlying group. Thus every fermion problem 
can be transposed into a boson space provided the corresponding 
-fermion space is an irreducible representation space for some 
compact semisimple Lie group. 

23) 
As indicated by Onofri , the holomorphic functional repre

sentations, and hence the boson representations, exist for noncom-
pact semisimple or solvable Lie groups as well. If the corresponding 
invariant measures were explicitly known it would have been possible 
to construct the boson expansion for a wider class of fermion 13) spaces. In the recent paper by Suzuki ' the invariant measures 
were derived without assuming semisimplicity of the Lie algebra 
while strongly and explicitly restricting the commutation relations. 
Hence many semisimple algebras and their representations cannot be 
dealt with his method. On the other hand it includes the non-
semisimple Heisenberg-Weyl algebra of boson operators. The finding 
of an extended approach for obtaining invaiiant measures appears 
then as a natural goal for future investigations. 
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