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0. INTRODUCTION

When Maxwell succeeded to unify eleectricity and magnetism he presented 8 set
of differential equationg. Ome century later, when trying to unify fundamental
interactions physiciacs are questing for a gauge group. The success of renorma=~
lizable gauge theories provided by SU(2) x U(1} and 5¥(3) 1in describing electro-
weak and strong intsractious respectively is an encouragsment to look further a:d
try larger unification, including ultimarely gravitation. Gauge theo: es give a
central rola to group theory since the group not only claasifies cha | ricles but
also fixes their intaractions. In this talk we will cry to examine how deeply
group theory is involved in building grand unified theories (GUT's) whic embody
electroweak and strong interactioms. We leays aside the SuperGUT's whici aim at
unification with gravi:yl).

After a brief survey of grand unification theories we shall concentrate on a
particular aspect: the Higgs problem. Since the only renormalizable gauge :heories
we know of are thoge where the symmecry is spontaneously broken we need to . :troduce
Higgs scalar particles in the theory, be they elementary or composite. Bec:i.. e of
the many free parameters appearing in the Higgs Lagrangian (and some bad remc ma-
lization properties) fundamental diggses are disliked and many physicists prefer
to see them as composite states of some new gauge interacticu. This approach is
termed as dynamical symmectry breasking, cechnicolour,...2),and will not be touched
upea because of the lack of space-time. Anyway, symmetry breaking is achieved
using scalar multiplets added to the fermionic matter multiplets and it is this

agpect we want -to focuse on.

Saction II will be devoted to the physical implicatien of the choice of Higgs
representations for particle wasses (charged fermions and neutrinos). We shall
say a few words on two other items: the strong CP problem and the hierarchy puzzle.
In section III we shall consider the mathematical aspects of symmetry breaking
having in mind the, so far unsucceasful, quest for a natural way of breaking
symmetries with Higgses in a gauge theory.

I. GRAND UNIFIED THEQORIES FOR NON SPECIALISTSJ)

Weak and electromagaetic interactiona seem today very well described by the
"unifying" gauge group SU(2) x U(1). Colliding protons and anciprotons at a
center of mass energy of 540 GeV will confirm (or disable) very soom the
existence of the predicted weak gauge bosons, W and Z. Iasucha theory
quarks and leprons are classified in doublets acd singlecs of S$U(Z), the weak
isoepin group. Namely for the first fermiou family with quarks u, d and leptons
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with the noration EL,R - _21_ (13 yg)f.

The second family of fermions {c, s, u, uu) and the third one (including
the so far unseen t quark (t, b, T, v‘_) are classified in ¢ similar manner
under this group.

The gauge group S50(2) x U(l) is spoantanecusly broken down ta tha elaectro-

magnacic group U(1) ., 8 d by the g T, +¥ if T, T,, T, aud

Y are tha generators of S$U(2) and IJ‘(l)Y respectively. This breaking is
triggered by a doublat of Higgs acalars. Ta the remaining lJ‘(l)em symetry is
asuociated the massless photon while to the thrae broken generators ara associated
the massive gauge bosons Hz, Z. These perticles are expected to get masses of
order 80 to 90 GeV, given by the vacuum expectation value acquired by the Higgs
doublet (za). The coupling coustants of SU(2) (g,_) and U(l) (g!) ara related
to the electric charge e = glg,_/m_ but are not truly unified as this theory
contains a new "comstant", the weak mixing angla B ¢ Tl = g /gz.

Now strong interactions appear to be described by quantum chromodynamics (QCD)
based on the gauge group of coler SII(3)C. Uader this group each quark tranaforms
as a triplet and each lepzon as a singlec. Therefore, using a gauge theory hased

on the non-simple group:
SU(3)C x §O(2} x u(l)
we can obtain a fair descripcion of the interactionm (but gravitation) of elamentary

particles. So far so good, but we have a direct product of 3 groups aud then as

many indepeud coupling §; this ig no unificacion. UOnifying inmceractions

with so different strengths (at low emergies) is in fact possible due to the extra-
ordinary property of aaymptotic freedom. Coupling constants of noo-abelian gauge
theories decrease with increaming emergy, at a rate fixed by the group and the
particle multiplets we have. In the above case, it just happens that unification

of the coupling comstants, i.e.
By T8 "8 " &

can be reslized at an energy scale below the Planck maza whichk allows us not to
worry about gravity in the scheme. In group theory l-nguage we look for a simple
group G embedding SU(3) x SU(2) x U(l) which can be a symmetry group for the

Lagrangian of the unified theory. Of course such a group has to have suitable



representations to classify quarks and leptoms. Ao archetypal grand unified theory
(GUT) is based on the SU(S5) srnupk), which is actually the smallest simple (com—
pact) Lie group whose Lie algebra contains the Lie algebra of 35U(3) x 5U(2) x U(I)-)
The particle atates of each family are classified with 2 irreducible representations
(Im) 5 +10.

< c
0 uy - up uy dy
0 ufuyd,

= c e ,c =
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[+

wvhere 1,2,3 are tho coler indices, the subscript L means that all states are
left handed fislds and the superscript ¢ refars to charge coujugitiou, defined
as follows

@y = % (= v iy = iyyup
When looking at the reductiom of 5 and 10 under S0(3) x SU(2)
52GD L, 10= (G0« (3,2) + (1,1
ve check that we have all desired particles and no room for a right handed neucrino.
In order to preserve remormalizability, amomalies proportional, for a given IR of

fermions, to the third rank symmetric tensor (sae helow) have ca vanish. For
inatance

fermions

A voTe QA - A AN

gauge bosons
where the ) are the matrices coupling all fermiona to gauge fields. The conditionm

of anomaly freedom means that anomalies of the IR of farmioms must add to zero a
condition fulfilled by 5 + 10.

)Actually, the group SU(S) contains a subgroup 5[0(3\ x U(Z)] = SU(3) x SU(2) x
x U(1) / ZypZ, which has the same Lie algebra as S5U 3) x 50(2) x U(l). In the
following, when considering subgroupa of a group, we will forget in our notations
the discrete part, as usually done in the related literature. This will be in-
trinsecally incorrect from a mathematical point of view, but physzcs will scay
safe as long as problems like motopoles are not considered.



The gauge fields of this thenry belong to the sdjoint rapresentation 24
whose SU(3) x 50(2) content is

2% = (3,2) + (3,2) + (8,1) + (1,3) + (1,1

In addition to the gluons of QCD (8,1) and the electroweak force carrears
W, 2z, v (1,3) + (1,]) wa have 12 new gauge bosons (3,2) + (3,2). These carry
color and fractionmal slectric charpes +4/3, t1/3, they are camed X(4/3), Y(1/3)
and thelr antiparcicles X, Y.
)

Using the renormslization group cqun:ion13 (vhich govern the avolution
rate of the coupling constants) it has besn possible to evaluate rather precisaly
the scale Yoy 3t which unification occurs

14 19
Mg ™ 8.34 x 10%% GeV (HPlanck ~ 10*7 GeV)

A being the QCD scale, A~ O.1-1 GeV that is M, < 101%~15 gay,

All this approach relies on the belief (somewhat criticized) that nothiag
happens between 102 GoV, the unification scale of SU(2) x (1) and 10" GaV:
we have crossed che grand dessrt!

Another grand unified scheme is basad on the group S0(10) 9 which contains
U(5) as 2 subgroup and ham some actractiva features: all representations are anomaly
free, property which is gemeral for SO(a) groups o > §,and the ferwions can be accome-
dated into a single IR, the basic spinorial oue, 16 dimensional. Its SU(5)
counteat is
16 = 10 +3 +1

1f che sirglat part is attributed to a posaible (?) right handed neutrino v ®e
can generate naturally ueutrino meases. As far as che fermion representationa are

concerned we can draw the following conclusion for a consistent scenario:

i}  The representations of the fermions muat be anomalias free in order to pre~
serve remormalizabiliry. These anomalies are only present in the complex

represeatations of the SU(n) groups.

The fermicns must appear in complex representations and then the relevant

e
[N
<

groups are SU(n), SO(4n+2), Eg, E; and E;. The reason for this requirement
ip to avoid the appearance of mass terms invariant under the group becausa
the Biggs singlet which gives the mass would have 2 vacuyum expectation value
of the order of HGU' Thia is the survival hy'pochesias): the states which
can get masses invarisnt under SU(3) x SU(2) x U(1) become superheavy and

do not survive inm the seeable spectrum.



Now that wa have plausible unification scenarios we would like to underscand
how the correct breaking can be mada ag we go down from HGU to today energies.
For this purpase we shall make extemsive use of Higgs mulciplars, which can also

give fermions masses.

In the case of G w SU(5) the first breaking SU(5) + SU(3) x SU(2) x U(L)
can be made using & 24-plet of Higgses (243) , in this occasion, the 12 gauge
bosons X, Y, X, Y outside of SU(3) x SU(2) x U(l) acquire a mass of order
MGU‘ It is enough to add a 5y to achiave the second bresking down to
SU(3) x U(I)ml and give usual masses to U: and Z, while the gluons and the
photons sszsociated with unbroken gemerators remsin massless. By the way, let us

- note that we dictated hare that gauge hosons get considerably different masses

Mo /My 1012, chat is thac the vacuum expectation values of the 24, end the Sy
are in this racio. This is far from natural and it is usually thought of as ome
major problem in this approach: the hierarchy probiem (see next section).

The" fact that quarks and leptons belong to the sama representation of G has
a dramatic consequence: the baryonic number (B) csn be violated and the procen
can decay. Indeed in the effective SU(5) invarianc Lagrangian ve have a term

- u . i
o, ig T, V) o ¢ L= R)

where 'bL g aTe left (right) handed spinor fields, T.'i the gemerators of SU(S)
; Ls
and v: the corrasponding gauge fields. This generates the following diagrans
u e’ a et
X(4/3) (1/3)
and

e

£l

Adding a spectator quark lime we just have the transition

+ 0 + -
prenr ; n+en

Calculations of the proton lifetime ™ indicate that”'”
rp = p2 [;—%} = 8.1030%2 yenrg
4

vhere D2 depends on the details of the decay model. This proton decay is actually
one of the few direct tests of the scenario of grand unification and much work to

see it is being dome.



In the minimal SU(5) model (with 24y ® 55) the Lagrangiam is imvariant
under a giobal U(I} symmetry which corresponds to the comservatiom of (B-L).
In SO(10) model (B~L) is a generator of the group and when the breaking occurs,
ic is broken. Therefors we expect (beyond the tree lavel) to see proton decays
which violate (B=L) if S0(10) or snother version of 5U(S) is the relevant

theory.

From this general (and quick) outlook one realizes how Lis groups or mora
precisely Lia algebra techniquas play an important role in the elaboration of
GUT's. Also if such a scenaric exists we have so far not upified the familias:
thers is no mechanism which explains the threefold replication of 5 + 10 in
SU(5) and of 16 in SO(10). 1In words SO(10) and SU(5) appesr to be not big
enough. A related question is that, sinca quarks and leptons appesr in the same
rapresentatioun, they might just be bound states of the sames subconstituents, in
the same way hadrons are made up of quulua).

Attempts to solve the family problem do not yield,up to now,a satisfactory
description of our world ). Prom what has been achieved wicth $0(10) and SU(5), a
vatural direction is to try with the groups SU(2n+1) or SO0(4n+2) > SU(2m+l) x U(1)

and use for the fermions tha f 1 spinor repr tation =- or its SU(2n+l)
reduction - which is 2(2:1-1) dimensional and anomaly free. We can also consider
the exceptional groups B, > E, 3 Eg sa(10) > 5U(5), a plausibiliry argument
being that the Dynkin diagrams of SU(S) and S0(10) appedr in che same chain as
those of Es’ E,, By The fact that this chain stops at E; can be an ?gglics:ian
that grand unification ausz be colved (if ever) before or just with E, .

Of course, as increasing the group G the knowlsdge of the subgroups is of firse
necguity”). Depending on the choice.of G, cthare are several chains of subgroups
which lead down to SU(3} x U(l)m' (In the rest of this talk subgroups
are considered up to conjugation of G.) The explicit realizations of the
tepresentation of G are necessary as it is necessary cto kmow the reduction of
the Kromecker product of the representations of G to study the Lagrangiau, ot

the reduction of a represencation ¢f G with respeet to one of its subgruups”>.

Another relaced interesting problem is the symmetry breaking using Higgs multi-~
plets: what are the necessary representations in order o break G down to S and can
wve insure that we were indeed at a minimum of the potencial? This last gquestion
raises a very difficult problem sbout which little is knowm in general and further
study is certainly worth, as will be discussed in sectiou III. A related physical
question is the Higgs scalars problem. It does not seem possible to obtaia "matu-
rally" mass relations. The Higgs potential introduces a large number of parameters
and one needs an incredibly accurate tuning of these to obrgin M.x/.‘l‘7 ~ 102
(hierarchy problem). Actually high energy physicists feel uncomfortable with Higgs



scalars because of the inhereni: freedom in chooaiog the multiplets to realize the
correct breaking and also some bad high energy behaviour. Scalar particle mass

corrections have quadratic divergences whereas for fsrmions only logarithms oceur.
In genersl one triea to use the smallest possible multiplecs (minimsl SU(5) for
to obtain acceptable masses for

instance) but at same stage one needs wore Higgs
the fermions. An altermative to elementary Higgaes is to sea them as bound states
of a new kind of fermiona with & new gauge interaction, wheraby, a priori, their
properties would be calculable. However this approach (Technicolor, Extanded
technicolor theories) do not appear to be conclusive up to now ', The attitude

of modal builders is then to cousider Higgses as a ecessary evil aud to use as
many multiplets as needed to make the model comsistant. The hope is that ultimately
naturs will tell us that we were right.

We shall discuss, too briafly because of tha lack of room, some physical
aspects of the Higgs problem in the next section. The mathamatical question will
be touched upon in the third section, where is emphasized the necessity of thinking
to a mathematical criterioa which could select the Higgs multiplets for achieving

our physical purposes,

II. PHYSICAL USE OF HIGGSES IN GUT'S

In this section we want to describe some topics which exemplify how Higgs
field representations can be used to attack physical problems. Grand unified models
are a giant step on the way to the unification of fundamencal interactions but still
they do anot pravide a satisfactory spectrum for the wany fermions appearing, neither
do they explain the family replicacion. As far aas the fermion spectrum is councermed,
it is well known that massless fermioas acquira their masses through their coupling
to the Higgs fields when thege acquirs non zero vacuum expectation values. Quite
generally mass terms for the fermions can be written as

mhy + @' T = @G vy * Bdy) + ot Ger + e

w is called the Dirac mass while m' is the Majorans mass. Indeed WS entails
a fermion-antifermion transition which is often forbidden by quantum number conser—
vation; however for Majorana spinors, y = w':, which carry no quantum numbers such
a mass term is perfectly respectable. In view of electiric charge conservation
Majorana mass terms can only be relevant for neutrinos provided lepton number is
not conserved. Therefore we shall study separately the charged fermion massas
(Dirac) and the neutrino masses (Majorana). To be complete we shall say a few words
on two hot subjects:the axion problem and the hierarchy problem which geems to be

"solved” in GOT's using superaymetryl).



Charged fermion masses
Dirac mass terms originats from the coupling AGR.E.WL present in the in-
variant Lagrangian. It is then easy to single out the Higgs multiplets suitable

to give fermions masses.

In cha SU(5) modal since

Tx10w5+55; 10x10=3+ 45+ 50

a SH and/or & asﬂ of Higgs mast our raquiraments. Lef us just cake, for
economy, the SE of SU(S)., Then due %o the SU(4) symmacry of its vacuum ex=—
pectation valus one obtaing, at the grand unification scale L") the following

mass relation -
mo=m 3 W ocm ; m o=@

Thesa relations get modified by remormelization effects as we go down to lower

energy, for instance

m(@  [a (@ T12/(33-26)
T, | 8,0

T 3

where a’(Q) is the strong coupling conscant at scale ¢ and £ is che number

of quark flavours. This f dependence is crucial: indeed with £ = 6 (3 families)
and Q= Zm.D LY mv one obtains o (5-5.5) GaV whereas f > 6 would increase

oy in disagreement with experimental observation. Therafore grand unification
telia us at once that quarks are heaviar than leptons and chat 3 families is a
favoured scheme. However this brillianc result is dulled by the bad, sczle inde—
pendent, relation

-k

200

uﬂlna
]
= I-E

in violent disagreemant with current algebra estimate md/ms ~ 1/20. This failure

13)

may be indicative of post SU(5) interactions or of a rore complicated Higgs

s:ructure”). Indeed using a combination of SH and 455 ome abtains
3“‘3'“:1; m = 3o ; = o= o

wbich respects the successful relation m = @, and gives m‘:l/ms =9 me/mu ~ 1/20
an acceptable ratio. But this clever solution is not very "natural” in the gsense
that the ‘53 does not act in the sama way on the 3 families.



In the case of S0(10) model where the farmions of one family occur into a
single irreducible representation (16) we have to face with the same problem.
Indeed

16 x 16 = 10 + 126 + 120

which under SU(5) reduce tao:

0= 5+7
120 w45+ 35 + 10+ 10 « 5+ 5
126 50 + 45 + TS + 10+ 5+ 1

then using the’ 10 of Higgs one recgvers the good (and the bad!) mess ‘relacions
given by the 5H in SU(5) modal. The remedy is then to introduce l20H ard/or
126 (which contain the 455 of SU(5)1). By the way let us note that the
126.H also breaks the (B-L) generator of S0(10) which then allows Majorama

mass terms for neutrinos if desired.

Angtbar tantalizing problem is the "hierarchy" observed between the masges
of the 3 fermion families. Even if we can obtain satisfactory mass relations in
GUT's, we have no explapation of why 2 families appear light and a third ome aeavy.
In fact the mass hierarchy suggests that masses of the different families are
generated radiatively at different orders of the perturbacion expansion. This is

15)

the (a?, a, 1) scheme which means that:

the third family gets a tree level mass (Fs) = (v, b, &)
the second family gets a one loop level mass (F,) = (u, s, c)

the firsc family gets a two loop level mass (F;} = (e, d, u).

This (a2, a, L) can be achieved in a 5U(5) model in which F, gets a direct
mass by a SE and where the Yukawa Lagrangian possesses a global symmetry such
that F, has only a one loop radiactive mass and 7, gets only a two loop mass.
This necessitates the introduction of other Higgs multiplets like 50y,75; and 10;
which may render the scheme unattractive, howaver in addition te the local SU(

the Yokawa part of the Lagrangian exhibits a global U(1)¥ symmetry which protects
the light fermions from getting masses and ensures the B-L comservation. Out of
this global U(1)* symmetry after the breaking, emerges a2 remmant U(1) which
plays the role of the Peccei-Quinn 0(1) so useful for getting rid of stromg

CP violation (more aon this item later!).



NeutTino masses

The massas of neutrivcos are clearly very spacial. Indeed there is no experi-
mantal evidence for a right handed nsuctrino which excludes a Dirac mass term, and
a Majorana masa tarm would raly on L violation. In the simplest SU(5) model
the neutrino is expected to be massless, this is not true fur more complicated
GUT's which may contain "R" or Higgs mulciplets with I = ], 1Ia fact L con~-
servation is not a dogma since no gauge priunciple is associated with it, so even

in SU(5) one can imagine gensrating a v mass.

The 0(10) wmodal contains & right~handed neucrino [:h. SU(S5) singlet in the
raduction 16 = 10 + 3 + 1] anod then a Dirac mass of the same order as that of
. quarky and leptons can be generated. This can be avoided if the Vg Teceives a
large mass, following the "survival" hypothesis which states thar the states which
can get mzeses by Higgs singlets under the GUT group get superheavy. In chis case
we have a mass term fo: the neutrins

- [0 . (v,
(Vps V) ] _]
vR o M Lv

M > 1015 GeV and m is a conventional Dirac mass, chen the eigenvelues of
the mass matrix ara M and m2/M = as wnn:edg) . This mechanism can be
actually realized using a 126-plet of Higgs (it comrains an SU(5) singlet) but

16) has shown thar wichout

the vacuum expectation value is a free parameter. Wictan
introducing the 1263, ona can generate a two loop zass inm a simple S0(10)

model. In cthis model ocue has 3 multiplets of Higgses, a vector 105 giving masses
to the fermions (lﬁf). aspinor IGH which breaks 0(10) dowm to SU(5), aud the
adjoint 45H which realizes the breaking of SU(5) to SU(3) x SU(2) x U(1).
Since vg caan only get mass via an effective 126 interaction,we need to look to
the sioplest way to obtain a 126. Using IOE, le and 455 one obtains

loE x ASG x ASG > 126 which corresponds to a two loop diagram,wiere 45G stands
for the &45-plet of gauge bosons of 50(1Q)

+ crogsed.

The rat cutcome is rhat for each generation
Ty v 1077 @ that is
9

mve ~ 1 ev, :n\,u n 100 eV and mvc A [-10 Ke¥V.
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These estimates are cousistent with experimental bounds stating that

LN < 35 eV, o, $ 500 KaV and m, < 200 MeV.
. u T

However cosmological bouunda are much more stringent aud may imply to cake aa graund
unification scrnla 2 larger scala than 1015 GeV as usually understood im all the

calculations.

Bierarchy

As seen in the previous section GUT's seem to provide a vaery appealing
scheme for the unification of all iater--tions in a natural way due to the evo-
lution of the coupling "conatants'. However all the constructions ara unable to
explain why ° Elx/!!w ~ 1032 in a natural way. Let us see on the simple SU(5)
model how the problem comes in. In SU(5) the breaking of the symmetry is
achieved by 2 Higgs multiplets ZloE and SE' The 24-plets breaks SU(5) -+ SO(3) x
x SU(2) x U(1) and gives a mass to the X and Y gauge bosons because they couple
SU(3) and SU(2) indices. X and Y are very peculiar objects in that they
mediate proton decay and in order to give a proton lifetime consistent witk what
is koown they better be suparheavy

15
HX,Y ~ 10%° GeV.

This means that the vacuum expectation value of the zaa Vo ¥ 1015 Gav. On the
other hand the S-plat of Higgs makes the second step of breaking

SU(3) x sU{2) x U(l) + SU(3) x 11(1)em

.
and gives a mass to the weak interastiom bosons W, Z. This imposes that

v. ~ 102 GeV an extremely small number 2s compared with the scale of unifieation.

5
The situation is even worse if one cousiders that radiative correctioms will couple
"effectively” the 265 and the 53, aud the ouly way to prevent the SH to get
enormous contributions at this level is to impose “uonaturally” thet some combi~

nation of p % in the p ial is of order &Y1072%), O0f course such a

miracle has to ocecur at edch arder of the perturbation expansion. A possible way
out is to introduce supersymmetry (SOUSY) 17 in the scheme, a symmetry which
relates bosons and fermioms. In this way quadratic divergences of the scalars may
disappear and only logarithmic ones (like for fermions) survive; ome also protects
scalars from gacting huge masses by the chiral sympetries of their fermionic partners
until SUSY is broken. Experimental observations do not exclude a breaking scale

of 10277 Gev,this is comfortable to obtain M, 102 GeV. Of course new gene~

ration accelerators will be able to see if supersymmetry is present at such a low



energy.

Strong CP and the Axion
This suvbsection is intended to say a few words on a question which has been
revived raecently and in which GUT's seem to give a aatural explamatiom provided

18)

one uses "Higgs tricka".

In b dy cs i golutions generate an extra term -ze

in the Lagrangian which violates P and CP.
| T -1
.*'?-3-32;-32 7 G ewpac"

where G'° is the non-abelian gluon fidld tensor aad & is a free paraceter.
The electric dipole moment of the neutron gives a bound on CP violation by stromg
interactions, wbich implies 8 < 1079, Why should € be so small or could it be
zero? Peccei and Quinnlg) proposed a mechanism which solves the problem at the
expense of introducing a new light particle: the axion” '. Let us consider the
SU(2) x U(1) wmodel of waak interactions with the u and d quarks; the chain
of arguments leading to the axion can he summarized as follows:

- Suppose u and d quarks are not massless (as strongly suggested by curtemt
algebra) and that we give them masges with 2 diffeven= Higga doublets *1’ 4)7_
(a crucial ingredient), then the Lagrangian is izvariant under a global chiral
U(1) Peccei-Quinn

e’ u; g~e’sd; o > o*ls 8, i o, = & 23 b,
This allows us to rotate away the parameter 6 and get rid of the anroying CP
violation. However this is nmot all the story.

When ¢, and 12} acquire nom zero vacuum expectation -calues (vev), gauged
SU(2) x U(l) and global U(UPQ get broken: hence 4 Goldstone bos.uns. Three of them are
eaten by the WY and the Z, acquire masses, the remaining one is the axiom
which would be 1ugssless if instantons were mot . B of i
U(l)17Q is an approximate gymmetry and the axion has a small mass. The physical
parameters of the axion can be calculated and cne finds that its mass amd its

couplings to matter are inversely proportional to the vev of the Higgses,in our

case ~ 102 GeV :
D cion ¥ 100 EaV.

The axion was searched and not found (so far), more, as it is, it rises emormous

problems for star evolutionm!
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A clever sclution has been proposed which makes it :i.nvisi‘blezn. The trick
is the following: one builds a GUTZG)’ZD and adds the suitable Higgs multiplats
3o as to obtain an exsra chiral symmetry U(])PQ' When the "grand” breaking
oceurs, U(\)PQ is also broken but now vhat enters in the mass and couplings of the
grand unified axion is M v 101% GeV which reduces these by 14 orders of wagnmi-
tude .3, B v 1078 ov.

Wa do not see the axion just bacause wa cannot sse it! An sxampla of possible
SU(S) wodel is the one proposed by Wise, Georgl and Glnhwu) who usa two Sa'n
and Z‘H * izbn'. Of course the "unnatural™ scall 8 paracetsr has been replaced

by a “suitable" adcition of Higgs multiplets,

IIl. THE HIGGS POTENTIAL MINIMUM PROBLEM

Let G be a (compact) gauge group which is spontaneously broken down to its
subgroup 5. We have to solve the following problems:

i) Pind the representations Eg of G contairning a vector °o associated with
the vacuum expectation value <¢> invariant under (and only under) the sub-
group S. S is the stabilizer or little group of 4, ¢

S=lgec| gl =4} =5ab (o) = G¢°.

ii) Find the invariants of the representations Rg in order to obtain the moat
general G invariant polynomial of degree 4 from Rg, which will be the
Biggs potencial V(¢) (the restricrion to degree 4 bcing imposed by remor-

malizability).

iii) Them selact the representaticns R: such that che absolute minimum of the
corresponding Higgs potential admita exactly S as little group.

Informations for part i) can be found in Befs (24) and (25) for G = SU(n)
and 50(n). Indeed geperal theorems are given there characterizing the G irre-
ducible representatic- s which admit a vector ipvariant under a subgroun 5, for

a large class of subgroups §.

Actuzlly thig problem can he seen as a first step for the classification of
the orbits under G of a G tepresentation ~ such a program is quite huge,
except for special cases as SU(3) (see Ref, 24). It is worth to mention that
the results obtained in Refs (24, 25) are gpecially simple for a direct application.
4s an example let us mention the following ones: any SU(n) vepresentation
R(A;..- An—l) (associated with the Young tableau with A, boxes in the first

TOW, <o An-l boxes in the (n—l)th row) contains a vector the stabilizer of
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which is S[U(n—p) x U(p)] o-p > p > | if and only if

DA e 22 i=1,2,...,0-1
A =22 and A positivae unumber
ii) A, 2 A

Notes that condition 1) implias R(AI.... An—l) to be salf conjugata and such
n-l .

that I Ai = nl.
iwl

In the same way a(xl... Agey) Wwill contain a vactor the stabilizer of which
is U(z-1) if and only if: Ay @ er = An—l - -;- Al, and a vector stabilized
s + . 1 :

under SU(n-i; if and only if A, = «+o = An—l [ 7N

Tachniques devaloped to prove theorems of this kind uses extensively the
Gel'fand Zetlin basis for SU(n) and SO(n), allowing an explicit realization
of the representations and suitabla to deduce the eigenvalues of the U(l) facrors
in the decomposition of a represantation of G with respect to subgroups con-
taining chese U(1) factors, and other results such as amomsly formula for SU(a)

representations S .

~ The second problem concerning the construction of the imvariants of the repre-

sentation R, is a difficult problem in the general case. The representation

G
EG can always be considered as a real Tepresentation on which G acts linearly
and orthogorally. Then what is known £rom invariant theory is that

(i) the polymomial invariants separate the orbits; (ii) every G invariant

polynomial (C*-function) F can be writtem as a polynomial (c"~function) F with:

HORBICHONRRNOBIES SEy

where 8,... 8 forma minimal sat of homogeneous G-invariant polynomials eu(a)
(i.e. an integrity basis). '

Let us :emindzs) 027

if one denotes by g($) the tranaformed of $ by g. If two points m and m'

that the orbit of m e R, is the sec G(m)={g(4)[g e G}

are on the same orbit, their little groups (or scabilizers) Gm and Gm. are
conjugate. However two points m and m' need not to be on the same orbit to
have conjugate little groups. By defimition, they are on the same stratum; in
other words the stratum S5(m) in the union of all orbits such that the lirtle
groups of their points are all conjugated. Ome has 4 partition of Rg into

orbits, as wall as partition of -RG into strata.



15

Therefore the decomposition of RG into orbits and straca is esquivalent to
the classification of lictle groups for RG. The number of little groups for a
given representation is finite and a partial ordering (defined by inclusior)
exists among them (cthat is: S1 is smaller than S, if S, is included into S,
up to a conjugation).

Then with respect to this ordering, the minimal little group Eu is unique
- what ig not the case in general icr the maximal little group (if wa exclude in
RG the 0) - and the associated stracum haa the property to be open densa: it
is also called the generic stratum.

The number u of functionally and algebraically independent invariants for

the representation RG ise

uRG-dimRG-dmcd-dim(So)

where 5, is the lictle group of the gemeric stratum - or minimal little group.

Let us considar, as an example, tbe case G = SU(2) actipg on the fundamental
two dimensional (real on the quatermionic field) represemntation., Then ﬁim Rp = 4
(on the real) and the only possible little group is the identity. Therefore there
exists only u = 4~340 « 1 invariant, i.e. the scalar product X2 if Te R;-

If G = 50(3) and R, is the three dimensional represerzation again there

is only cme little group wﬁich is the subgroup SU(2) and ome invariant (u = 6-8+3).
Now looking at the 8-dimensional (adjoint and real) representation of SU(3), two
different little groups ') can be found, i.e. SU(2) x O(1) and UC1) x O(D).
Indeed considering 85[‘!(3) as the set of 3 x 3 hermitean traceless matrices

k on which SU(3) acts as follows:

U e 50(3) h + Uhp-!

We gsee that any , h can be put by SU(3) action om a diagonal form

@
)
~{(a+B)

There exist therefore two kinds of orbits - or two strata - following the 3
eigenvalues are all different (little group = U(1) x U(l) ) or two of them are
equal (litrle grous = 50(2) x U(1) ). In this last case the orbit cam be

e ()

parametrized by
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We can motica that in R8/R-{0} (i.e. if we forget about the multiplicative
paramater § ) there exists only one orbit in che stratum associated with the
little group SU(2) x U(1) : che orbit G(h,) is said isolated in its stratum
(see a complets definition later).

In our example va sea izmediately that for amy € > 0 '

1 +¢
hy = 1 +e¢ )
-2=2¢

is no more stabilized by SU(2) x U(1) but by U(1) x U(l).
The two independent igvariants can be chosen to be
I,=Trh? and I;=Trh3=3deth

which satisfy:

>612 [
2 - 3

The strict inequaliry: Ig > 6 I§ on the generic stratum is replaced by the
equalicy Ig =6 I§ on the isolated orbit. Wa see explicitly on this simple
exampla the property above menticued that the polynomial imvariacts saparate the
orbits (and strata).

Now comes the last problem to be solved, i.e. the Higgs potential V(¢) with
4 € EG mist hava as absolute minimum 4 such that its little group 61, =S is
fixed in advance. °

A detailed study of this problem has been made in some special cases. In the

case of R. irreducible, 2 detailed study has been first given by Lizs) for

G
G = SU(N) or S0(n) and RG of the type vector, secood rauk syuwetcic and anti-
symmetric and adjoint representation. For exceptional groups, Higgs dcalars in

the adjeint rep ions are di d ia Ref. (29).

In the interesting case of G = SU(5), the minimal brezking can be achieved
with the adjoint 24 breakiog SU(5) + SU(3) x 50(2) x U(1) and a vector ome 5,
producing the second bresking up to SU(3) x U(I)m. Let us denote by ¢;:': the
5 x 5 traceless hermitean matrix and Hi (i,j = 1...5) the complex vector which
transform respectively as lfbe adioint and fundamental representation of SU(S).

If the discrete symmetry ¢i - -¢i is imposed one gets for the Higgs potential

V,B) = - § uiTre? + § alTred)? - £ v2'E

+FAE'D? + a®@'D) Tre? + £ b Te* + 5 B
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203,30 that the absoluts minimum of chis poteatial can be

It has been shown
on an orbit with cthe 1littla group SU(3) x U(l)‘; for values of the coef-
ficients b >0 and 8 < Q. Then the "maturalness" of the symmecry is praserved,
that is the range of the coefficients in V{$,B) is not limiced to apecific values
(which make the minimum "unetable”). The hierarchy is preserved (ses section II) '
by choosing ("by hand") the ratio [x|2/§2 << 1 if H and ¢ are paramatrized

as follows:

h: -_(:,0,0.0,0) and ¢ = diag (6,6,6,6(~3/2 + ¢), 6(-3/2 + £))

In the G = SO(10) case, the bresking can occur with the help of a 16, 45
and 1G as follows:

§0¢10) — SU(5) — SU(3) x SU(2) x U(l) —SU(I) = U(1)
16 45 10

A detailed study of the Higgs potential with a 45 + 16 + T8 representation can
be found in Ref. (32).

Is it paasible ta find a methemstical criterion for the minimum of the Higgs ' ’
potential, such that the breaking appears more catural? Although ome canmot
answer completely to this question, a way of cthipking seemsa particularly attractive.
About ten years age, Michel and Rxdicatiu), studying various examples in elementary
particle physics, remarked that the directions of breaking appear om isolared orbits
in the representations on which the symmetry group acts. From this property they

conjecturad the following theorem, which was proved by Hichal%):

Theorem: Let G be a compact Lie group acting smoothly (i.e. infinitely diffe-
rentiable mapping) on the real manifold M, and let m € M. Then the properties
{2) and (b) are emuivalent:
(a) the orbit G(m) is critical, i.e. the differemtial d fm, of any smooth
real G-invariant function £ on M vanishes for ' = G(m).
(b) the orbit G(m) is isolated in its scratum, i.s. there exists a neigh-
bourhood \7III of m such thet if p eG(m), p € V(m), them the lictle
group GP is oot conjugated to G‘.

We realize the importanmce of this theorem for the Higgs problem but at the
same time its limications. The above property allows to raplace very elegantly
an spalysis problem: search for the extrema of a G-invariant function by a geome-
trical ome: classification of the isclated orbits. The theorem is gemeral in the

sense that the property is valid for any G-invariant function.

However, it does not fit completely with our problem, since we are interested

oot in any extremum, but in the minimum of our potential. One may think that the
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restriction of G-imvariant functions to fourth degree polynomial could be of some
simplification. It has been passible to show (anly) on some examples that the
sinizm of the Higgs potential lies on a critical orbit: that is the case in

S0(5) + SU(3) x O(1) with a 24 +5 3135) as wel) as ip 50(n) ehar oaly che adioit
Tepresentacion is uudzs).

Hichol.'?»s:udying in detail Landau theory of second order phasa transitions,

bas conjectured the following property: if the Higgs potential depeunds only of

ons irreducible (on the real) rwpresentation, its minima huve maximal little groups.
Indeed if isolated orbits (or critical orbits) bave little groups which are maxi-
mal in the set of little groups, the convarse is uwot true in general, i.a. it can

exist maximal little groups to which are not associated isolated orbits.

- Let us bring a precision on che abava conjecture: if the mipnimm of a Higge
potantial amight be on an grbit assaciated with a maximal little grcup, this dces
ot mean that any orbit associated with a maximal little group works. TFor example,
if one considers the spinor representation 64 of 0(14), one finds three maximal
little groups, actually SU(7), 6(2) x G(2) and SU(3) x 0(7). but ouly the two
first correspond to absolute minima of the Higgs ponntia.las).

It is clear tbat more work is needed in this appealing direction, where the
geameery of the orbit space plays a predominanc rdle. In that spiric, ic is worth
to mention the recent study given in Ref. (39). The authors scate the following
theorem, which have quite interesting conssquences:

Theorem: The vector space spanned by the gradients at ¢ of the polynomials
invariants of an integrity basis coincides with the invariant slice through ¢.

First this theorem calls for some definitions. If we demote T, the subspace
of the zep ion (= R™ spanned by the el té with t e § Lie algebra
of G (tangent space) and S¢ its orthogonal complement in ® (global slice),
the invariant slica S,o will be the subsp of S¢ P d by the Gq,,-i::variant
vectors of § (GO being the litcle group of $). One reccvors Michel's theorem

)
as a of this st , but one can alse deduce from it several pro-

perties, In particular, equations of strata can be obtained by studying the
principal minors of the symmetric matrix:
n
Pl = '151 3; 8,(4) 3; B8,(8) a,8 = 1,...,9 -
where the @  are the q homogeneous G-invariart polynormizal of an integrity basis.
Their method allows also to state conditions for tke mirima to exist and to be
natural (stable) and to clarify the origin of a clase of pseudogoldstome bosons

(see the paper for more details!).



CONCLUSION

As a conclusionr it appears clesarly that the choice of Higgs scalars i- of
first importance in the gauge cheories of unification. They are a very convenient
way to describe some ganeral faatures of physics like symuetry breaking or mass
generation, however thay do not provide quantitative explanation for the observed
phenomena. To say the worsa they, in some sense, parametrize cur ignorance of the
dynsmical behaviour of gauge theories. Ws referred often to the concept of natu~-
ralness, which is at the seme level as aesthetics: beautiful ideas should work!
This ia the resson why we think that a more mathematical spproach for selacting
Biggs representations could yield a pacural solution. In this 1ine of thought
superunified chootin” which use supersymmatry and can describe graviiy could
alsp, as a bonus, provides patural saswers to the quastion that scalar particles
raise. Grand unified theoriea are appealing, superunified theories-could be great!
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