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ABSTRACT 

The effect of spatial electron diffusion on the stability 
properties of the universal drift mode in a sheared magnetic field are 
studied using an initial value code, TEDIT. Previous studies of this 
problem by Hirshman and Molvig relied on an approximation to the 
electron resonance function equivalent to making a Krook approximation 
for the spatial diffusion operator, D 92/3x2. The present work treats 
the diffusion operator precisely and also allows the treatment of a 
realistic parallel velocity dependence of the diffusion coefficient, 
D = DCv ||). For the case of a velocity independent diffusion 
coefficient, the qualitative features found by Hirshman and Molvig are 
observed. The modes with kyp^ > 1 destabilize at small values of the 
diffusion coefficient and saturate at higher values, corresponding to 
several orders of magnitude in D. There are quantitative discrepancies 
with the previous work that, near the saturation point, can be 
accounted for reasonably well by a simple asymptotic theory. However, 
when the code uses a more realistic form, D = DQ (Vg/iVji) 
x exp(-v0

z /V||2) + De, where Dc corresponds to the (small) collisional 
diffusion, and DQ parametrizes the turbulence level, then a 
quantitative difference is observed. Instability persists down to zero 
turbulence levels, DQ = 0. This is essentially linear instability due 
to collisional diffusion alone. 

v 
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I. INTRODUCTION 
Recent theoretical studies of turbulence associated with universal 

modes in sheared magnetic fields have led both to enoouraging results 
in the development of a self-consistent theory of universal mode 
turbulence and to soalings which show reasonable points of agreement 
with experimentally observed anomalous transport in tokamaks.1'2 As 
discussed in this earlier wcrk, the basic physical mechanism 
responsible for destabilization of a universal mode is the radial 
diffusion of electron orbits. This diffusion arises physically from 
either collisions or intrinsic orbital stochasticity of the Chirikov3 

type. 
Since a quantitative description of such a phenomenon is 

inherently dependent on the nature of the nonlinear diffusion of the 
electron orbits and since the earlier work 1*2 is based on only the 
simplest models of this diffusion operator, a more ' rigorous treatment 
of this operator is needed. In addition, earlier treatments have not 
included additional important effects like the electron and ion 
temperature gradient. 

An initial value code, TEDIT, capable of calculating radial 
eigenmodes in the vicinity of a mode-rational surface in a tokamak, had 
been developed1* earlier. Because of the inherent simplicity of the 
electron kinetic equation in this numerical model (described below), 
inclusion of a physically realistic diffusion operator is 
straightforward and in no way complicates the calculation of 
eigenmodes. Indeed, the main virtue of this initial value approach is 
the flexibility it allows in dealing with this operator, the 
coefficient of which can include v( dependence. This is noteworthy 
because the inclusicn of such operators in shooting codes (such as used 
in Refs. 1 and 2) is intractable, except possibly in some simple 
limits such as that of a constant diffusion coefficient. In 
particular, the earlier work1'2 used a Krook-type approximation for 
this diffusion operator. The effect of this approximate operator on 
the wave-particle resonance is considerably different from that of a 
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real diffusion operator, even though qualitatively the effects on the 
eigenmode may be similar. In addition, inclusion of the electron 
temperature gradient is straightforward. Although the method is 
applicable to finite beta, this paper will be concerned mainly with 
understanding the difference between Krook-type approximation results 
and diffusion operator results, and in examining the role of electron 
temperature gradients. 

The qualitative features described In Ref. 1 are confirmed. 
Quantitative discrepancies are observed, but can be explained, near the 
saturation point, by a simple asymptotic theory. Extending the 
calculation nunerically to include a realistic parallel velocity 
dependence and colllsional diffusion in D shows that the unstable range 
can extend down to zero turbulence levels. 

II. PARTICLE DYNAMICS AND TEDIT CODE DESCRIPTION 

The TEDIT model code*4 is an initial value code that follows the 
time evolution of all perturbed quantities as described below. One 
begins with an arbitrary perturbed 4>, fe. and f ^ Regardless of the 
initial functions, if a growing (unstable) eigenmode exists, it will 
eventually dominate the long time solution. By definition, an 
eigenmode exists when all quantities <|>, fe, and fj vary as e~iwt, where 
the elgenfrequency u is the same for all x. 

Both electrons and ions are described kinetlcally in the TEDIT 
model. The equations are written in a slab geometry (x s r) and are 
described here in their zero beta limit. The drift-kinetic equation 
for the perturbed electron distribution funotion is 

2 
f-i + ik'xv. - D±_)f„ l3t 1 1 dxZJ e ( 1 ) 
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v 2 

- klxvn - iDnz}<» • - i f Fe{u),[l + T,e( " 
O * Q 

Fe and ffi are the unperturbed and perturbed electron distributions 
gyroaveraged and integrated over v^, respectively, <j> is the perturbed 
electrostatic potential, and 

where ky is the poloidal wave nunber, Lg is the shear length, and Ln is 
the plasma scale (radial) length. The equation for D is given in 
Ref. (1) for diffusion arising from the enhanced drift wave 
fluctuations themselves. A detailed derivation utilizing the 
properties of orbital stochasticity has been given recently.5 The last 
term on the right-hand side of Eq. (1) assures that the adiabatic 
response, fe = Fe, is unaffected by diffusion, a consequence of a 
dynamic constraint peculiar to the E x B radial motion.6 This terra 
would not appear if the diffusion were a result of collisi&.is, although 
for the small values of D appropriate to that case, one can show that 
this term has an insignificant effect. In general D is a function of 
v|• with the dependence varying according to the underlying cause of 
the diffusion. The correlation frequency. 

k e = d (ln n0) 
d lln Te) 

[(*',ve)2 § ] l / 3 (2) 

gives the time the particles remain in resonance with the wave. In the 
earlier work1, this diffusion operator was replaced by the correlation 
frequency, in which case Eq. (1) becomes 
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(•k * iknxvn + uo)fe 

v 2 
= - i J- Fe{w#[1 + ne(-p7 - 3)3 - kjxv, + iu>c} 4) . (3) 

xe ve c 

We will refer to this as the Krook approximation. 
The finite-gyroradius ion response is calculated from linear 

theory: 

(ji * ik'l* v.) hi - F i ( W l • n t u 4 ' - {)] 6 X 

+ T k',x V|)[r0 + (r0 - I V P ^ ] 

-nieu,{by(r0 - i y - [r0 - 2by(r0 - iy j p ^ ^ } ) * . (n) 

We calculate the distribution 

hi s gi "" Fi [ ro + <ro " ri><>i2 

where = fA • — F ^ is the nonadiabatic response, because, for 
nunerical computation, it is advantageous to have no time derivatives 
among the potential driving terms [see right-hand side of Eq. (1)]. In 
the limit of zero ion gyroradius, reduces to the total ion response 
f T h e notation in Eq. (1) is 
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Fi = nv^ 
-V 2/v 2 e vll /vi 

d (In T a) 
ni= d (in n0)f p i S 7 S ^ ' V* V4 = „ 

/2Ti 
m — • 
i 

T r
n = exp(-by)In(by), b y = (k, ypi )2 . 

The time-evolution drift instability computer code TEDIT uses an 
implicit-iterative scheme to advance the electron and ion kinetic 
equations in time, with <|> being calculated from the quasi-neutrality 
condition 

[1 - r 0 - <r0 - r y p ^ ] * s I I r dv.Ch, - fe> . (5, 

Equations (1) and CO are advanced in time until 

, 1 3+(x,t) 

becomes independent of both x and t, indicating that an eigenmode of 
frequency u has been established. For a given set of physical 
parameters, TEDIT yields the most unstable eigenmode. 
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III. NUMERICAL RESULTS AND INTERPRETATION 

In Fig. 1 we show the growth rate as a function of the diffusion 
parameter ioc for various poloidal wave nunbers. Three sets of results 
are shown: (1) those obtained using the Krook-type approximation, 
(2) those obtained from a better approximate treatment of the diffusion 
operator in a shooting code,7 and (3) those obtained from TEDIT using 
the full diffusion operator. 

The Krook approximation curves may be obtained either from a 
shooting code of the type used in Ref. 1 or from TEDIT using Eq. (3); 
results from the two methods agree extremely well. Use of the 
approximate diffusion operator is an attempt to include diffusion in a 
shooting code and is shown in order to corroborate the TEDIT results; 
in these results, D was assuned to be independent of vR. 

The noteworthy features are (1) higher growth rate in the case of 
the full diffusion operator and (2) the significantly larger diffusion 
required to stabilize the mode. Both of these phenomena can be 
understood from the large u. asymptotic limit of the diffusive electron c 
response outlined in the Appendix and displayed in Fig. 2. In the 
Appendix we show that both the Krook approximation and diffusion lead 
to a response of the same qualitative form in the limits WTc < 1 and 
xc/xT < 1 (xe 2 uc/k]|ve, xT = mode "length") at both small x (x < xc) 
and large x (x > xc). The difference amounts to a numerical factor in 
the small x response. Since this region plays the dominant role in 
determining stability, we use this limit to interpret the numerical 
results. Accordingly, assuning that the shear (or ion) damping is 
constant at constant frequency (here taken as the local dispersion 
relation frequency for the universal mode) and that the electron 
response is proportional to Tc» the correlation time, we can 
approximate the growth rate at large uc by 
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Y Y i wc 1 
(b) 

whereas evaluation of the diffusive electron response (Appendix) gives 

2.82a 
Y 88 - Y i • (7) uc 1 

By evaluating a from two points on the Krook-type curve in Fig. 2 and 
translating the results to our diffusion operator curve, we see good 
agreement. The dots indicate y as calculated using the scalings in 
Eqs. (6) and (7). 

01' course other effects come into play. The vR dependence of the 
correlation time in the full diffusion model (upon integration over all 
particles) affects the magnitude of the net dissipation. Also, the 
wave frequency is dependent on o>c and decreases as otQ * 0. In fact, as 
iu„ + », the wave frequency asymptotes to the local disperion relation 
solution, a^t indicating that the diffusion operator has, in effect, 
destroyed the cold electron response near x r 0. Still another effect 
is a modification of 4 at very large uc. 

We can further observe the radial perturbed eigenfunctions <|>(x) . 
In both the small uc region [that is, where y(uq) is increasing for 
both the Krook-type and diffusive cases. Fig. 3a] and in the large o>c 
regime (Fig. 3b), the eigenmodes are very similar, whether calculated 
by the Krook-type approximation or by the diffusion operator. [For 
large a)c, we compare results at ue(diffusion) = 2.5 u>c(Krook), with the 
nunerical factor sufficiently close to 2.8 to cause a negligible 
difference in 
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Note that x^ (= w/k'Jv^ has moved well into the body of the 
eigenfunction and there is not a clear outgoing wave region. This is a 
consequence of large kyplf where x^ + x^. Nonetheless, the electron 
growth and ion damping regions are separated spatially, and the 
eigenfunction apparently convects the energy from electrons to ions at 
the conventional shear damping rate. 

A. Velocity-dependent diffusion coefficient 

As derived earlier,1 D (for electrostatic perturbations) is not 
constant but is proportional to Ivjl"1 at large Vg, and at small v(| the 
turbulent diffusion approaches zero because the electron resonances are 
beyond the eigenfunction. For use in Eq. (1), we, therefore, take D 
to be of the form 

Dc + Do T7 - exp(-
II1 

(8 ) 

Here, D_ represents a residual diffusion on the order of magnitude of v 

collisional diffusion, vc represents the cutoff velocity below which 
turbclent diffusion •*• 0, and DQ is determined by the amplitude of $ 
[see Eq. (2)1. The parameter vc/ve depends on details of the large x 
behavior of the perturbed <{> and is treated here as a parameter on the 
order of Xc/Xj, Results showing the growth rate of the nonlinear 
universal mode (Fig. 1) reveal several important points: 
(1) The residual diffusion arising from collisions is sufficient to 

destabilize the universal mode in the absence of wave-induced 
stochasticity, thereby eliminating the need to argue for a 
threshold level of stochasticity from other sources. 

(2) The saturation level of diffusion appears to be strongly dependent 
on the details of wave absorption at large x, here represented by 
the parameter vc. The reason for this is because fe, which peaks 
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strongly about v(| = 0, has a fine structure from wave-particle 
resonances near v = 0 (and large x). Unlike the D = constant 
case, this fine structure (on the order of 10~3ve) is not smoothed 
out by spatial diffusion. It does suggest that velocity-space 
diffusion from Coulomb collisions could have significant influence 
on determining the actual value of saturation. Moreover, it also 
suggests that an outgoing wave boundary condition would not 
predict saturation levels of <|> (or D). 

(3) The nunerical differences observed upon using a proper D(v(|) are 
as significant as those seen by changing from a Krook to diffusion 
operator. This implies that it is the Vj dependence of the 
correlation time, not diffusion, that is causing the numerical 
differences. 

B. Electron temperature gradient 

The results displaying growth rate for various temperature 
gradients are shown in Fig. 5. As expected, n e

 h a s a strong 
stabilizing influence on the mode, eliminating the unstable region,' for 
by s 4, at ~ ne = 2. This is reminiscent of the simple argument that 
the electron dissipation [see Eq. (1)] becomes positive for n e = 2 if 
one puts ( v[/ v

e) 2 - (u/kjjVg) « 1. Actually, the n e scaling is 
somewhat weaker than this because the resonance broadening brings the 
larger vB particles into play. Saturation at n e = 2 comes about 
because the electron dissipation is sufficiently small, although still 
negative, that it can be offset by shear damping. To see this in mofe 
detail, note that the electron dissipation can be written (see 
Appendix) as -: 
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y9 " f*~ d v „ F e ( v | | ) R d T exp[i(w - k ^ x ) T - I(k«v„) 2DT 3 ] 

v» 1 
x { w - ««[1 + ne(—-7- - 4>]> . (9) 

v e 2 

This can be evaluated for x < xe from the integrals and I*2* given 
in the Appendix. The result is 

Y e « [to - u , ( 1 - n-/3) ] T c , (10) 

so that the electron dissipation remains negative up to ne = 3. Thus, 
for by >> 1 when a> « ai», the a>c required to saturate the mode should, 
according to Eq. (10), scale as 1 - ne/3. This scaling is illustrated, 
and roughly confirmed, in the following table. 
Temperature gradient scaling of saturation points. Saturation values of 
UQ from. Fig. (5) are compared to various scalings of the ne 

dependence.... The observed scaling is clearly weaker than (1 - ne/2), 
with the inferred coefficient of n e lying between 1/3 and 1/4. 

n e < 3.2(1 - ne/2) 3.2(1 - ne/3) 3.2(1 - r^/1*) w|AT/w« 

0 f3.2 3.2 3.2 3.2 
1 1.»6 2.1 2.4 2.7 
1.8 0.32 1.3 1.8 1.6 
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APPENDIX 

ftsymptotio Evaluation of Diffusive Electron Response 

The electron response can be written as fe = Fg • he, where 
satisfies [see Eq. (1)], e 

[-i(o) - kjv.x) - Dl^]h e 
32 

7J"e 

v.2 , eF„ 
= i { u - c a . l l • - <()(X) . (A . 1 ) 

e * *e 

This is easily solved by transform methods to give 

hgCx.v,) s T dt /*" dx'exp[i(u - k ^ x H - Itk'jV,)2!*3] 
0 J 

. (x - X ' - iDkiv . T 2 ) 2 

^ ®*P( nKT^ )*«"> 'UwDr ^ i»Dx 

v l 2 1 . , x c F e x i { u - «,L1 • . 
e - *e 

The nonadiabatic electron density fluctuation is then 

v 2 
nj*(x) s / dv, * i{u) - U.C1 • n e ( A - 1)J> Fc 

le e * 

x r dt dx'expliU - kiv.xJx - lck'|v|)2Dx3 J o 3 

(A.2) 
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/MTIDT 
(x - - iDkiv.T2)2 

e x p [ w r ^ — 1 < t ( x ' ) - (A.3) 

This complicated integral operator is the analytic manifestation of the 
full electron response, Eq. (1). The transcendental dependence on D 
makes it very difficult to apply in shooting codes [particularly when a 
realistic D = D(v() dependence is allowed], over the full range of D 
and x values of interest. At the same time, one's ability to make 
analytic predictions is somewhat limited. Fortuitously, in the region 
where the most unstable modes saturate (from which the turbulent 
diffusion coefficient is computed), some asymptotic expansions can be 
made, which give a reasonable accounting of the numerical observations 
in the body of this paper. This regime is characterized by kyPĵ  > 1 so 
that U « U>». and since W»Tc> 1(TC = U^"1), U>Tc « 1 is typical. 
Furthermore, xc = 1/kJvETE is less than xT = idln^/dxi""1, although this 
is not a strong inequality. 

First consider the integral operator 

OCx;v|tx) s I dx*G(x,x' ;v( ,x)<t>(x'). CA.4) 

where G is the kernel. 

G ( x ' x ' ; v « ' T > = 74^57 e x p t i ( u - k « v « x ) T - ^ S V 2 * 3 

(x - X' - iDkJVjT2)2. 
IDT 

• ] • ( A . 5 ) 

Note that G is a peaked function of x - x' with width xe, whereas Xj. is 
the basic scale of Thus, for Xc/Xj < 1 , 4»(x") can be Taylor 
expanded about x" = x. 
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0 ( X ; V . , T ) = / d6x G(x, x+6x;v„ ,X)[<|»(x) + 6xlt + + • • •] . " " u dx 2 dx7 J 

and doing the integral yields 

6(X;V| «T) = CkfU<*;v|tT){*(*J - iDkJv,,!2^ 

+ lDTL2-(kJV||)2DT3J ^ + ...} . (A.6) 

where 

ck,oj(x;vn,T) s e xPt i ( u - k'iviix>T - 3(kiivn)2DT3] • 

With son.3 rearranging, Eq. (A.6) can be written as 

0(x;V| ,x) = C k i WU;v | f T)t(x) * ± [DrC^JxjVj .t)^(x) ] 

- 1 (Dkf||v||T2)2CktUJ(x;v||,T) <|>(x) + .... I A.7) 

Equation (A.7) illustrates one of the basic difficulties in 
approximating the original integral operator (A.4) by some nth order 
differential operator. While the original operator (A.4) was 
self-adjoint (G is a symmetric kernel), Eq. (A.7), to the order 
written, obviously is not. We, therefore, argue that the last term in 
Eq. (A.7), although formally of order (xQ/xT)2 like the second term, 
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should actually be combined with some of the (Xq/Xj)1* terms to make a 
self-adjoint operator to that order. 

For present purposes of interpreting the numerical results, we 
regard as the dissipation response and retain simply the leading 
order term of Eq. (A.7). The response is then reduced to evaluating 
integrals of the form 

exp(-v 2/v 
l C n ) ( x ) • f d T £ d v » c k , ( o ( x ; v n , T ) v » n ' 

For example, after doing the v(| integrals, becomes 

I ( 0 ) = TC r rls exp[ia,Tcs - 4(JL)2 •^]/(u.3)1/2 . C O O iPxc' 1+siJ v ' 

For large x/xc, the asymptotic behavior of is 

(0) .. _ / *c 
~ i Sv — 

c x knvex 

which is independent of D and corresponds to the diffusionless 
response. For small x/xc, I*0^ = TC f ds (1 + s3) ~ l / 2 exp(i<Dxcs), 

o 
which is still transcendental. For urrc < 1, however, as happens in 
practice, the integral can be evaluated in terms of beta functions, 

TC0) T 1 B / 1 1\ 



1 6 

Note that as x + 0, has a singular dependence on D, Tc « D"1^3, 
underscoring the sensitivity of the drift wave to small amounts of 
radial diffusion. 

For evaluating various further approximations and other purposes, 
it will be convenient to have interpolation formulas for the 
obtained by matching the large and small x behavior. These are written 
ln terms of interpolation functions, gn(x/xc), normalized such that 
gn(0) s 1. Proceeding as above, one obtains 

I ( 0 ) = 2.80t cBQ(—) ;80ly> = C1 + 1.58y) _ l 
xc 

i ( 2 ) = o.47Tc g 2 ( — ) ;g2<y> = <1 + y ^ - 1 

xc 

( „ = 0.29X2
 ( J L } ( y ) = ( 1 + 0 . 2 9 y 2 r i 

n e e c 

I < 3 ) - i ^ r ^ « , ( f ) = (1 * 0 . 4 e y * > -K r v e xc xc 

The Krook approximation uses 

ck, u
( x ; v«' T ) = e*P[^i(w - k'i vh x ) t " ueTl 

which leads to integrals expressed in terms of Z functions. For 
example, under this approximation, goes over to 

I<°>(„> . ^ . K i ^ J . ( 4 .9 ) 
kjVgiXi ix i 
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Since x e >> xft at saturation, the asymptotic limits of the 

approximation are 

T„ Ix! < x 
!<°>(x) . 

•p- i— r i X i > X_ 
kjveixi e 

Thus, in spite of its poor justification, the Z function approximation 
of the resonance function has the correct qualitative features at both 
large and small x. By multiplying x c by a nunerical factor, the 
correct asymptotic behavior can be recovered so that 

• (0) _ - i x + i 0.36x 
_ z[_5 -1 I I .. I J k],veixi I v I |X i 

(A.10) 

can be regarded as an alternate interpolation formula. 
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FIGURE CAPTIONS 

FIG. 1. Growth rate (obtained numerically) vs diffusion parameter, wc» 
for various models and values of by = k^Zpj2. The dashed curves 
indicate the results of the Krook approximation, Eq. (3). as used in 
Ref. 1. The full diffusion operator results are shown in solid lines 
and indicate qualitatively similar behavior with some quantitative 
differences. 

FIG. 2. Analytic explanation of change in growth rates. Ttoo 
repv tentative curves for the lit rook approximation and full diffusion 
operator, obtained from the numerical code, are shown as solid lines. 
The attempt to fit these curves with asymptotic analytic expressions is 
indicated by the dots. The difference amounts simply to the adjustment 
of the Krook model coefficient by a numerical factor. 

FIG. 3. Real part of the radial eigenfunction. 

FIG. 3a. Near destabilization. 

FIG. 3b. Near saturation. 

FIG. 4. Growth rate vs the correlation frequency, wc, for the v( 
dependence of D as expressed by Eq. (8), showing dependence on cutoff 
parameter vQ. (u>c is determined from DQ, the turbulent part of 
diffusion coefficient). Results for constant D are shown for 
comparison. 

FIG. 5. Growth rate vs the correlation j*or several values of 
the temperature gradient parameter, = _. ,, These results use " a 11 n nQ; 
the constant D model. 
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