ff^62 U&

*\$ù** **International winter meeting on nuclear physics, Borraio (Itoly) - 25 - 30 Jan 1982**

CEA-CONF-- 6220

LIGHT PARTICLE EMISSION IN LIGHT HEAVY-ION INDUCED REACTIONS

E. Bozek, Y. Cassagnou, R. Dayras, R. Legrain, A. Palmeri⁺ and L. Rodriguez
DPh-N/BE, CEN Saclay, 91191 Gif-sur-Yvette Cedex France

and

G. Lanzano, A. Pagano and G. Pappalardo
Ist. Naz. de Fisica Nucleare, Sez. de Catania, 95129 Catania, Italy

1st. Naz. de Fisiaa Nucleare, Sez. de Catania, 95129 Catania, Italy

 $⁺$ On leave of absence from Ist. Naz. de Fisica Nucleare, Sez. de Catania,</sup> 95129 Catania, Italy.

 $\frac{1}{2}$

1. INTRODUCTION

Limitation to fusion for light systems is still an open question. Recently, in order to try to find an answer to this problem, formation of the compound nucleus ²⁶ A1 through two different reactions, 1W N +¹² C and I6 0 + l0 B , has been the object of extensive measurements [1,2] over a large energy region. In the energy range 20 MeV < E_{cm} < 65 MeV, the fusion cross sections for both reactions, shows **striking differences (figure 1). Indeed, the fusion cross section for I6 0 + l0 B exceeds that of ll*N +¹² C by an amount which cannot be simply explained, in the frame of available models, on the basis of calculated or measured nuclear density distributions for these nuclei. A possible explanation for these differences lies in the ability for direct processes to compete more or less efficiently with fusion, according to the nuclei in presence in the entrance channel. In order to verify** this hypothesis, we have undertaken a detailed study of the different processes **which may compete with fusion in the energy domain where the cross section for fusion deviates from the reaction cross section.**

2. EXPERIMENTAL PROCEDURE

Both reactions * N + * C and * ^oO + * * B were used to form the compound nucleus 26 Al at the same excitation energy of 44 MeV. From previous fusion cross sections measurements [2], this energy corresponds to the same critical angular momentum ℓ_a = 16 \# for both reactions. In the hypothesis of compound nucleus formation, *i*dentical mass and charge distributions are expected for the evaporation residues **identical mass and charge distributions are expected for the evaporation residues**

Self-supporting, ^50 ug/cm2 thick ¹² C and ¹⁰ B targets were bombarded respectively with 62.7 MeV llf N and 63.6 MeV ¹⁶ 0 beams produced by the Saclay FN Tandem. Heavy fragments were detected into two telescopes, each consisting of a AE gas ionization chamber and a 500-um surface barrier E-detector. These telescopes with a 1.7° aperture were kept fixed at 10° and 30" relative to the beam direction. Light particles were detected on the other side of the beam into three $\Delta E(20 \mu m)$ **thick) - E(4 mm thick) solid state telescopes. These telescopes, each with a 3° aperture could be moved from 10° to 170" relative to the beam direction. Single spectra as well as coincidence events between heavy ions and light particles were registered on magnetic tape for off-line analysis.**

3. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results, still preliminary, are qualitatively very similar for both the *^l* **"*N +¹² C and the '⁶ 0 +¹⁰ B reactions and we will consider mainly the •** 14 N + 12 C data.

From the coincidence data, producton of the heaviest residues (Ne, Na and Mg) is consistent with evaporation of light particles from an equilibrated compound nucleus ²⁶ A 1 . However, for lighter residues such as N, 0 and F, there are evidence for other processes contributing to the yields of these elements. Figure 2 shows a typical two-dimentional plot of the α particle-fluorine coincidences in the $E_n - E_n$ **energy plane. Most of the events are concentrated onto two parallel bands as expected** from the three-body reaction ''N + ¹²C + 16 F + 2 α . Events with ' 9 F left in it **ground state, should fall on the full curve drawn on figure 2. Spectra of the ex**citation energy $Q_3 - Q_3$ e.s. in the final state (which in this particular case is the excitation energy in 18 F) are diplayed in figure 3 for three different detec**the excitation energy in !8 F) are diplayed in figure 3 for three different detec**peaks (corresponding to the two bands of figure 2) centered at 2.32 MeV and 5.34 MeV excitation energy in ¹⁸F. An evaporation calculation using the statistical mo- $M = \frac{1}{2}$ **Constant in** $M = \frac{1}{2}$ is the statistical model of $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ more statistical model produce the peak at 5.34 MeV. This may suggest that this peak does not result from evaporation by the compound nucleus but has its origin in an other mechanism yet to be identified by further analysis of the data.

Figure 4 is a plot of α -nitrogen coincidence events in E_{α} - E_{N} energy plane. **The full drawn curve is the kinematic locus of events corresponding to the reac tion** $f^*N + f^*C \rightarrow f^*N + \alpha + f^*S$ with f^*N and s Be in their ground state. All even **are located inside this curve. A band structure covering the entire energy range of nitrogen fragments is quite visible in the two-dimensional plot of figure 4. This structure decreases in intensity with the a-particle detection angle and ha**ve completely disappeared for θ_{α} > 30°. Such structures are indication of an ener**gy correlation between the a-particles and the nitrogen fragments. Assuming the** reaction $14^{\circ}N + 12^{\circ}C + 14^{\circ}N + \alpha + 8^{\circ}$ Be the data of figure 4 have been converted int the $Q_3 - Q_3$ g.s. spectrum of figure 5a. The sharp peak at $Q_3 - Q_3$ g.s. $\neq 0$ MeV corresponds to ¹⁴N left in its ground state whereas the smaller and broader peak **corresponds to the correspondent of the smaller and broader peak in the concerning** of figure 4a has been divided into 5 Q_2 - bins. For each bin, a spectrum of the relative kinetic energy E_r of the α and the ¹⁴N in their center-of-mass system **has been built and convenied into a anontum of sustanting system in** 18π **,** 11.11 **has been been been been built and for except in the discussion of excitation of the converted in the spectrum of the spectrum** hardly conceivable in the frame of statistical evaporation and are more likely due to a reaction of the type ¹⁴N + ¹²C + ¹⁸F^{*} + ⁸Be and ¹⁸F^{*} + ¹⁴N + α . In the α **000 Explore** α and β the α *ustration exercise and* α *and* β *and* α *ku a* nuum which is consistent with statistical evaporation. The two processes cannot

to be identified by further analysis of the data.

be separated by a simule examination of 11+ N energy spectra, and in inclusive measurements, they are usually included in the fusion cross section.

At our bombarding energies, fusion does not contribute to the yields of boron and carbon fragments which are mainly produced through direct reactions. Energy correlations between light particles and these fragments are essentially consistent with three-body final states as illustrated in figure 6. In the Q_3 - spectrum of **figure 6a, corresponding to the reaction** $^{14}N + ^{12}C + ^{10}B + \alpha + ^{12}C$, only two three**body final states are seen : one corresponding to ¹⁰ B and ¹² C left in their ground state and the other corresponding to ¹² C left in its first excited state. The Q, -** \mathbf{s} pectrum associated with the reactions $\mathbf{f}^* \mathbf{N} + \mathbf{f}^2 \mathbf{C} + \mathbf{f}^3 \mathbf{C} + \mathbf{p} + \mathbf{f}^2 \mathbf{C}$ and $\mathbf{f}^* \mathbf{N} + \mathbf{f}^2 \mathbf{C} + \mathbf{f}^3$ **+ d +¹² C are shown in figure 6b. There again only few final states are seen. The relative energy spectra for ¹⁰ B - a, !3 C - p and I2 C - d of figure 7 have been** obtained by selecting events corresponding to the ground state Q_2 - peak in each **case. The strong peak in the relative kinetic energy spectrum of ¹⁰ B -** *a.* **corresponds to an excitation energy of ^ 12.8 MeV ¹⁴ N and is probably the same state observed by Pr. Siemssen (this Conference and ref. [4]) in the sequential decay** of ¹*N in the reaction ¹*N + ¹³⁹Tb at much higher energy. Similarly the peaks o **served in the relative kinetic energy spectra of ''C - p and ''C - d can be relate@** to excited states or groups of excited states in ¹⁴N. Thas break-up of the projec**tile seems to proceed through the excitation of well defined states in ^l "N followed by sequential decay.**

3. CONCLUSIONS

The transition between fusion and direct processes is not as clear cut as it is usually assumed and so-called evaporation residues may include a non-negligible contributions from other processes. However a more quantitative analysis remains to be done to derive more quantitative results.

At our bombarding energy (4.5 MeV/A), break-up of the projectile proceeds essentially though excitation of well defined states in the projectile followed by sequential decay.

REFERENCES

- **[1] J. Gomez del Campo, R.G. Stokstad,J.A. Biggerstaff, R.A. Dayras, A.H. Snell,** and P.H. Stelson, Phys. Rev. C19 (1979) 2170.
- **[2] J. Gomez del Campo, R.A. Dayras, J.A. Biggerstaff, D. Shapira, A.H. Snell, P.H. Stelson and R.G. Stokstad, Phys. Rev. Lett. 43 (1979) 26.**
- **[3] F. Piihlhofer, Nucl. Phys. A280 (1977) 267.**
- **[4] J. Van Driel, S. Gonggrijp, R.V.F. Janssens, R.H. Siemssen, K. Siwek-Wilczynska and J. Wilczynski, Phys. Lett. 98B (1981) 351.**

FIGURE CAPTIONS

- **Fig. 1 : Fusion cross sections vs** I/E_{cm} **for** $I^*N + I^2C$ **and** $I^*0 + I^0B$ **(ref. [2]).**
- Fig. 2 : Two-dimensional plot of α -F coincidence events. The full drawn curve is the kinematic locus for events corresponding to the three-body reaction $t^{14}N + {}^{12}C + {}^{18}F + 2\alpha$ with ¹⁸F in its ground state.
- **'-N +¹² C** *-* **¹⁸ F + 2a with ¹⁹ F in its ground state. Fig. 3 :** Q_3 - spectra for the reaction 'N + 1C + 0F + 2 α . Note that the ground state Q₃ g.s. value = - 11.6 MeV has been subtracted from $\frac{0}{3}$ before **plotting. Thus the abscissa represent excitation energy in ¹⁸ F .**
- **Fig. 4 : Two-dimensional plot of a-N coincidence events. The full drawn curve represents the kinematic locus for events corresponding to the three**body reaction $1^4N + 1^2C + 1^4N + \alpha + 8^8R$ with 1^4N left in its ground state. **The band structure, clearly visible is discussed in the text.**
- **Fig. 5 : a)** Q_3 -spectrum assuming the reaction ¹⁴N + ¹²C + ¹⁴N + a + ⁹Be. The ground state Q_3 g.s. value = -7.37 MeV has been subtracted before plotting. b-f) Excitation energy spectra in 18 F for different gates on the **ting, b-f) Excitation energy spectra in Q_-spectrum.**
- **rig.** $0: -Q_3$ spectra for the reactions $M + D + 2$ (a) and $M + D$ **1** $\mathbf{C} + \mathbf{p} + \mathbf{C}$ and $\mathbf{N} + \mathbf{C} + \mathbf{C} + \mathbf{C} + \mathbf{C}$ (b). The heavy fragments **and the light particles were detected at ± 10^s relative to the beam direction.**
- **Fig. 7 : Relative energy spectra for a)** 10 B- α , b) 13 C-p and c) 12 C-d. Only event. corresponding to ground state Q_2 - values have been selected. The geo**metry is that of figure 6.**

Fig. 1

Fig.

 $Fig. 3$

Fig.

Fig. 6

Fig. 7

 $\overline{}$ Г