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ABSTRACT 

We describe here a numerical procedure for the evaluation of magnetic 

coordinates given a toroidal, scalar pressure plasma with an arbitrary 

magnetic field. The accurate representation of magnetic field strength in 

this way is invaluable for the calculation of drift orbits and transport in 

asymmetric plasmas. We include here an example of how the results â re 

combined with the guiding center drift equations to calculate diffusion 

coefficients in a Tokatron plasma. 
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Introduction 

Particle transport in thermonuclear plasmas depend basically on the 

number of directions of symmetry in the plasma configuration. The search for 

alternative toroidal confinement devices to the Tokamak has led to systems 

like the stellarator, Tokatron ... etc., all with less symmetry and 

consequently enhanced diffusion especially at low collisionality regimes. 

Even for the Tokamak, assymetry effects are important for it is well known 

that a Tok?mak ripple of 1% or less is able to significantly enhance the ion 

loss Therefore, any numerical technique enabling us to understand asymmetric 

plasmas would be most welcome. Deficiencies in our tools have long been 

recognized. Not only are the equilibrium and stability properties difficult 

to simulate, even the single particle confinement characteristics are largely 

unknown. In these asymmetric configurations coordinates based on the magnetic 

field lines become the natural coordinates to use. In this system, the rapid 

motion of particles parallel to the field line is well separated from the slow 

drift motion and the electric potential is normally uniform on a coordinate 

surface. The usefulness of magnetic coordinates has long been recognized in 

plasma equilibrium and stability studies.1'2'3 Recently it was shown ' ' 

that the guiding center drift equations are particularly simple in magnetic 

coordinates involving only a knowledge of the scalar quality S, the magnetic 

field strength, and its derivatives. From this it follows that particle 

transport, with and without collisions, may be readily computed with a high 

degree of accuracy in a minimum of computer time. 

However, the correspondence between the magnetic coordinates and the 

Cartesian system remains a difficult problem. In this paper we describe the 

realization of a technique whereby the magnetic field strength is computed in 

nagnetic coordinates by Fourier decomposition for a toroidal plasma with 
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scalar pressure equilibrium and closed magnetic surfaces. This procedure 

assumes a knowledge of the magnetic field B(R,Z,$) at all points in the torus, 

where R, z, and $ are the cylindrical coordinates. This field can be derived 

from a combination of external current filaments and plasma currents assuming 

that the plasma equilibrium is known. 

We also show how the results of this decomposition may be coupled to the 

guiding center drift equations in our Monte-Carlo code6 to obtain particle 

transport coefficients. 

The Magnetic Coordinates and Their Derivation 

The use of magnetic coordinates (t\i, 0 , x) can best be illustrated by 
o 

deriving the simple guiding center drift equations in a general field B in 

these coordinates. The guiding center velocity v can be written: 

v. v 
v = -— [B* + v x p i ] where p„ = ~ . (1) 

c 

We need simple convariant and contravariant representations foi B. In a 

scalar pressure equilibrium 

% = ^ * B, , 

the appropriate coordinates are 

4--, 9 , x with*B = V()J x^ve contravariant (2) 
o o 

« Vx + p'4> covariant 

The drift equations are: 



dt c ar + U | 1 + ;E P||J w ' 
o o 

o 9$ (C eB 2-| _3B 
d t = o(|< ~ l e •* mc * V 8<|p ' 

d t mc HI 

d p 
II 9 * mc , c eB 2 . SB 

d t ~ = _ 0 " ^ x " e B ^ l , 1 mc P l l bx 

w h e r e (eB/mc) = i o n c y c l o t r o n f r e q u e n c y 

1 2 
2 nvL = |jB 

$ = electrostatic potential 

and 

c = velocity of light 

(3) 

The definition of the <\,, 9 , \ coordinates above imply that the same B* is 
o 

obtained for any transformation 

) 
o 

+ e + e*(i|>) , 
o 

+ X + X*<<M . 

p d(|< 
(4) 
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In a torus, poloidal and toroidal angles 8 and $ can be defined such that 

g(4,)<|> + I(<|0 9 

+ *(<l.)<t> , (5) 

where 

jg{J) = the total poloidal current outside a flux surface fy , 

j 1(4) = the total toroidal current inside a flux surface <\> , 

*(<!>) = rotational transform. 

The periodicities in 9 and $ in a torus enable us to write down for any 

scalar function like B, the magnetic field strength 

B((|>, 6, i|>) = Z {a exp[i(ni)> - mtJ>J] } . ( 6 ) 
nm n ,m 

Using (5) we obtain 

„« - m e = nzii y . salsl e . ( 7 ) 

g+*l * g+*I o 

We assume that B(R,Z,$) in cylindrical system is numerically known 

anywhere within the torus. Me can integrate along a field line to 

obtain B(\> , where x is the magnetic coordinate along the field line derived 

from (2) as 
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X = J B <JA , 

where dt is a differential distance along the field line. 

Since a field line must obey ty = constant end 6 = constant by definition 
o 

throughout this integration, we can choose our initial point to be (I|J,0,0]. 

Thus Eqs. (6) and (7) are simplified: 

B( x) = 2 {a exptido x'l > nm nm n,m 

n-m * , _. to = — — — . (8) nm g+ *I 

Since B(x) is in general not a periodic function unless ((j happens to 

coincide with a rational surface, the mismatch of B( x) at x = ±X* c a n give 

rise to spurious noise in the Fourier spectrum. Increasing x* only improves 

the spectrum linearly. However, the convergence can be made exponential by 

multiplying B( x) by a Gaussian. This Gaussian should have a width much 

smaller than the range of integration x, r but much broader than the 

frequencies r. ? interest in B(x>- Let A( 10) be the Fourier transform 

of B( x) times a Gaussian of width x,/1!-

X, 2 2 
Ado) = I B(x)[ \ j j - exp(- i -*-)] expf-iux) d X , -X. <2u) X„ £ 

= / F( x) exp(-iiox) dx ( 9 ) 

then 



9 

A(u) = 5! a m

 exP {- \ [(<%," w)/oi»]2} 
n,m 

where 01 = f/x^ gives the broadening of the spectrum to be expected from a 

Gaussian of width X*/̂ * By adjusting the parameter t|, the width of the 

Gaussian may be tuned to give minimum mismatch at j = 1 x» consistant with a 

clear separation in the Gaussian maxima of the function ft( u). 

The values of a„_ and u; extracted from the Fourier spectrum, can be nm jun 
used in Eq. (8) to produce B(<Ji, 6 , x) • 

II Application to a Tokatron Plasma 

We shall in this section illustrate the usefulness of the method by 

describing work on a toroidally asymmetric device called the Tokatron. The 

method itself is, of course, applicable to any toroidal geometries. 

A schematic diagram of a Tokatron is shown in Fig. 1. The helical coils 
(I n) produce both toroidal and poloidal fields hence giving a rotational 

trarsform even in the absence of a plasma. There is also a vertical current 

d t ) on the axis producing toroidal field varying as 1/R. These also exists a 

uniform vertical magnetic field. We also assume that there will be some 

plasma current represented by the toroidal conductor (I D). 

We start the integration at an arbitrary point B(IJJ,0,0). The value 

of <p will not be known until after the integration is completed and many 

toroidal circuits have been traced. We solve the equations for the field line 

in x thus ensuring that we have B in equal intervals of x : 

dR = ^R 
dX 2 ' * B 
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dZ _ "Z 
dX " B2 ' 

d$ B * 
* RB 

A fourth order Runge-Kutta integratior. scheme is used and at each step we save 

both the value of B as well as the associated R, Z, <$. Figure 2 shows the 

projection of a field line onto a symmetry plane, a symmetry plane being one 

where a helical coil intersects the midplane. Figure 3 shows the points of 

intersection of six distinct field lines with a symmetry plane. The outlines 

of six concentric flux surfaces are readily dis^ernable. The toroidal flux 

coordinate i|* is derived from the area integral 

<|. = 4- I 8 dR dz = / | dR )' Az . (11) 
2u J ' R ' 

In cases like the outermost surface, labeled (F), of Fig. 3, data tend to 

appear in clusters due to the rotational transform * being near a rational 

number. Clearly a longer integration will only slowly yield more significant 

points than those which exist already, so some interpolation is necessary. To 

perform the area integral of Eq. (11) we therefore first find a weighted least 

squares polynomial approximation in Chebyshev series form to the data 

points. Depending on the number and the configuration of the data points it 

may be necessary to choose a polynomial of high degree. Figure 4 shows a 

polynomial of 10th degree and the data points. The area integral is then 

simply obtained from the polynomial. Since the Tokatron has up down symmetry, 

it is only necessary to calculate the flux integral using one half of the flux 

surface only. However, since we possess independent data for the two halves, 

we integrate the areas for Z > 0 and Z < 0 seprately. Tn general the 
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derivation between the two values is < 0.5%. 

Figure 5 shows the result of attempting to trace a flux surface inside 

surface labeled (A). Island formation is already in evidence; beyoi.••"'. this the 

surfaces become ergodic. Outside the surface labeled, (F), there are no good 

magnetic surfaces. 

A judicious choice of the values for the parameters \, n, Ax, N, 

where Ax is the step length of integration and N the total number of data 

points, will aide in much savings for both computer time and computer 

storage. As can be seen from Eq. (4), the smallest distance between peaks i.' 

the Fourier spectrum is approximately */g if * < 1 and I << g, therefore in 

regimes where the rotational transform is large, peak broadening by the 

Gaussian is not important and n can be made large to save integration time. 

However, in other regimes it would be reasonable to allow the gaussian 

broadening to be no greater than, say, twice the intrinsic resolution of the 

Fourier transform process which is given by 2n/2y_|t, we have, therefore, 

u„ = n/X* = 2(it/x») and Tl = 2n. The smallest frequency difference Aui which 

we wish to resolve is either Jr/g or '/g whichever is the smaller. Suppose we 

reguire that this Aw be a few times, say n times, the line width, 
2 2 

then Aw = n w # = n /%,, a n d X* = *) /Aw. Taking Aw = */g and ^ = gij it may be 

seen that we need to follow the field line for 5 to 10 toroidal or poloidal 

circuits in order to have distinct peak separation. One last choice available 

to us lies in X* = N^X- Since we are often interested in only the very low 

frequency end of the Fourier spectrum, it is useful to minimize N and 

correspondingly increase Ax so as to save integration time. Howevere Ax must 

be kept sufficiently small to accurately follow the field lines. 

Figure 6 shows B(x) versus x for approximately twelve poloidal 

circuits. In Fig. 7 we see the function F( x) of Eq. (9) consisting 
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of B( x> multiplied by a gaussian of Eq. (9). The portions of the curve 

at K < 0 and x > ° have been interchanged. Since the Fast Fourier Transform 

package assumes that % ~ " a t t n e leftmost point of the graph, F( x) will now 

contain mostly cos wx in its frequency spectrum ensuring that the output 

spectrum will be predominantly real and the coefficient b = o. From Fig. 7 

it may be seen that another 20% of computer time may be saved by filling 

regions in the far wings of the gaussian with zeros. The precise extent of 

savings will depend on the structure of B{ y) and the width of the 

Gaussian, n, chosen. 

We have used a Fast Fourier transform package named RCFF'FZ which is fully 
14 vectorized and is resident on the CRAY machine at MFECC, Livermore. For 2 

data points our timing gave 16 msecs. 

The Fourier spectrum as described by Eq. (9) is shown in Fig. 8. As 

expected the imaginary components b are all < 10 a n m in the region of 

interest in w. Since, in most cases, the currents are predominently poloidal, 

that is I << g, it is convenient to plot a n m against (n-m*) rather 

than u for peaks with m = 0 appear then as integers on the absissa. The 

si orations between peaks with common n also give us a good method of 

estimating the average transform *. Values of these coefficients can be 

obtained by these means to within an order of accuracy of ~ 10 . Taking only 

the eight largest components: n = 0, m = 0, -1, -2, -3 and n = 5, tr. = 0, 1, 2, 

3 of which all have peak heights greater than 1% of a the DC component, we 

can compare the Fourier synthesized B with the original field. Fig. 9 shows 

this comparison. 

We now have a numerical form for B in magnetic coordinates. The guiding 

center drift Eq. of (3), however, require the derivatives in all these 

directions <K 6 and x- Only the variations of a (<J,), g( ty), 1(I\I), *( <|>) 
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with 41 need to be interpolated as those of B against 9 and % c a " now be 

derived analytically. Bearing in mind that these derivatives need to be 

referenced many times during a drift orbit calculation, the speed of 

performance is important. Me therefore chose cubic minimax polynomial fits to 

all the parameters which vary witli <Ji. Pig. 10 shows an example of this fit. 

The drift orbits are then advanced using the Fourier components 

for B{ lit, 9 x' and the polynomials for the dt interpolation of the coefficients, o 
The trajectory of a particle undergoing pitch angle scattering over three 

collision times is described in magnetic coordinates ( CJJ, 9 , %) in Fig. 11. 
o 

The general features exhibited here ire qualitatively similar to collisional 

orbits in model stellarator fields, but the increased complexity in the field 

geometry means, for example, that trapping in local magnetic wells is no 

longer such a well defined concept. However, the confinement characteristics 

of each new geometry we study can now be easily deduced from analysis of the 

kind of results shown here. 
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Figure Captions 

Fig. 1. Schematic diagram of a Tokatron. An outgrowth of a Tokamak where 

toroidal field coils have been replaced by helical coils. 

Fig. 2. Projection of a aiagnetic field line onto a symmetry plane, which is 

one where a helical coil intersects the midplane. R and Z are the cylindrical 

coordinates. 

Fia. 3. Intersections of six magnetic field lines with a symmetry plane. Six 

closed flux surfaces can be traced. 

Fig. 4. Integration of flux enclosed by a magnetic surface by means of a 

least squares polynomial. The points are obtained by field integration ani 

the solid line ir= tiie polynomial. 

Fig. 5. Intersections of a magnetic field line with a symmetry plane. The 

starting point of this field line is on the inside of surface VI of Fig. 3. 

Fig. 6. Magnetic field B(x) against X (= / B d*) f° r about 12 poloidal 

circuits. 

Fig. 7. Function F(x) of Eq. (9) versus x f° r th/j same extent in x as in Fig. 
6. 

/ 
Fig. 8. Fourier spectrum for the real coefficients a versus (n-m*). 
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Fig. 9. Comparison of original Si /) (full line) with B(x) (dots) synthesized 

from the Fourier Spectrum. 

Fig. 10. Variation of the rotational transform * versus <\i. The solid line i? 

the minimax cubic polynomial fit used by the drift equations. 

Fig. 11. The trajectory of a particle undergoing pitch angle scattering over 

three collision times described in magnetic coordinates ( IJJ, 9 , x> • 
o 
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