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Abstract

Gauge theories for non-semisimple groups are exami-
ned. A theory for the Poincare group with all the essential charac
teristics of a Yang-Mills theory possesses necessarily extra equa
tions. Inonu -Wigner contractions of gauge theories are introduced
which provide a Lagrangian formalism, equivalent to a Lagrangian

de Sitter theory supplemented by weak constraints.



1. Introduction

The recent advances of gauge theories for electro-
weak interactions and the promising approach of chromodynamics
to strong processes have put forward expectations that also gra
vitation would, in not too remote a future, leave its splendid
isolation and find 2 formulation in the language of gauge fields.
The analogies between Yang-Mills theory at the classical Tevel
and General Relativity, reflecting their common geometrical ba-
sic setting, have been noticed since long, but the essential fact
remains that the Hilbert-Einstein Lagrangian is not of the VYang-
Mills type and the dynamical aspects of the two theories are qua
Titatively different.

Despite its charm and success, General Relativity
is not beyond criticism from a theoretical point of view. We
shall not go into this matter here. Reviews on the subject have
been made, among others, by Hehl (1976,1979) and Zhenlong (1979)
and, from a different standpoint, by Loguhov and } éo!!aborators
(Logunov and Folomeshkin 1978; Denisov and Logunov 1980 and refe
rences therein). A very general point frequently made is that Ge
neral Relativity does not do justice to the entire Poincare 1lo-
cal symmetry of spaée-time. This is a common thread linking (so-
metimes loosely) the old Cartan (1922) theory, through the clas-
sical papers by Kibble (1961) and Sciama (1962), to the more
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recent developments (Trautman 1970,1979; Hehl 1979; Camenzind 1975,
1978; Wallner 1980; Cho 1975, 1976a ). We shall in the following
simply accept the general lines of this criticism as justifying fur
ther research and take as granted the interest of building a gauge
theory for the Poincare group, sticking however to a very orthodox
gauge-field point of view. Although allowing for the specificity-of
gravitation, we try to preserve as far as possible the essential
characteristics of Yang-Mills theories,not the least being the dua-
1ity symmetry and the consequent conformal invariance. It will be
not question of "gauging® an abstraht Poincare group: this is to be
taken as acting on the frames defined on space-time, wherefrom the
above mentioned specificity arises. This peculiarity is usually re
ferred to by saying that gauge theories involve groups acting on
internal spaces while gravitation is concerned with space-tame it-

self. Such a phrasing is to be taken cum grano salis: the Poincare

group will act on the tangent spaces of space-time or, maybe better,
on the spaces formed by frames defined on these tangent spaces. The
fsomorphism between Minkowski space and the space tangent to each
one of its points is not canonical and the presence of a gravitatio
nal field is precisely what makes its frame-dependence ineluctable
(Kaempffer 1968), That gravitation is more intimately connected to
space-time comes frdém soldering. a property of the bundle of frames
which is absent in the bundles lying behind the usual gauge theories
(Trautman 1979). It is related to the affine character of the tan-

gent spaces and to torsion, and shows itself in any differentiable



manifold. Its main consequence 1s the existence of an extra Bian

chi identity and, if duality symmetry is to remain valid, an extra

Yang-Mills equation.

In section 2 we describe the main features of what
we take as a ccrplete (classical, sourceless) gauge theory, stress
ing the role of duality symmetry. The point §s made that the absen
ce of a non-degenerate Killing-Cartan metric on the group is not
by itself an impedinent: theories for the non-semisimple linear
groups G6L(n,R) are quite feasible through the use of the general
invariants of the adjoint representation. It is, however, a hindran
ce for groups including a translation subgroup, 1ike the affine 11
near group AL(n,R)= 6L(n,R) @ T, end groups of the Poincare ty
pe P"== SO(n-I.I)ﬂDTn_l.,. which act on affine frames. This case
is analysed in section 3, where the Yang-Mills equations are obtai
ned by using the duality symmetry. Concerning the Lagrangfan, howe
ver, the difficulty remains: if the invarfiants introduced in sec-
tion 2 are used, the transliational sector does not contribute to
the dynamics. In order to face this problem, we proceed along the
following 1ine of thought:

i) the Bianchi fdentities are purely mathematical statements, inde
pendent of any dynamical assumption; nevertheless, they can be
seen as consequences, via a varfational approach, of the second-
erder invariant of the adjoint representation, for linear, unita

ry and (pseudo-)orthogonal groups;




ii) for the same groups, Yang-Mills equations follow from a similar
treatment, the corresponding Lagrangian being obtained from the

second-order invariant if account is taken of duality symmetry;

141) in the case of affine frames there exists an extra Bianchi {-
dentity, which does not follow from the second-order invariant;
this invariant misses it in just the same way the corresponding

Lagrangian misses the translational contribution;

iv) because we know the missing Bianchi identity to be true anyhow,
we look for an enlarged formalism in which it does come from a
second-order invariant and use the corresponding Lagrangean to
obtain the Yang-Mills equations; these result to be just those
obtained by direct use of the duality symmetry.

The formalism is presented in section 4., It requires
viewing the Poincaré group as the Wigner-Inonu (1954) contraction
of the de Sitter group. Inhomogeneous groups are precisely the
usual outputs of such contractions (Inond 1964, Gilmore 1974). In
a way, going to the de Sitter group puts translations and(pseudo-)
rotations on an equal footing and it is finally the de Sitter se-
cond-order invariant which gives the Lagrangian wished for. The
formalism corresponds to a de Sitter gauge theory supplemented by
weak (in the sense of Dirac) constraints ensuring the commutation

between translations.



2. General Structure of Gauge Theories

Our objetive is to obtain a theory for the Poincare
group with all the essential characteristics of a gauge theory.In
this section we shall describe the general structure (Popov 1976;
Cho 1975) we would 1ike to preserve. Because it makes life so much
simpler, the compact notation of differential forms will be used.

A gauge potential is a 1-form A with values in the
Lie algebra G' of the gauge group G: given for G' a basis [J;} of

generators,

A= L A" (2.4)

where the A" are usual real-valued 1-forms, which in a given coor
dinate system {x*} are
A" = A; dx” (2.2)

The componentes,Q: are the usual gauge potentials. Our potential
A 1s consequently a matrix of 1-forms. Mathematically, it is a con
nexion on a fibre-bundle with space-time as the base manifold and
the gauge group as structure group. To simplify matters, we shall
consider the forms as already projected to the base manifold,which
pressuposes a local choice of gauge (or section). The equations are
formally the same in any gauge,

A connexion (Bishop and Crittenden 1965) defines co-

variant derivatives of tensors belonging to any representation of




G. The potential A is G'-valued and belongs to the adjoint represen
tation. For a form X=J x* in this representation, the covariant de

rivative is
PX =dX +CAXT . (2.3)

Here, d 1is the exterior derivative and the bracket (rather peculiar

because forms of odd degrees anticommute) is defined by

0GYT = [3,3,0X A7 =T pL XY, 12

where [Lb‘ are the.structure constants of G. In words, the bracket
is a commutator if at least one of the matrices has as elements
forms of even order, and an anticommutator otherwise,

The gauge field strength is the curvature of the con
nexion A, that is, its own covariant derivative. Because in this

particular case [A,A] = AAA , It takes the simple form

F = d A+ ArA (2.5)
It is a 2-form in the adjoint representation which, in the particu
lar system of coordinates {x”‘}, has the components F",'.v given by

F:ZI—J-QFQ/“, d’iAA datyz

a -3 (-8 b c 1 4
= 14—3;[3,‘/\,-),/‘/‘ + 79"‘ A/_‘ A,] dx#add . (2.6}



An important operation on forms is the dual transfor

mation : given a metric Gy on an n-dimensional manifold the dual

5P of a p-form

P -

My la M
‘Pf"l‘a"'/‘f dx”'a da™a,.. ox”?

2{»

is the (n-p)-form

o
P - ‘?—‘fﬁ‘i:;"'?’—'{ 9“‘\{"9“"'?&}."')‘? 6/'-)‘1"'/% d‘”"“"‘d‘ﬂa (2.7)

where g s det g, ) and £, ...,

symbol. In particular, for a 2-form on a 4-dimensional space,

is the Levi-Civita anti-symmetric

» F“’ %[%ﬁ?‘AQ’PF‘.;’ E,wvw]df'\ ax” . (2.8)

The Bianchi identity comes by differentiation of (2.5):

dF +[A,F)=0 . (2.9)

The covariant derivative of F is so automatically zero. A1l gauge
theories exhibit duality symmetry, which says that (for the source
less case) the dynamical (Yang-Mi11s) field equations are just (2.9)
written for the dual’of F:

d*F L [A,#F]= 0. (2.40)



In the presence of sources, the covariant derivative of #F is equal
to the Noether current densities whose corresponding charges genera
te the gauge group. This procedure amounts to a practical rule to
obtain the field equations from the Bianchi identity. Notice that,
unlike (2.9), the Yang-Mills equation depends on the space-ti
me metric,necessary to define the dual,However,as a simple inspection
of (2.8) shows,the operator*, when applied on a 2-form in a 4-di-
mensional space, depends only on the conformal class of the metric:
it gives the same result for any metric h,y= f‘ 9., conformally
equivalent to g,, . This is the origin of the conformal invariance
of classical sourceless gauge theories (Atiyah 1979). A complete
Yang-Mills theory will be, for us, one whose fundamental equations
are (2.9) and (2.10) in the absence of sources. When a source cur-
rent is present in (2.10) one might be tempted to add convenient
sources also to (2.9) in order to preserve duality. This would mean
that (2.5) fails to be true everywhere, e prefer to adopt the point
of view that duality is a symmetry of the sourceless theory, broken
by the source currents.

Now, equations (2.9) and (2.10) have very different
origins. The former is an identity of purely geometrical content,
coming from the very definition (2.5) of curvature. The latter is
a physical equation, resulting from the choice of the invariant ac
tion

S:__:A-[TJL(FA#F) (2.41)
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However, also the Bianchi identity can be obtained as the Euler
Lagrange equation in a variational approach. In order to see it,a
digression on the invariants of the adjoint representation will be
necessary here (Kobayashi and Nomizu 1969). Given a matrix X-:J;X‘,'

the invariants are certain polynomials in the traces of powers of X,

More precisely, the h-order invariant 11 is the coefficient of :‘l

in the expansion of det[I+ZX] . Take for instance the Lie alge-
bra GL'(n,R) of the linear group GL(n,R) of real matrices n x n.

If X€6L'(n.R),

det [T+2Xl= 5 2%, = 44 2 T X 4 Z2[mx’- T,X]+
A=0 ‘“ j! 4.’

+§g,_"f[mx)’__ 3(TaX)(TaX?) 42 T x’] oo (043)

So, the first-order invariant is Ta X . It is a simple matter to
see that the n-order invariant is det X . For unitary and (pseudo-)
orthogonal Lie algebras analogous procedures apply, although in

these cases Ta X=0 formla . The second-order invariant

1, = _}.[(nx}"‘_ Ta x* | (2.43)

reduces then to

I,=- :74_ Ta X< - £ TalTo 3,) X X° . (2. 14)
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Usually, gauge theories deal with semisimple groups, for which
Yoy = T,'.(J; %) is the well-defined metric of Killing - Cartan. Some
criticism to Poincaré gauge theories( and non-semisimple groups in
generé1) has been based on the non-existence of a bi-invariant me-
tric on the group (Basombrio 1980), which would make it impossible
to write down a Lagrangian.We shall see that, by using the invariants
above, such a difficulty can be circumvented for the linear group
but that for the Poincaré case an enlargement of the group is requi
red, at least as an intermediate step.

As 2-forms commute with each other, F as given by
(2.6) behaves just as a numerical matrix belonging to the vector
space of the Lie algebra., For X=F ,(2.12) gives a series of in-
variant forms involving the curvature. A first fundamental mathema-
tical result is the Weil Lemma: roughly speaking, it says that each
such invariant form has vanishing divergence. So for instance the
case of electrodynamics with G=U(1) : thereTaF is F itself and the
Lemma says that dF-0 , which incorporates the first pair of Max-
well's equations. The second-order invariant will be a 4-form, for-
cibly divergenceless on a 4-dimensional space, so that the Lemma gi
ves nothing new in this case. A second important mathematical result
is that these invariant forms define cohomology classes (Chern,
Pontrjagin or Euler classes, depending on the bundle considered)
and their integrals, besides being invariant under transformations
of the gauge group, are numbers invariant under continuoﬁs deforma

tions (and so, variations) of the connexion., Such is the case for
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unitary and orthogonal groups, for which these invariant numbers

are

fI_,(F,F) =-31—}TA.‘FAF) ) (2.45)

We come now to the point we wish to make : if we ap-
ply the usual variational procedure to (2.15), taking the potential
components/f; as independent fields, we obtain just the Bianchi
identity. In the case of the linear group, for which the whole ex-
pression (2.13) is to be used, we obtain (2.9) and,due to the
(Tr FAl&F) term, the additional equation

O“T’LFIS (o] (a.18)

This would come anyway from the Weil Lemma for the first-order in-
variant,
The action (2.11) is a particular case of the inva-

riant

I, (F, sF) = .:i.[Ta FaTasF - Tu(Fasf)] | (207)

although in this c3se no theorem exists ensuring the invariance of
the integral under continuous deformations of the connexion: thig

invariance is now a physical assumption, Again, this is where the



- 13 -

difference between the Bianchi and Yang-Mills formulae lies: the
first is an identity because it comes from the "variation" of an
invariant number while the latter is a consequence of a physical
assumption.

A full gauge theory can be obtained for the (non-‘
semisimple) group GL(n,R). If we take the variation of_ﬁ&(ﬁth

we find (2.10) plus an extra equation

d(xD.F): 0 (2.18)

As Ta F= d(TrA)  in this case, the field traces give a one-dimen
sional subtheory, a consequence of the nonvanishing first-invariant:
the last equation is just the dual counterpart of (2.16). The 1li-
near group GL(n,R) can be seen as acting on functions defined on
the n-dimensional euclidean space R . On this space a global sys
tem of coordinates{li] can be used and the generators of GL(n,R)
can be realized by the differential operators Aig =-x? %i . The
trace is then the well-known dilatation operator‘-xjé;.[The sign

is really irrelevant here.It has been chosen so as to agree with
the matricial representation we shall be using later on (see equa-
tion (3.2))]. The subtheory is therefore related to dilatation inva
riance.

So, a complete gauge theory can be obtained for this

particular kind of non-semisimple group. It is not quite alike the
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usual theories, as it has additional equations coming from the first
order invariant. Nevertheless, extra difficulties arise in the case
of inhomogeneous groups, semidirect products including transliation
subgroups, of which the most distinguished examples are the affine
Tinear group AL(n,R) and the Poincare group F,, . The trouble comes
from the fact, to be examined later on, that the translational part
does not contribute to the invariants given above. The invariants
for the Py group, for instance, are just those of the homogeneous
Lorentz group S0(3,1). An extra Bianchi identity exists in these
cases which is not obtainable from the invariants, and one is led
to suspect that a gauge theory obtained along the Tines sketched
above will be incomplete for such groups. Our objective will be to
find a way of arriving at all the Bianchi fdentities also in this
case and then, by the duality requirement, establish a complete

Yang-Mills theory.

3. Groups of frame transformations

The groups AL(n,R) and P, act on the affine frames
(Kobayashi and Nomizu 1953) defined on space-time or, more conve-
niently, on the affine basis of its tangent spaces. The affine cha
racter, or the tran8lational invariance, accounts for the arbitra-

ryness in the chofice of the origins in tangent spaces. Such groups
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are primary, always present and at work in any differentiable mani
fold. They are consequently more closely related to space-time than
the "internal" groups of the usual gauge theories. This deeper inti
macy is characterized by that very peculiar trait of the bundle cf
frames which is soldering. In order to examine this property and ex
pose its relation to translations, some use of the bundle language
(Lichnerowicz 1962 ;Bishop and Crittenden 1965) seems unavoidable.
Let us proceed to a (very crude) description of the bundle of linear
frames, in the meantime seeking which fundamental equations a ¥,
theory should have in order to comply with the general pattern of
the previous section.

Given a differentiable manifoldM of dimension m the
tangent space T,M at a fixedpeéM is a vector space of the same
dimension., Vector (or linear) frames on ToM (sets of m Tlinearly
independent vectors) can in principle be chosen at will. We can cho
ose one of them for initial reference and specify every other frame
by the mxm matrix whose elements are the components of its members.
This corresponds of course to a frame transformation. The set of all
such transformations on Tom constitutes the linear group GL(m,R),
which can in this way be identified with the set F;A1 of linear fra-
mes on Tfﬁd . We want that frames (and components of vector fields
with respect to them) be differentiable. Mathematically, this presup
poses that the union of the Fob M for all péM has itself been made
into a differentiable manifold. This larger, (m+m?)-dimensional mani
fold is the bundle of linear frames BLF (M) | A point on this mani-

fold can be specified by ({l‘},{h:}) where {x™} are the coordinates



of pEM in some local patch and {h:] fs the matrix corresponding
to the frame. Notice however that BLF(M) 1s not a direct product
of manifolds: in the process of making BLF(M) into a smooth mani-
fold the ("base”) manifold M is blended into BLF(M) in such a way
that its identity is somehow lost. It can only locally (that is,on
a8 local coordinate patch) be unblended out again. This is done by
a local section, a mapping of a coordinate patch into BLF(M),which
corresponds to a local choice of linear frame.

The spaces tangent toM can, however, be associated
to subspaces (called "horizontal™) of the spaces tangent to BLF(M),
although in infinitely many ways. Extricating spaces tangent to Ai
from all this entanglement is precisely the task of a linear conne-
xfon: each connexion defines a horizontal space for everypem , and
associates it toTo,M . A linear connexion is a 1-formI® on BLF(N)
with values on the Lie algebra GL'(m,R) of the group GL(m,R). The
horizontal spaces are characterized by the vanishing of ™ when ap-
plied to their vectors. Once a local choice of frames is made on a
particular coordinate patch, ' can be made into a GL'(m,R)-valued
1-form on the patch, that s, locally on M. It is convenient to use
for GL'(m,R) the canonical basis {43‘1} , where the matrix 45‘1 has

elements given by

.

(A*J): =80 & (ngmtem . B4

These matrices obey the Lie algebra commutation rules
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(4%, 8'4) = (8 5 §F- s} 83 52) & 0.2)

The advantage of this basis is twofold: the matrix elements coinci
de with the comnonents and the equations to be writtem later on will
have the usual expressions in the particular case of Riemannian
geometry. On a patch with coordinates {x*} , the connexion can then

be written as

r

{
&
.
j
LT}
*
»
|3

(3.3)

which is a matrix f 1-forms (compare with (2.1) and (2.2)), a "gau
ge potential” for the linear group. It is a 1-form in the adjoint
representation of GL(m,R). Just as for the gauge potentials, it de-

fines a covariant derivative and its curvature
F = dl" +rar” (3.4)

is a GL'(m,R)~-valued 2-form, whose components in a coordinate sys-
tem are those in (2.6) with the structure constants given in (3.2).
This is perhaps the place to insist on some trivial points: curva-
ure (as torsion, to be defined later) is not a property of space,
but a characteristic of a connexion. Connexions are in principle
highly arbitrary, each corresponding to one of the (infinitely many)
ways of retrieving the spaces tangent to M from those tangent to
BFL(M). Only if submitted (as they will here) to extra equatfions

and boundary conditions will they become fixed.
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Up to this point, the analogy with gauge theories is
complete. Gauge transformations correspond here to linear transfor
mations of the frames on the tangent space at the pointpess. The
peculiar character of the present case can be seen pictorially as

" follows: intuitively, we think of the tangent space as "touching®
the manifold M at the point p, which 1{s “shared” by M and TpM.
Else, we tend to look at p as the origin of TpM. However, any point
of TpM can be chosen as the one "touching®™ M at p. This means that
the choice of origin in TpM is arbitrary or, if we prefer, that TpM
is to be taken as an affine space, or, still, that on TpM an extra
translational invariance is at work. Acounting for it, a 1-form on
BLF(M) exists, with values in the Euclidean space R". This form, na
med "canonical"” or "solder" form, is independent of any connexion
and is "horizontal” in the following sense: given any connexion, it
will vanish when applied to any vector which is not horizontal. Gi
ven a connexion and this always present solder form, an isomorphism
1s established between (i) horizontal spaces and spaces tangent to
M; (f11) vertical spaces (the linear complements to the horizontal
spaces in the spaces tangent to BLF(M)) and GL'(m,R). This makes the
group GL(m,R) much more tightly tied to M than would the gauge group
of an internal symmetry.

Let us examine in some detail the above mentioned iso
morphism of vector spaces. To begin with, it is not canonical: it de
mnds on the choice of local frames. If we choose for R™ the vector
basis {Ij} ,where I. is the vector columm with 1 in the j-th row

and 0 everywhere else, each 1local frame {h;} defines an isomorphism

I wrrs: . ¢ -1 o : g
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h:Rm—oTpM by h“j)=hj' In a local coordinate system {(*}, h;= h:.'a,..
This makes it possible to transform indices (i,j,k,...) in R™ into

indices (p ,¥ s P »ee+) in T M by contracting with hf (or hi » the

p
elements of the matrix inverse to (hf) ). For instance, the matri-
ces ZVE may be seen as operating on the columm vectors of Rm,A'JIa=
sg I. » and can be translated into matrices operating on vectors
of TPH, A“,:h;h:A*;_. These matrices provide a realization of
GL'(m,R) on the tangent space. In the same way, a metric i on Rm,
§

)z(I,;,I")=‘l;i , is taken into a metric g, = h h}, Dz--on the tan-
gent space. The isomorphism between horizontal and tangent spaces
is the composition of the solder form with the mappingh . Given
the local frame {h;} , the solder form can be made into an Rm-vg

Tued form om M, with an extra property: it will have the expression
S =1;hi ax* (3.5)

so that S(hj)=lj.

The extra translational invariance on TpM forces us to
enlarge the group GL(m,R) to the affine group. The most convenient
way to do it to recall the additive group structure of R". This cor
responds to identifying it to the translation group Tm , of which
the {Ij} above are taken as generators. The complete Lie algebra

AL'(m,R) generators will obey, in addition to (3.2), the rules

(4%, 1] = -5‘ , (3.6)

[I‘-,I‘.]-_-O . (3.7}:
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In order to represent this algebra it is necessary to

résort to (m+1)x(m+1) real matrices of the form

(3.8)

D
It

Once this is done, the bracket (2.4) can be used. The torsion of I”

is the covariant derivative of S:

T=dS+[r,s}=ds+Mrs +5al . (3.9)

By differentiation of (3.4) and (3.9), the two Bian-

chi identities of differential geometry result:
dF +[M F] =0 (3.10)
aT +[r, T) +[sF)l=0 . (3.44)

Due to the absence of soldering in the bundles with general groups,
only (3.10) (which s (2.9)) appears in the usual gauge theories.
The Poincare group P, is a subgroup of AL(4,R) and
the above considerations can be applied to it by reducing GL(4,R)
to the Lorentz group. The Rq theory is a subtheory. This 1s not a
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trivial statement: not every subgroup yields a sub-bundle with the
connexion a particular subconnexion of the above I . This is true
only under some strict conditions which the Lorentz group happens
to satisfy (Kobayashi and Nomizu 1963). The translation group Ty,
does not, so that a purely translational gauge theory (Cho 1976b)
is not a reduction of the.AL(4,R) case and does not give a sub-
theory. Suppose the Lorentz metricp 1is given on Rq. The subgroup
of GL(4,R) preserving j is generated by J";:(S: 8;-‘2“ 'z“)Aig ,
satisfying 9”3“;7“ =h<® | The isomorphism h defined by the
frame {h,} will take these generators into 3*', = h'g h} T‘&# ,
satisfying 3,""3"“,, Tl',:g:“and providing a realization of the
Lorentz algebra on TpM. The Lorentz connexion will be the.reduced
r, = 3'&5; F'.,".Q » a particular linear connexion of thP: form
= A"R(ézéj_ Rig &’t')[‘aé . The curvature F = 3'"4' F,‘t' is
obtained accordingly. In component form, the usual expressions for
the curvature and the torsion are easily obtained from (3.4) and
(3.9). Equation (3.10) gives the usual Bianchi identities for

E,ij- = Wa) R",-,(,, dx*a dx”  and, after conversion of indices by
putting 'RP,,./”: h? ki“‘.,’)u , the extra Bianchi fdentity
(3.11) is ,for vanishing torsion, the origin of the well known cy-
clic symmetry ‘RP[,‘“,.Jz O . If I, has vanishing torsion and the
metric a’n, has zero covariant derivative according to [, (so that
[, 1is the Levi-Civita connexion related to 3,”,). the usual expres
sions for Riemannian geometry result., Notice however that there is

no compelling reason for doing that here:. from the point of view
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of gauge theories, the dynamical variables are the connexions.

The solder form appears much as a gauge potential for
the translation sector in (3.5). Furthermore, the isomorphism h ,
related to a local frame {hi} » although providing the realization
{A‘,} of the linear algebra on the tangent spaces, fails in gene-
ral to do the same for the translations: the choice of an anholono
mic frame "breaks™ the translational invariance. In Yang-Mills lan-
guage, this choice of frame corresponds to a choice of gauge. The
translational field strength would be oS , but the non-commutati-
vity (3.6) of linear transformations and translations creates a cou
pling between the two sectors which is automatically accounted for
in the torsion. As a vector space, the Lie algebra AL'(m,R) is a
direct sum of GL'(m,R) and R™. We can define a gauge potential

for the affine group by

F = Aa‘; FA"# Ax* + 1‘ ’I}Q‘ dx* i3.42)

for which the field strength will be

F":olF+FAF=F+T:A"‘-F"--l-IQTa. (3.43)

utl

The Bianchi identity for ’

¢

oAF +[F, F]

0
)

J (3.14)
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decomposes just into a linear part which is (3.10) and a transla-
tional part which is (3.11). A1l this remains true for the Poincare

case, which we shall consider from now on, omitting the indices infF.

Let us now apply the considerations of section 2 to
determine the Yang-Mills equations for a Poincare gauge theory.They

will come from the Bianchi identities by duality symmetry:

dxfF 4[N, xF]=0 (3.15)

de+[r',;T]+[S,xF]-_-o (3.186)

These expressions show once again that the Lorentz sector does cons
titute a subtheory, but not the translational sector. These equations
have been proposed by Popov and Daikhin (1976) on the basis of a
heuristic argument. They have pointed out that, for a Levi-Civita

connexion " , they reduce to

‘R#"H = Rua;v =0
and

‘R,w:O

respectively. So, this theory includes Yang (1974) and Zinstein

theories. 0f course, in this sourceless case, they are redundant.
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Not so in the presence of sources. The sources of the Yang-Mills
equations are the Noether current densities whose charges are the
generators of the gauge group. Therefore, here they will be the den
sity of relativistic angular momentum M = 3—"; M‘.’JL dx* and

the energy-stress tensor © = I" 97,— dx® ;
daxf +[I",*F]=;M (3.17)

deT +[P xT] +[s,»F]l =20 . (3.18)
In gauge theories, the conservation of the source currents follows
directly from the field equations. In electrodynamics, the Maxwell's
equation olsF = » 4 implies odu4f = d’xF=0 . In more general
gauge theories the covariant derivative is to be used. From the abo

ve equations it can be directly verified that
dsM+ [T, xMm]) = © (3.19)

o x6 + I[P,ﬂ@][+ [s,*M]) =0 (3.20)

This last expression is a somehow "mixed"” covariant derivative which -
takes into account the coupling between (pseudo)-rotations and trans
lations. Defining i'—_-M-fB , these equations can be combined into

4

the expression

A+ J+I[T, «T)=0 . (3.24)
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4. Contractions of gauge fields

If now we look for a Lagrangian formalism leading to
(3.15) and (3.16) along the lines discussed in section 2, we come
face to face with a serious difficulty. From the roles played byja
and F , we could expect to be able to proceed in the usual way,
taking'ndfk-F) for the Lagrangian density. This is not so, as
only the Lorentz sector (3.15) comes out as the resulting Euler-La
grange equations. The same happens to the Bianchi identities: (3.10)
comes alone from the variations of T. (FAF) . The reason is tri-

vial: the matrix F has the form

A )
F‘ ' T
0. 0] 0

and Ta (FAR)= Ta (FAF), Ta (FaAxF)= Ta (FAxF)

These traces ignore the translational sector and equations (3.11)
and (3.16), precisely tho=e peculiar to the theory, are missed. We
shall follow the general ideas exposed in the introduction to solve
this problem.

Notice to begin with that groups including translation
sut groups are the normal result of Inong -Wigner contractions, which
were originally introduced to explain how the Poincare group is chan
ged into the Galilei group when the velocity of 1ight is allowed to

tend to infinity, On the other hand, to give Lorentz transformations
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and translations the same status it is very convenient (Girsey
1964} to consider the Poincare group as a contraction of a de Sit-
ter group. We are so led to examine the behaviour of gauge fields
under group contractions.

In the process of contraction, some convenient coor
dinates are chosen in the Lie algebra which, via the exponential
mapping, give local coordinates for the group ("group parameters").
A 1imit is then taken which contracts some of the coordinates to
zero while eventually letting other parameters go to infinity. Infj
nite values of parameters of the original group are absorbed in the
parameters of the resulting group.

To fix the ideas, consider the 2-dimensional Poincare
group P,= 1s0(2)= S0(2) @ T,. Its Lie algebra P’2 has generators

{93,7,,T,} satisfying [35,T,) =Ty; [J3,T2] T, [T,.Tz]=o.we

can use for them the matrix representation

oio0 oo 1
I;:(iOO) ;T‘=(OOO) ;T,:(
o

000
o 00
ornod

) _ (4.1)

A matrix B belonging to Pé is

B=2B8+ T,B + T3 = (4,9)

o H‘_o
© O
o U&H“
\/
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It corresponds to a group element

[d/] B3 sk B° a,
o = expB=z |»88° AP , (4.3)
o o v |

 § P} a s { 3
where q, = %Aﬂﬁ’-}%(d?’-!) ; a‘=_%§433 + %,—(GRB -1) .,

The usual parametrization is obtained for AB’:{;‘ ; R B »=

~-4/2
= (1-%<*) . 1f we try to obtain the Galilei group by

taking the 1imit c+00 , only its translational part comes out.

In order to obtain the whole group, a similarity transformation
cC © 0

Sg 5”1, with $=(gz: , has to be done beforehand, which changes
(4.3) to

¥ vy cay
vty a, (‘l.‘!)
0 (o) i

The 14mit now gives-

o] 4 b, (4.5)
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which represents the 2-dimensional Galilei group when applied to
columm vectors (x,¢ ,4 ). Notice that the Galilean translation pa
rameter bx=ca, absorbs the infinity of c (Inonu 1964). The ele
ments of any matrix in the Lie algebra will be accordingly contrac
ted or stretched, their eventual infinities being absorbed in the
elements of the corresponding matrices of the final Lie algebra.

We shall here be mainly concerned with contractions
of Lie algebras. As any finite Lie algebra is a subalgebra of some
linear algebra GL'(n,R) (by Ado's theorem), we shall use the devi-
ce of embedding both the initial and final algebras in a convenient
matrix algebra. This {is perhaps an unusual way of looking at con-
tractions, but it helps to see them at work and shows in what sense
they are singular transformations. We have already done it above,
as (4.1) is a particular realization of Pé in GL'(3,R). The simi-
larity transformation leading from (4.3) to (4.4) corresponds to a
change of the basis (4.1) to J3=c A‘;-fcdda, s Ty = cA‘s;

T, = A“, , with the A‘.’- given in (3.1). This possibili-
ty of different realizations comes from the fact that the commuta-
tions rules do not fix them completely.

Our interest will be the contraction of the de Sitter
groups S0(4,1) or S0(3,2) to the Poincaré group Py» but, to show
the procedure in some detail, we shall examine the simpler case of
the contraction of a gauge theory for the de Sitter group in 2 di-
mensions SO0(2,1) to a P2 gauge theory, while retaining a 4-dimensio

nal space-time. We shall keep the basis (4.1) for Pé. The gauge po-
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tential and the field strength for a P2 gauge theory will then be

written

_ [0 A A _ [o P F!
A= |Fo A |, F=|pf 0o F° . (4.¢)
oo 0 o o o ‘

The Lie algebra S0'(2,1) of the de Sitter group has
generators obeying [J, 3, = -d3 5 [J,.33] = -3, 5 [94,3,] = 9,.
These commutation relations by themselves do not fix the basis of
generators. If we look for the most general linear combinations of

the A‘,- € . GL'(3,R), we find that they will be satisfied by

any set {J;} of the form

] 4 3
IJ:%A’J"'-;;‘AA ;JB:FA 3‘%‘4113":.‘413.}%4"'

for arbitrary real values of o , p . As we shall contract S0'(2,1)
to Pé preserving the S0'(2) generated by J3, we choose o/=@3 . The
gauge potential and the field strength will be

0 A oL A o £ «F*
3 4
e AA‘S it “A ] 5 F o= B o «Ff (4.7)
e A O 2 F!
o ol -3 2 0
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Notice that the basis chosen for S0'(2,1) is a choi-
e of vectors in a 6-dimensional subspace of the vector space 6L’
(3,R). The Pé basis (4.1) is a choice of vectors in a 4-dimensional
subspace included in the above one. The contraction S0°'(2,1)— PZ'
is the limit v~ . Let us look, for instance, at J': it can Dbe
any point on a hyperbola branch on the plane (A",, A’,). The con-
traction corresponds to a transition to the asymptote A’, . In this
sense, it is a singular transformation strongly reminding the passa
ge to infinite-momentum frames. The components of any matrix will
stretch or shrink as shown in (4.7), which is a kind of interpola-
tion between the initial (say, for«=1) and the final algebras. Com
parison with (4.6) shows how the P2 fields absorb the fnfinfties:in
the 1imit, oFf =F%; «Fl=F?; FA=F® ; Atz Al AY= w A
and A2 = A} . Always in the 1imit, the fields and potentials are re
lated by

- - - -4
Flo olAL e AR o Flo w'(al'+ ANAT)

dA + AAAL = oF Y 2 o dA S ATAR)

-
'y
|

— - a=q =2
Rz dAd s AMAl = FP = dA Lo AAA

Notice that A-‘ .I' are parts (because we are working with only

a subgroup P2 of P4)' of the solder form; f?’.?a. of the torsion form;
-3 -3

and F and A~ the field and potential for the untouched S0(2) sector.

Changing notation accordingly,
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Fo‘: d“Ta: d-‘(d‘sJ*AAS‘) 7
FRoa?Th2 o7 as'+ AnSY) (4.8)
F: = F = dA+ o=t 54453

The S0(2,1) second-order invariant is

Li=-t T(faf)=- L Ta(Far-" TaT), (19

“P‘

for any value of o and consequently as near as we may wish of the
asymptotic limit meant by the contraction. The transiational contri
bution is lost only when o *= 0, the invariant reducing to the sole
S0(2) invariant. Suppose however that we integrate (4.9) as it is,

1 2

and take variations in the potentials A, S° and S°: the resulting

equations are
O(F-f-o(':[s,TJ:O

AT +[A T)+[s,Fl=o

When o«-f- 0 , these are just (3.10) and (3.11) for this particular
case. Notice also from (4.8) that F redices to the S0(2) field
strength, So,we learn here the following: the correct Bianchi iden-
tities are obtained from the de Sitter fnvariant if the variations

are proceeded to as for the S0(2,1) theory and the contraction is
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accomplished afterwards. The same is true for the Lagrangian

L =- -;-— Ta(FAlF- o’ TAIT) , (4.10)

which leads to the 50(2,1) Yang-Mills equations and,with contrac-
tion as the last step, to equations (3.15) and (3.16) for this parti
cular case.

Notice that, looking in GL'(3,R), the components affec
ted by the contraction are those along A’i, A‘, . A’_, and Aa, .
involving the index "3". We could call them the "third" components.
The components which relate only to the fixed subgroup S0(2) remain
intact. A1l the above procedure holds for the 4-dimensional Poinca-
ré group P4» whose equations are obtained from those for SO0(4,1)
or S0(3,2) in just the same may as above those for P2 have been de-
rived from those for S0(2,1). Of course, the fixed subgroup will be
S0(3,1) and the distorted components are those along Aigand A’; in
the embedding GL'(5,R) ("fifth" components), but nothing essential

is changed. Before contraction,the equations are (3.11), (3.16) and

AF ¢ [T, F) 4u?[s,T)=0 (4.41)

dafF + [P, aF]+o™[5,aT]=0 (4.12)

The torsion (the "fifth" components of the de Sitter field strengths)

appears directly as in (3.9), because both sides of the equations are
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distorted in the same may (as in (4.8)). The field strength is now

F = ol « CaAr +d" SAS | (4.13)

S being the "fifth" components of the de Sitter potential.
From these interpolating expressions an alternative
interpretation comes forth: the P4 theory is a de Sitter gauge theo

ry supplemented by the constraints

[S§, T) =0 ; SAS zo0 , (4.14)

)

whose role is to enforce the commutation between translations. One

could forget about contraction, use the action

5=‘§‘J Ta[FASF = TaxT)] (4.16)

taking T and S as the “fifth"” components in a de Sitter theory(which
means that F depends on S for variations) and use (4.14) as weak
constraints in the sense of Dirac (1964), to become effective only
after the variations are performed. This is similar to the relativistic
kinematics for a free particle, where the explicitly covariant equa
tions of motion result from the action $=M\f°'~3"",\»‘-‘-"~ and

only after that therweak constraint ;4‘4£L=-ca is reinstated.
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5. Final comments and speculations

1f we accept the arguments favoring a P4 theory,it is
difficult to evade the conclusion that the scheme above describes
the general 1ines of what a classical gauge theory for gravitation
should be. Being an asymptotic 1imit of an usval gauge theory, it
will probably avoid many of the problems faced by General Relativi-
ty, such as those related to nonconservation of overall energy-mo-
mentum (Denisov and Logunov 1980) and the Newtonian 1imit (Denisov
and Logunov 1981). It is also probable that the contraction proce-
dure turn out to be helpful in analysing the question of quantiza-
tion. One could even conjecture that contractions would help clari-
fying the issue of symmetry breaking in general. Higgs fields appear
in a very natural way in the interplay of internal and space-time
symmetries (Forgacs and Manton 1980). In the approach above, a group
is contracted and (as discussed in section 3) the resulting trans-
lational sector is "broken®” by chofce of gauge (1ocal frames). One
could take the arguments given by Trautman (1979), by which the four-
legs are Higgs fields breaking the natural GL(4,R) invariance down
to Lorentz invariance and argue tail-end backward: the better known
vierbein fields could be helpful in clarifying the meaning of the
far less understood Higgs fields.
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