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ABSTRACT

A proposal of using extrapolation algorithms as an analytical -
numerical tool for the evaluation of the beam-beam effects in storage
rings is formulated. These algorithms already known to experts of
Applied Mathematics, are described in some detail.

Physical models for the beam-beam interaction effects on betatron
motion and polarization of a test particle are discussed and put in
such a form to allow the application of the extrapolation algorithms.
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I. INTRODUCTION

The detailed knowledge of the temporal evolution of a given system
that is ruled by deterministic dynamical laws, in a certain finite
interval of time, contains all the information necessary to predict its
future behavior and, in particular, at asymptotic time values.
However, the time functional dependence of the evolution is explicitly
computable analytically in a very limited number of physical systems:
most realistic cases have evolution functions that are known only
numerically and involve a certain amount of indetermination.

In such a situation the extrapolation to asymptotic time values
becomes delicate and requires particular methods of numerical analysis
that are able to avoid, as much as possible, the dispersion of the
initial information, thus providing an extrapolated temporal prediction
that is meaningful and keeps a deterministic relation with the initial
input.

It is fortunate that, nowadays, applied mathematics offers various
algorithms which can do a limit extrapolation of this type. The fact
that many algorithms are available, based on different mathematical
principles, leads one to invest their predictions with a great degree
of confidence whenever they converge independently toward a unique
limit. Approaches of this type are particularly interesting in
stability problems: one has to induce the regime conditions (or
asymptotic conditions) of a system from a large but finite set of data
that represent all the information obtained from experimental
measurements or simulation computations.

This report is concerned with stability problems in classical
mechanics, especially as they apply to the beam-beam interaction
effects on the stability of beams in storage rings (ISABELLE is a
particular case), but the method illustrated is general and, in our
opinion, can be used to search for the stability conditions in various
cases.

First, the extrapolation algorithms that are available at present
are explained. A subsequent section deals with their application to
the beams in storage rings (with particular attention to ISABELLE).

II. EXTRAPOLATION ALGORITHMS

If we are given a sequence (S n), often depending on a sequence
of parameters (X n), the relevant point consists of knowing whether it
converges or not, and, in case of convergence, the determination of its
limit S.
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Under the hypothesis of convergence we define the error S n - S
in the following form:

s n - s (1)

where the gf(n) are given sequences; accurate approximations to S are
obtained by using extrapolation methods.

We here illustrate a general procedure that is able to provide us
with several extrapolation methods: this formalism includes most of
the sequence transformations actually used for the acceleration of the
convergence. Although we deal, for simplicity, with scalar sequences
(S n), the generalization to m-dimensional vectors and matrices is
fairly straightforward.

Linear extrapolation processes. Let us assume that the sequence (Sn)
behaves in the following way:

S n = S (2)

where the g^ are given; in general S is an approximate value of the
limit of (Sn) if it converges, or an approximate value of its
anti-limit if it diverges. The calculation of S follows immediately
from the solution of the linear system (which we consider for
simplicity non-singular):

3n+i
(3)

i - 0, I,

I f the sequence (S n ) does not ver i fy Eq. (2) e x a c t l y , then the
value of S derived from the preceding l i nea r system depends on the
ind ices m and k. Let us c a l l i t E k ( S n ) . We have, from Eq. ( 3 ) ,

E,(S )
k n

gj(n) gj(n

gk(n) gk(n

k)

k)

1

(4)

gl(n) g^n + 1) gx(n + k)

gk(n) gk(n + 1) gk(n + k)

Various choices of the functions g{(n) allow us to reproduce
well-known transformations which may be used to accelerate the
convergence of the original sequence (S n).

1
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The formulation includes also a very important subset of
interpolations, discussed later in detail, namely the rational
interpolations. Let us take the fraction

S + b.f.(n) + b,f,(n) + ... + b f (n)

n 1 + c1h1(n) + c2h2(n) + ... + cphp(n)

We may reduce this formula to Eq. (2) by setting g^(n) = f^Cn),
g2(n) = f2(n), ..., gm(n) = fm(n); gm+i(n) =S nh 1(n),
gm+2(n) = Snh2(n), ..., gm+p(n) = Snhp(n) . A particular case
of rational interpolation-extrapolation is represented by rational
fractions which have their numerators and denominators as simple
polynomials of Xn: fj(n) = h^Cn) = X~x for i = 1, 2, ..., k/2.

Wherever the sequences g^ do not depend on (Sn) we deal with a
linear sequence transformation, whereas the transformation is nonlinear
if the g^'s depend on (S n).

The E-Algorithm.* The computation of the numbers Ek(Sn) for all
k and n can be accomplished by the following recursive algorithm
(E-algorithm):

E^ n ) = S n n = 0, 1, ...

So"i = 8i ( n ) i = ]> 2> ••• " = 0, 1, ...

and for k = 1, 2, ...; n = 0, I

(n) (n+1) F(n+1) (n)
_(n) _ \ - l gk-l,k " k-1 8k-l,k . .
k = (n+1) (n) ' ( 6 ;

sk-l,k 8k-l,k

Jn) (n+1) _ (n+1) (n)
(n) = -V-1,1 gjc^ljc. gk-l,i Sk-l,k > i = k + ,, k + 2, ...(7)

&k,i (n-fl) (n)
8k-l,k ~ Bk-l,k

where E ̂ coincides identically with Ejc(Sn).

The fundamental algebraic property of the general extrapolation
defined above is summarized by the following theorem:
if

Sn = S + ajg^n) + ... + akgk(n), ¥ n

then
Ek(Sn) = S, ¥ n
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and, more generally,
if

Sn = S + ajgjCn) + ... + akgk(n) + ..., * n

then

hk(bn) b + a k + I g k ) k + 1 + a k + 2 g k j k + 2 + ..-, *•]<.,n"

Convergence theorems. Convergence of the Eg11' sequence in the
various columns at fixed k and its degree of acceleration in comparison
with the initial sequence (Sn) are characterized by a set of
theorems.

Theorem 1. If lim Ei,_i (S_) = S and if a and g exist such
— — — — — n-w
that 0 < a < 1 < 3 and Igj^k^k-l jJ^Ca.tf) V-n > N, then

his Ek(sn) = s.
Theorem 2. If lim Sn = S, if lim [g^n+1 J/gjCn) ] = b^ i 1,

and if b. ^ b V i / j, the lim E,,(S ) = S V k.
1 j n-x" K n

Theorem 3. Under the conditions of theorem 2, if

A-481 ̂ k-l^n+l^ Sl/[Ek-l(Sn}" S] = bk' then Ek{Sn} ~ s

= o [ E k . 1 ( S n ) - Si.

Theorem 4. If the conditions of theorem 2 are satisfied, if

gi+,(n) = o [gi(n)] if. i, and if Sn = S + ajgjCn)

+ a2g2(n) + ..., then Ek(Sn) - S = o[E (S ) - S] ¥ k.

The importance of Theorem 4 is evident. A family of sequences
satisfying the condition g£+j(n) = o [g^Cn)] is called a scale
of comparison, and a^gj(n) + a2g2(n) + ... is the asymptotic
expansion of Sn - S with respect to it. Theorem 4 guarantees that
sequences whose error has an asymptotic expansion with respect to a
given scale of comparison can be accelerated by an extrapolation
process (condition sufficient but not necessary).

III. RELEVANT CASES FOR APPLICATIONS

From the E-algorithm, various extrapolation techniques are easily
obtained which have been known for a long time and are still considered
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the standard methods to start from in order to search for the limit of
a sequence. We here refer to the so-called e-, p-, and r-algorithms,
and finally the 9-algorithm.

£-Algorithm. If we are given a sequence S o, Sj, ..., we may relate
its elements to the partial sums of a power series: we have the
funct ion

f(A) = S o + (Sj - So) ), + (S2 " Sj) )
2 + ...

and define

where

n-1
= S

(8)

(9)

- S^; thus fn(l) = Sn.

The Pade" approximant [k, k + jJ of f(A), calculated at A= 1, defines
the s •j,^ sequence:

C2k = lk' '' + KX)11 • <10)

From the standard Pade' representation we get:

'2k

'•Si

• si+k-l

1

;sii+k

bi+k

.AS i + 2 k_ 1

(I!)

Equation (11) coincides with the Shanks transformation defined by Eq.
(10). For k = 1 we obtain ci = (Si+1 S^ - s2+j)/(Si+2 " 2S.+ + S.),
which is the familiar Aitken s <; ̂  acceleration technique.
Historically Shanks^ generalized the r; and established its connection
with the Pade' table. The recursive formulae of the ?-algorithm, first
given by Wynn , are

Eo '' S i ; E-l = ° ; £k+l = ^-J
(12)

The sequences (rM are normally set out in a triangular table:
iC
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The columns that have even values of the low index, namely £2k'
are the ones that converge to the same limit as the initial sequence
(S^): they are strictly related with the Pade' approximant method and
use its convergence properties. The odd index columns C2k+i represent
an intermediate step of the calculation which it is necessary to compute
in order to use the recursive procedure. If the initial sequence (S^)
diverges, the algorithm may produce a convergent sequence from it and
thus find an accumulation point which is not the limit; we call this the
anti-1imit.

Generalization to vector and matrix sequences. Any time one has to
deal with vector or matrix sequences that tend to a vector or a matrix
limit, one may use the ^-algorithm to accelerate them. In order to use
it, we must first give a definition of vector inverse (and matrix
inverse). A suitable choice is the Samuelson vector inverse: given an
n-dimensional vector X(x] , X2 > .... ) we define the vector

(X)"1 = (X . X*)"1 ->
X (13)

where X* is the complex conjugate of X. For matrices one can use either
a similar definition or the usual matrix inverse (which appears computa-
tionally more expensive).

Applications of the ^-algorithm in the vector form are very
general: let us consider the sequences (Xj) generated by some
nonlinear functions F(Xj_):

li+l (14)

It has been proven that, when F(X) is analytic, quadratic convergence to
fixed points of Eq. (15) is obtained by the ^-algorithm, without
derivatives of F and even when F is not a contraction mapping.
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pand r-algorithms. These two algorithms are related to the rational
interpolation-extrapolation defined by Eq. (5), but they can be derived
directly from the Pade "" approximants of type II. Let us write S^ in
the following manner;

S -

1

(15)

where X^ is often chosen equal to i or 1/i or some monotonic function
of either of these. The extrapolation limit (î «°) is for Xj -y 0, in
which case the ratio po/qo becomes the interesting quantity, or for
X{ -> <*>, in which case we must choose Z = m to find pf/q f .

For the case X,-
algorithm (Wynn-5):

ino = 0 ;

K the ratio

Po = S ;
k + 1

can be calculated using the

X - X
' i+^+1 i

- P
k_,

P k " P k

The even index sequences r ^ accelerate the calculation of the
limit, whereas the odd index ones enter as an intermediate step into
the recursive calculation (as in the ;-algorithm).

The case X^ -> 0 allows us to evaluate the po/qo ratio from
diagonal (. = m) and off-diagonal ( J- T m) approximants; the r-algorithm
calculates it for a staircase sequence of type II approximants:

r_, = 0 = S;

rl- = "k-1 X.

i+l
- rk-1

1 -

i+l
rk-l - rk-1

rk-l
i+l

rk-2

07)

- 1

•^algorithm and its generalizations. A further improvement to the
determination of the limit of a sequence (S£) is achieved nowadays by
applying the 6-algorithm to c:

-1 = 0;

*2k+l «2k-l

H2k+2

9O - Sj:

(18)

(19)
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where

Afi « fi+1 _ fi.

As for the £-algorithm, only the even numbered subscripts are
expected to give approximations of S. In a very similar manner we
deduce for the P :

92k+l = 62k-l

i > i Afi2kX

92k+2 = ^pt1 " ^k+l j~'~
AD

2h+l
where

D2k+i -

'*2k+l

The fl columns with even lower index give the convergent sequences.
This new algorithm is a generalization of the 9-algorithm derived from
thef- and is one of the most powerful acceleration methods actually
known. 1f we apply it to the F-algorithnt we have:

e1 =
o

"k-1 hni
 uknl (23)

with n£ =

and g£ j defined by Eo. (7).
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IV. THE EFFECT OF THE BEAM-BEAM INTERACTION ON THE STABILITY AND
POLARIZATION OF A TEST PARTICLE (WEAK BEAM-STRONG BEAM) IN STORAGE
RINGS

Bunched and unbunched beams undergo instantaneous periodic
solicitations at their interaction points (intersection points for the
case of intersecting rings) during accumulation in storage rings,
because of the so-called beam-beam interaction.

We analyze here a simplified version of this complicated problem:
the betatron oscillations of a test particle belonging to a low density
beam that interacts with a high density beam (weak-strong case). In a
situation of this sort the beam-beam forces produce periodic
instantaneous changes of the momentum components of the particle
betatron motion and act on the spin precession around the static field,
determining a sudden change of the spin components and consequently a
variation of the polarization.

We introduce the betatron elongations x(t), z(t) in the vertical
plane perpendicular to the main revolution trajectory (assumed
horizontal): both elongations are affected by the kick-effect in the
case of head-on collisions (for instance in e+-e~ and p-p rings),
whereas only the vertical amplitude z(t) feels the beam-beam force in
the fixed angle (unbunched beams) collisions (ISR and ISABELLE).

We must take into account other contributions: the synchrotron
modulation of the tunes, the damping due to radiation, which is
relevant mainly for electrons, and the synchrotron modulation of the
beam-beam forces that is present in the bunched beams.

The betatron oscillations x(t), z(t) can therefore be written as

rt 00

x + 2 Y V • x + < f i - A <f> ( t ) ] x = - C ( t ) . x . $ ( x . x ) . L 6 ( t - n i ) ( 2 4 )
X X A X "

z + 2 Y Z . z + u ) 2 f i - * z < t > z ( t ) ] z = - n ( t ) . z . i K x . z ) . L 6 ( t - n T ) ( 2 5 )
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where we assumed that the first collision between the beams takes place
at the instant t = T = T/m, with T = 2TT/U>D being the revolution and m
the number of interactions (intersections) per revolution. Here, ̂ ( t ) ,
it>2(t) are periodic functions with period Tg = 2v/^s equal to the
synchrotron oscillation period and they satisfy the requirement that
I4»xl, l*zl 1 1 with |Xxl, |X2I « 1. Also, C(t), n(t) are the
synchrotron modulated beam-beam couplings: they are periodic with a
frequency which is twice the synchrotron frequency. A convenient
choice is <l>x(t) = <f>z(t) = cos a)gt; E(t) = ?Q(1 + Axcos 2u>gt); n(t) =
~no(l + Azcos 2u)gt) with Ax, Az = 1.

The functions <j>(x,z), ^(x,z) are related to the electric and mag-
netic fields acting on the test particle at the instant of the kick
and can be derived easily in an analytical form once•the charge and
current densities of the beam are assigned. If thece exhibit, as
usually is assumed on physical grounds, a Gaussian distribution in x
and z, and are constant along the s coordinate, the functions $ and ty
achieve a simple integral representation (a, b being rms Gaussian
parameters of the charge density):

<Kx,z) = |dt[a2 + t ] " 1 / 2 . [b2 + t ] " 3 / 2 exp{-
o a

<Kx,z) = /dt[a2
 + t ] - 3 / 2 . [b2

 + t]'1'1

o

The coupling constants 5Q, TIQ depend on the particle density (on the
number of particles per bunch, Ng, in the bunched beam case), the type
of particles, and their average scalar velocity along the main
trajectory; for electrons and positrons we have

where rg is the classical electron radius.

If we are given two linearly independent solutions of the
homogeneous equations, obtained from Eqs. (24) and (25) by dropping the
beam-beam forces (which means K = n = 0), then we can solve the system
(24), (25) exactly. Indeed, after changing variable from t to 9 = w^t
and rewriting the differential system (26), (27) with the new

2
derivatives (x' = |pj , x" = — j , etc.) we find the following equations:

d 0

x" + 2rxx' + «2[i - Ax<f.x(e/wR)]x = - x . * . L sns(e - nem),(20)

L V ~ n V (30)
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6m

n n = no[i + A2 cos

and

At this point we introduce the sequences of functions
(k = 1, 2, ... n) xk(9) = AkM(9) + ^ ( 9 ) , ̂ (8) = C^PC 0) + DkQ(9),
with M, N and P, Q being linearly independent solutions of the
homogenous system associated with Eqs. (29), (30); and we make the
physical solution of Eqs. (29) and (30), x(6), z(9), coincide with
XL- > y-i. i-n t n e open interval f— (k - 1), — kl.

Integration of the system (29), (30) along the nth infinitesimal
interval [—• n - e, ~— n + e], ioined with the continuity conditions
for the elongations x(0), z(9), gives us the following formulae:

(3D

[Obviously x;+1(ll n) = x'gl n + e) E x'(
 + > ( ^

n), ^ ( ? n)J,(33)

«). *n& n)].(34)

and

(s I n). and for

Eqs. (31) through (34) give us the constants A ,, Bn+i, C +

Dn+^ as linear recursive functions of An, Bn, Cn, Dn or equivalently
the elongations x( ), z( ^ ) and their right-handed derivatives

'(+)(l^n): Z'
(+)(^n) in terms ofxf(n-l)], «||I (n - 1) ],

,.(+)gi(n -1)], z'^[^(n - 1)]:

- 11 -



f
H
o
No " Mo

f2.

^ ^ t , 1)1 (35)

(n -

V o - MoNo

~ V^n)*[x(^n), ,gln)] (36)

where M Q = M(0), M^ = M'(0), NQ = N(0), N^ = R'(0), and similarly for

t ^ ^ + ^ ^ ^ s u b s t i t u t i ° n s M •• P, N + 0, "n
 + 1,,, and

Note that ttje coupling between the two oscillators x, z is due to
the nonlinear beam-beam terms <j> and if- It is at this point that the
algorithms illustrated in Sections II and III can be applied to search
for the temporal asymptotic behavior of the moduli of the elongations
x(9), y(9), or equivalently in the discrete variable n, for n • °° in
the various different physical cases. To be more explicit, once we are
giver, the ring parameters and the input data (tune, frequency of
revolution, initial kinematical conditions of the test particle,
tuneshift, etc.), Eqs. (35), (36) and the analogous ones for z, z
give us the value of the elongation x after the nth kick in terms of
the values of x, z, x1, z' after the preceding one. One can therefore
consider the moduli of the maximal elongations in each interval

t m1' m* J an(1 t a k e t h e l i m i t o f t h e sequence so obtained for
n •*• co. The limit, if it exists, gives us an answer on the stability of
the betatron oscillations. The amount of information that our
simulation model produces through the detailed numerical computation of
the values x(2in/m), z(2irn/m) with n going from 1 to 10^ appears to be
sufficient for a practical evaluation of the limit.

The number of revolutions in the ring for which stability against
beam-beam interaction is requested is of the order of 1 0 ^ , 10**; and a
numerical computation of the formulae (35), (36), etc., from n = 1 to
n = 1 0 ^ , 10 seems impractical and nonrealistic on a digital computer
at present. Instead, use of the proposed method, once the first 106,
1O7 values of the amplitudes have been memorized, seems able to supply
the answer sought, namely whether or not stability is obtained for a
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given set of input data. Simple models that may already simulate the
behavior of existing and future storage rings can be obtained from the
system described by Eqs. (24), (25). In particular, one can derive the
one-dimensional case valid for fixed angle collisions between protons
(1SR and ISABELLE) characterized by beam-beam interactions acting only
on th'_< vertical oscil lator. In this situation, we neglect damping and
keep or do not keep the synchrotron modulation of the tune and of the
tuneshift according to the two situations of bunched and unbunched
beams.

A very pood approximation to the actual beam-beam force in these
two cases is given by a simplified expression of the <Kx,z) function:

z//2 '0

the error function 4>(z) = — / dt exp{-t2} or
/IT O

1 - e -z 2 /2o 2

$ (z) = 5 r— for the unbunched an'i the bunched one-dimensional
z 2/2o2

models respectively. Analytical details are given in the Appendix.
Note, however, that the approach based on extrapolation to the limit
can handle the one-dimensional and the two-dimensional cases in a
similar manner. But the physical results and conclusions could be very
different in the two cases, because the coupling among different
degrees of freedom may generate effects that are absent in the one-
dimensional case.

Effects on Polarized Beams. Let us consider the test particle of a
low-density beam in a certain spin polarization state. In electron-
pofitron storage rings the beam becomes polarized spontaneously
because of radiation emission (magnetic dipole transmit ion), reaching a
very high deeree of polarization, along the static bending field ft ,
as various authors have pointed out; in proton, antiproton or heavier
particle rings the polarization of the beam must be obtained by
different ad-hoc methods. " If there is a degree of polarization PQ

under regime conditions without the beam-beam forces, how is it
modified by their presence?

As far as the numerical calculation is concerned, one picks up a sub-
set of input memorized data with particular "a priori" established
criteria and gives them to the various algorithms as an input, thus
producing several outputs which must be compared with one another.
Arnold's diffusion is rigorously absent when the perturbed betatron
oscillation is one-dimensional, and is normally expected to be very
weak for cases with higher degrees of freedom.
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We develop here a semiclassical formulation of the motion of the
spin, first introduced by Thomas and later developed within the
relat ivist ic quantum-mechanical scheme by other authors,11 our final
objective being to determine the spin-behavior after many revolutions
(order of 10 *•). The operator S, representing the spin operator in the
rest-frame of the particle and there associated with the intrinsic
magnetic moment PQ= gehS/2mc, in the lab system undergoes the following
equation of motion:

" (a + T + T ) *X*I (37)

where a is the anomaly: a = (g - 2)/2.

We separate the static field B"o in the lab system from the fields
created by the dense beam in periodic collisions with the test
particle; under the physical assumption that the collision time is very
small in comparison with the precession of the spin around B , we can
write for B and E the following formulae:

°L 6(t " n T ) ' ( 3 8 )

^ * gl ' Ii 6(t " nT) • (39)

»o is static and should be uniform in an ideal ring but, according to
our reasoning, could also be taken as space dependent; B, and E\ have
space-functional dependence, already considered in the betatron motion,
related to the charge and current distributions in the dense beam.

We may change variables, as before, 9 = tô t, and introduce the
infinite sequence {*^(9)} (k = 1, 2, ...) defined as follows: the
vector ^;,(Q) coincides with 3(8) in the spin interval — (k - 1) < 8 <
— k, and therefore verifies the equation

A ... .. ... . (40)
and is uniquely assigned in terms of its value at 9 = — (k - 1);
more precisely

§k(9) = ?(9), i^yp1 (k - 1) ] (41)

where \[^ (k - 1) ] = § [ ^ (k - 1) + e] , c * 0 .

If 5 is uniform, perpendicular to the orbit (B • BQ) = 0, the
solution (41) is a simple precession of angular velocity

^ = me" La + •?] * o = wz (z = unit vector of the z-vertical axis):



with R(B) =

"9 = e - i l

= R(0) • \ (2-* (k - 1))

cos [-JJ- BJ

w B
" s i n (-5^-)

0

(42)

s i n

cos

We can now integrate Eq. (37) along an infinitesimal time interval
(nx - e, nT + e) or. equivalently, using the 6 variable, along the
interval [21 n -e, |* n + e j:

(43)

where sf— n) means -i- S(-=— n + e) + §(— n - E] I andMil -1 Z L v m y vm ' J '

the vector W is

B can be made to coincide with the velocity of the main orbit motion
and is known. x [ — nj is the position vector of the particles in the
lab system and ran be considered rigorously the superposition of the
revolution x^(t) wi":h the betatron-syrxhrotron oscillations;

furthermore 3(£L n - e) = Jn(|! n).

From Eq. (43) and our definition of s M — n J we obtain the
representation of the spin operator after the nth kick:

(2I n + e) gl „ - c) (45)

and finally the relation between the (n - 1) and the nth kick:

Sgl (n - 1) + e]).(46)
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The case of homogeneous B gives

( gl (n - 0.(47)

Note that the vector w contains the whole nonlinear contribution of
the beam-beam interaction and couples the spin operator with the
orbital classical motion.

The operator S is considered an Heisenberg operator, the
evaluation of the matrix elements <f|S(t)|is where If> and |i> are
time-independent spin states is straightforward and because of the
linearity of the spin operator Eq. (37), gives the following
representation:

<fl£( x] .
m 9_2TT(n-l)

tn

and similarly [Eq. (47)] for BQ uniform field.

Knowledge of the matrix elements <f|S|i> for any 9 provides all
the information on the states of polarization of the test particle at
the corresponding time t = S/^. If we are given the polarization at
t = 0 we can calculate it at all instants t, and in particular in the
nth interval ~ (n - 1) < 9 <^~— n. The extrapolation algorithms in
principle allow, at this point, calculation of the eftects of the beam-
beam interaction on the polarized test particle under regime conditions
(n > »).
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APPENDIX

Choices of the gi(n) that reproduce well-known transformations
g^(n) = X^ Richardson extrap. process (Xn being a given

auxiliary sequence of parameters)

l G-transf.

= (X-)n Summation process

= A V i - i ( S h a n k s t r a n s f .

1
R:(") - (AS ) x Germain-Borne transf.

g^(n) = [X* /g(n)]ASn Levin generalized transf. (g being given)

1 n I So-called process p
«i(n) = AS n + £_ 2 j (la)

Particular Cases of the Betatron Motion Equations

If we neglect the damping term (proton case) and assume
<Kt) = cos to t, \ = CQ(1 + cos 2UJ t) dealing with the one-dimensional
bunched problem, we have the equation of the vertical elongation z(t)
only, which in the variable 9 = ô t becomes

z" + v2(i - X cos ̂  6jz = -z<Kz) . Jn Cn5(9-8m . n ) (2a)

with $(z) = i
zl{la1

Equation (2a) has an exact solution in terms of the Mathieu
functions.*'- More specifically we may write z( 8) as

z(6) = AM(0) + BN(8) (3a)

where M(9) and N(9) are the real and the imaginary parts of the Mathieu
function F, and A and B are real arbitrary constants. The relations
between the elongation z(2irn/m), its derivative z'[(2TTn/m) + z], and
z[(2TT/m)(n - D ] and z'[(2n/m)(n - 1) + e] are:
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[ £ < « - D ] + S z - i ^ C n - 1) + s] (4a)

. [ ! ! „ + e ] = 5 2 [ i " ( n - i ) ] + ^ . g l ( n - l) + e

« - [^M (11) - M^(1I)][MON; - M^Nj"1 (6a)

w h e r e N Q = N ( o ) , M Q = M ( o ) , N ^ = N ' ( o ) , a n d M ' ( o ) = M ^ . B e c a u s e X « 1

M(6) = c o s [ v — 6j - ^ — + ̂  c o s [ e — [ 7 + 1 ] J ̂ _ _ ^ o s [ 6 — [ T - l j

N(6) = - s i n fv r r 6] + — 9 s i n [e -r^ (-r + l ) l

§ s i n [ S ^ _ x J ] , ( l l a )

and, at 6 = 0 ,

M = 1 + 9 ; N,, = 0; M' = 0; N' = -$• f-v + q — ^ ]
o 2(v2-l) ° ° ° "R 2 ( V 2 - 1 )

where q = X/2v2 and v2 = v2

The limit X + 0 gives the simple harmonic betatron osci l lat ion
plus the nonlinear effect of the beam-beam forces. This simplified
situation is physically valid for the unbunched beams, as a good
approximation. However, one must substitute <|>(z) in Eq. (2a) with the

2 z/V2. a j
error function - ^ J dt exp(-t ) .
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