
F^ %L <? -AL^o 

LAPP-TH-50 
September 30, 1981 

GRAND UNIFICATION AND GROUP THEORY : THE HIGGS PROBLEM 

G. Girardi, 

*) A. Sciarrino 

P. Sorba**0 

LAPP, Annecy-le-Vieux» France 

To be published in the Proceedings of the Xth International 

Colloquium on Group Theoretical Methods in Physics, 

Canterbury, Great-Britain, September 1981. 

On leave of absence from Istituto di Fisica Teorica, 
Napoli, Italy. Partly supported by Fondazionc A. Delia 
Riccia, Italy. 

*«) 
On le?ve of absence from Centre de Physique Théorique 
Marseille, France. 

L . A . P. P. CHIMIN DE B£LL1:V1'E BOITE POSTALE IV) LE-VIÉUX ÇÉDFX 



I 

0. INTRODUCTION 

When Maxwell succeeded co unify electricity and magnetism he presented a set 
of differential equations. One century later, when trying to unify fundamental 
interactions physicists are questing for a gauge group. The success of ranorma-
lizable gauge theories provided by SU{2) * 0*0} and Stf(3) in describing electro-
weak and strong interactions respectively is an encouragement to look further a. d 
try larger unification, including ultimately gravitation. Gauge theo: as give a 
central role co group theory since the group not only classifies the t tic lea but 
also fixes their interactions. In this talk we vill cry to examine how deeply 
group theory is involved in building grand unified theories (GUT's) whic embody 
electroweak and strong interactions. We leave aside the SuperGUT's whici. aim at 
unification with gravity . 

After a brief survey of grand unification theories we shall concentrate on a 
'particular aspect: the Biggs problem. Since the only ranormalizable gauge theories 
we know of are those where the symmetry is spontaneously broken we need to -.troduce 
Higgs scalar particles in the theory, be they elementary or composite. Bee;., a of 
the many free parameters appearing in the Higgs Lagrangian (and some bad rent na-
lization properties) fundamental Higgses are disliked and many physicists prefer 
to see them as composite states of some new gauge interaction. This approach is 

2) termed as dynamical symmetry breaking, Cechnicolour,... , and will not be touched 
upon because of the lack of space-time. Anyway, symmetry breaking is achieved 
using scalar multiplets added to the fermionxc matter multiplets and it is this 
aspect we want -to focuse on. 

Section II will be devoted to the physical implication of the choice of Higgs 
representations for particle masses {charged fermions and neutrinos). Efe shall 
say a few words an two other items: the strong CF problem and the hierarchy puzzle. 
In section III we shall consider the mathematical aspects of symmetry breaking 
having in mind the, so far unsuccessful, quest for a natural way of breaking 
symmetries with Higgses in a gauge theory. 

I. GRAND UNIFIED THEORIES FOR NON SPECIALISTS3^ 

Weak and electromagnetic interactions seem today very well described by the 
"unifying" gauge group SU(2) * U"(l). Colliding protons and antiprotons at a 
center of mass energy of 540 GeV will confirm (or disable) very soon the 
existence of the predicted weak gauge bosons, U~ and Z> In such a theory 
quarks and lepcons are classified in doublets and singlecs of SU(2), che weak 
isospin group. Namely for the first fermion family with quarks u, d and leptons 



0 . •(:-•). 
with the notation f, « • -̂ (1 + Ys)f' 

The second family of fermions (c, 1, y, v ) and the third one (including 

che so far unseen t quark (t, b, x, v ) are classified in a similar manner 

under chis group. 

The gauge group SO (2) x tf(l) is spontaneously broken down Co the electro­

magnetic group tfCOgn, generated by the generator T 3 • Ï if •£ , T 2, T 3 and 

7 are the generators of SU(2) and U ( l ) ? respectively. This breaking is 

triggered by a doublet of Higgs scalars. To Che remaining 0(1) symmetry is 
em 

asuociated che massless photon while co che three broken generators are associated 
*• 

the massive gauge bosons W~, Z. These peptides are expected to get masses of 

order 80 co 90 GeV, given by che vacuum expectation value acquired by che Higgs 

doublet (1g). The coupling constants of S0*(2) (g 2) and U(l) (gj) are related 

to the electric charge e » g ^ / ^ g f + g£ but are noc cruly unified as this cheory 

contains a new "constant", the weak mixing angle 9„ : tg6„ - g /g . 

Mow strong interactions appear co be described by quantum chromodynamics (QCD) 

based on the gauge group of color SIT(3) . Under this group each quark transforms 

as a triplet and each lepton as a singlet. Therefore, using a gauge theory based 

on. the non-simple group: 

SU(3) c x SU(2) x U(l) 

we can obtain a fair description of the interaction (but gravitation) of elementary 

particles. So far so good, but we have a direct product of 3 groups and. then as 

many independent coupling constants ; chis is no unification. Unifying interactions 

with so different strengths (at low energies) is in fact possible due to the extra­

ordinary property of asymptotic freedom. Coupling constants of non-abelian gauge 

theories decrease with increasing energy* at a rate fixed by the group and the 

particle multiplets we have. In the above case, it just happens that unification 

of the coupling constants, i.e. 

8j " %2 * ^3 ™ So 

csn be realized ac an energy scale below che Planck ma3a which allows us not to 

worry about gravity in the scheme. In group theory language we look for a simple 

group G embedding SD(3) * SU(2) x Q(l) which can be a symmeCry group for the 

Lagrangian of the unified theory. Of course such a group has to have suitable 



representations to classify quarks and leptons. An archetypal grand unified theory 
4) 

(GUT) is based an the SU(5) group , which is actually the smallest simple (com­
pact) tie group whose tie algebra contains the Lie algebra of 5U(3) * SU(2) x 0(1). 
The particle states of each family are classified with 2 irreducible representations 
(HO J + 10. 

0 U| u 2 d 2 

0 u 3 d 3 

V ",J 

where 1,2,3 are tho color indices, the subscript L oeans chat all states are 
left handed fields and the superscript c refera to charge conjugation, defined 
as follows 

&\ " J C l ' Y5> iY 2u* - iy 2u* 

When looking at the reduction of T and 10 under SO(3) x SU(2) 

T - (3,1) + (1,2) ; 1 0 - (3~,1) * (3,2) + (1,1) 

we check that we have all desired particles and no room for a right handed neutrino. 
In order to preserve renonnalizability, anomalies proportional, for a given ES. of 
fermions,to the third tank symmetric tensor (see below) have ca vanish. For 
instance 

fermions 

gauge bosons 

where the \ are the matrices coupling all fermions ta gauge fields. The condition 
of anomaly freedom means that anomalies of the IR of fermions must add to zero a 
condition fulfilled by 5 + 10. 

Actually, the group SU(5) contains a subgroup s[u(3"* * U(2)] • SU(3) x SD(2) x 
x 0(1) / Z 3xZ 2 which has the same Lie algebra as SU 3) x SU(2) x U(I). In the 
following, when considering subgroups of a group, we will forget in our notations 
the discrete part, as usually done in the related literature. This will be in-
trinsecally incorrect from a mathamatical point of view, but physics will stay 
safe as long as problems like monopoles are not considered. 



The gauge fields of this Chenry belong to the adjoint representation 24 
whose SU(3) * SU(2) content is 

24 - (3,2) + <T,2) + (8,1) + (1,3) * (1,1) 

In addition Co Che gluons of QCI) (8,1) and che electroweak force carreers 
tf*, Z, T (1,3) + (1,1) we have 12 new gauge boson» (3,2) + (T,2). These carry 
color and fractional electric charges ±4/3, ±1/3, they are named X(4/3), 7(1/3) 
and their ancipaxticlas X, 7. 

Using the renormalization group equations (which govern che evolution 
rate of the coupling constants) it has bean possible to evaluate rather precisely 

M C T % 8.3A x loi* GeV < M p X M f i k * I0« GeV) 

\ being the QCD scale, A * 0.1-1 GeV that is M ^ * 1 0 1 * " 1 5 GeV. 

All this approach relies on the belief (somewhat criticized) chat nothing 
happens between ID 2 GeV, the unification scale of SD(2) x u(]) and 1 0 : u GeV: 
we have crossed che grand desert! 

Another grand unified scheme is based on the group S0(10) which contains 
0(5) as a subgroup and bas some attractive features: all representations are anomaly 
free, property which is general tor S0(n) groups n > 6,and che fermions can be accomo­
dated into a single IE, che basic spinorial one, 16 dimensional. Its SU(5) 
content is 

16 - 10 + T + 1 

can generate naturally neutrino mrsaes. As far aa che fermion representations are 
concerned we can draw the following conclusion for a consistent scenario: 

i) The representations of che fermions must be anomalies free in order Co pre­
serve renormali2ability. These anomalies are only present in the complex 
representations of the SU(n) groups. 

Li) The fermions must appear in complex representations and then the relevant 
groups are SU(n), SO(4n+2), Eg, E 7 and Eg. The reason far this requirement 
is to avoid Che appearance of mass terms invariant under the group because 
the Higgs singlet which gives the mass vould have a vacuum expectation value 
of the order of M__. This is cha survival hypothesis : the states which 
can get masses invariant under SU(3) * SU(2) * U(l) become superheavy and 
do not survive in Che seeable spectrum. 



Now that we have plausible unification scenarios we would like to understand 
how the correct breaking can be made at we go down from M _ to today energies. 
For this purpose we shall males extensive use of Higgs multiplets, which can also 
give fermions massai. 

In the case of G - SU(5) the first breaking SU(5) * SD(3) * SU(2) x 0(1) 
can be made using a 24-plet of Higgses (24„) , in this occasion, the 12 gauge 
bosons X, Y, X, Y outside of SU(3) x SU(2) x 17(1) acquire a mass of order 
Mfl_. It is enough co add a 5g to achieve the second breaking down to 
Sff(3) x (7(1) and give usual masses co tT and Z, while the gluona and the 
photons associated with unbroken generators remain massless. By the way,let us 

• noce that we dictated here that gauge bosons gat considerably different masses 
M-/11, ̂  10 1 2, that is that the vacuum expectation values of the 24- and the 5™ 
are in this ratio. This is far from natural and it is usually thought of as one 
major problem in this approach: the hierarchy problem (see next section). 

The*fact that quarks and leptons belong to the same representation of G has 
a dramatic consequence: the baryonic number (B) can be violated and the proton 
can decay. Indeed in the effective SU(5) invariant Lagraugian we have a term 

? L r(\ - ig Ti vj) *L * a ~ R) 

where -Ji are left (right) handed spinor fields, T. the generators of SU(5) 
and 7 the corresponding gauge fields. This generates the following diagrams 

X(4/3) 

Adding a spectator quark line we just have the transition 

+ o ^ + -

Calculations of the proton lifetime t indicate that ' 

-g) 8 < 1 0 3 0 ± 2 y e a r s 

where D 2 depends on the details of the decay model. This proton decay is actually 
one of the few direct tests of the scenario of grand unification and much work co 
see it is being done. 



In the minimal SU(5) modal (with 24- 9 5„) the Lagrangian ia invariant 

under a global 0(1} symmetry which corresponds to the conservation of (B-L). 

In SO(IO) model (B-L) is a generator of the group and when the breaking occurs, 

it is broken. Therefore we expect (beyond the tree level) to see proton decays 

which violate (B-L) if SO(IO) or another version of S0(5) is the relevant 

theory. 

From this general (and quick) outlook one realizes how Lie groups or mora 

precisely Lie algebra techniques play an important role in the elaboration of 

GUT's. Also if such a scenario exists we have so far not unified the families: 

there is no mechanism which explains the threefold replication of T + 10 in 

SV(5) and of 16 in S0(10). In words S0(10) and SU(5) appear to be not big 

enough. A related question ia that, since quarks and leptons appear in the same 

representation, they might just bo bound states of the same subconstituents, in 

the same way hadrona are made up of quarks . 

Attempts to solve the family problem do not yield,up to now, a satisfactory 
9) 

description of our world . From what has been achieved with SO(IO) and SU(5), a 

natural direction is to cry with Che groups StJ(2n+l) or SO(4n+2) :> SU(2n+l) x U(l) 

and use for Che fermions Che fundamental spinor representation - or its Sïï(2u+I) 

reduction - which is 2 dimensional and anomaly free. He can also consider 

Che exceptional groups E 8 3 E ? ? E_ D 50(10) o SU(5), a plausibility argument 

being that the Dynkin diagrams of SU(5) and SO(IO) appear in Che same chain as 

chose of E„, £., E a . The face chat this chain stops at E a can be an indication 
6 10) 

Chac grand unification must be solved (if ever) before or just with E g 

Of course, as increasing the group G the knowledge of the subgroups is of first 

necessity . Depending on the choice.of G, there are several chains of subgroups 

which lead down Co StJ(3) x U(l) . (In the rest of this talk subgroups 

are considered up Co conjugation of G.) The explicit realizations of che 

representation of G are necessary as it is necessary to know che reduction of 
12) 

the Kronecker produce of the representations of G Co study the Lagrangian, or 
the reduction of a representation cf G with respect CD one of its subgroups 

Another related interesting problem is the symmetry breaking using Higgs multi­

plets; what are the necessary representations in order to break G down Co S and can 

ve insure Chat we were indeed at a minimum of the potencial? This last question 

raises a very difficult problem about which little is known in general and further 

study is certainly worth, as will be discussed in section III. A related physical 

question is the Higgs scalars problem. IC does not seem possible to obtain "natu­

rally" mass relations. The Higgs potential introduces a large number of parameters 

and one needs an incredibly accurate tuning of these Co obtain My/Mrr ^ ' ° 1 2 

(hierarchy problem). Actually high energy physicists feel uncomfortable with Higgs 



7 

scalars because of the inherent freedom in choosing the multiplets to realize the 
correct breaking and also some bad high energy behaviour. Scalar particle mass 
corrections have quadratic divergences whereas for farmions only logarithms occur. 
In general one tries to use Che smallest possible multiplets (minimal SU(5) for 
instance) but at some stage one needs more Higgi*• to obtain acceptable masses for 
the fermions. An alternative to elementary Higgles is to see them as bound states 
of a new kind of fermions with a new gauge interaction, whereby, a priori, their 
properties would be calculable. However this approach (Technicolor, Extended 

21 technicolor theories) do not appear to be conclusive up to now . The attitude 
of modal builders is then to consider Biggses as a necessary evil and to use as 
many multiplets as needed to make the model consistent. The hope is chac ultimately 
nature will tell us that we were right. 

He shall discuss, too briefly because of the lack of room, some physical 
aspects of the Higgs problem in the next section. The mathematical question will 
be touched upon in the third section, where is emphasized the necessity of thinking 
to a mathematical criterion which could select the Higgs multiplets for achieving 
our physical purposes. 

II. PHYSICAL HSE OF HIGGSES IN GDT'S 

In this section we want co describe some topics which exemplify how Higgs 
field representations can be used co attack physical problems. Grand unified models 
are a giant step on the way to Che unification of fundamental interactions but still 
they do not provide a satisfactory spectrum for the many fermions appearing, neither 
do chey explain Che family replication. As far as the rermion spectrum is concerned, 
it is well known that massless fermions acquire their masses through their coupling 
to the Eiggs fields when these acquire non zero vacuum expectation values. Quite 
generally mass terms for the fermions can be written as 

m is called the Dirac mass while m' is the Majorana mass. Indeed K> entails 
a fermion-antifennion transition which is often forbidden by quantum number conser­
vation; however for Majorana spinors, ty • 4> , which carry no quantum numbers such 
a mass term is perfectly respectable. In view of electric charge conservation 
Majorana mass terms can only be relevant for neutrinos provided lepton number is 
not conserved. Therefore we shall study separately Che charged fermion masses 
(Dirac) and Che neutrino masses (Majorana). To be complete we shall say a few words 
on two hot subjects:the axion problem and the hierarchy problem which seems co be 
"solved" in GDT's using supersymmetry . 



Charged farmion masses 

Dirac mass terns originate from the coupling xijL.H.if', present in the in­
variant Lagrangian. It is then easy to single out the Higgs multiplets suitable 
to give fermions masses. 

In cbe SU(5) modal since 

5 x 10 - 5 + 4 5 " ; 10 x 10 - T + 45 <• 50 

a 5- and/or a 45- of Biggs meet our requirements. Let us just take, for 
economy, the 5„ of SIT(5) • Then due to the 3)7(4) symmetry of its vacuum ex­
pectation value one obtains* at the grand unification scale M_, Che following 
mass relation • 

These relations get modified by renormal12ation effects as we go down to lower 
energy, for instance 

«^(q) 12/(33-2£) 

where a (Q) is the strong coupling constant at scale Q and f is the number 
of quark flavours. This f dependence is crucial: indeed with f - 6 (3 families) 
and Q • 2m. ^ m on* obtains m. ^ (5-5.5) GeV whereas f > 6 would increase 
m. in disagreement with experimental observation. Therefore grand unification 
tell? us at once that quarks are heavier than leptons and that 3 families is a 
favoured scheme. However this brilliant result is dulled by cbe bad, scale inde­
pendent, relation 

m , m . 
_i . _£. . * 
m " m 200 s y 

in violent disagreement with current algebra estimate m . M <v 1/20. This failure 
13) 3 

may be indicative of post S0"(5) interactions or of a r.ore complicated Riggs 
structure '. Indeed using a combination of 5_ and &!_ one obtains 

3m * m, : m • 3m ; m • m, e d p 3 T a 

which respects the successful relation n * m. and gives m,/m • 9 m /m -v 1/20 
an acceptable ratio. But this clever solution is not very "natural" in the sense 
that the 45_ does not act in the same way on the 3 families. 



In the case of S0(10) model where the fermions of one family occur into a 
single irreducible representation (16) we have to face with the same problem. 
Indeed 

16 x 16 - 10 + 126 + 120 

which under SU(5) reduce to: 

10 - 5 + 1 
120 • 45 + 23" + 10 + TO" + 5 + J 

126 - SO * 45 + 73" + 10 + I + I 

then using the' 10 of Biggs one recovers the goad (and the bad!) mass relations 
given by the 5_ in SU(5) model. The r&medy is then to introduce 120_ and/or 
126_ (which contain the 45_ of SU(S)I). By the way let us noce that the 
126_ also breaks the (fi-L) generator of S0(10) which then allows Majorana 
mass terms for neutrinos if desired. 

Another tantalizing problem is the '"hierarchy" observed between the masses 
of the 3 fermion families. Even if we can obtain satisfactory mass relations in 
GUT's, we have no explanation of why 2 families appear light and a third one heavy. 
In fact the mass hierarchy suggests chat masses of the different families are 
generated radiatively at different orders of the perturbacion expansion. This is 
the (a1, n, 1) scheme which means that: 

the third family gets a tree level mass (F ) • (T, b, t) 

the second family gets a one loop level mass (F_) - (u, s, c) 

the first family gets a two loop level mass (Fj) - (e, d, u ) . 

This (a 2, a, t) can be achieved in a STJ(5) model in which F gets a direct 
mass by a 5- and where the Yukawa Lagrangian possesses a global symmetry such 
that F- has only a one loop radiative mass and ?j gets only a two loop maas. 

This necessitates the introduction of other Higgs multiplets like 50^,75- and 10„ 
which may render the scheme unattractive, however in addition to the local SU( '• 
the Yukawa part of the Lagrangian exhibits a global HO)** symmetry which protects 
the light fermions from getting masses and ensures the B-L conservation. Out of 
this global BCD'* symmetry after the breaking, emerges a remnant U(l) which 
plays the role of the Peecei-Quinn 0(1) so useful for getting rid of strong 
CF violation (more an this item later!)-



Neutrino masses 

The masses of neutrinos are clearly very special. Indeed there is no experi­

mental evidence for a right handed neutrino which excludes a Dirac mass term, and 

a Majorana mass term would rely on L violation. In the simplest SUCS) model 

the neutrino is expected to be masslesa, this is not true for more complicated 

GUT's which may contain v ' s or Biggs multiplets with I - 1. In fact L con­

servation is not a dogma since no gauge principle is associated with it, so even 

in SU(5) one can imagine generating a \i mass. 

The 0<10) modal contains a right-handed neutrino [the SU(5) singlet in the 

reduction 16 - 10 + T + ij and then a Dirac mass of the same order as chat of 

quarks and leptons can be generated. This can be avoided if Che v R receives a 

large mass, following the "survival" hypothesis which states thac Che statas which 

can get masses by Higgs singlets under the GOT group get superheavy. In this case 

we have a mass term foe the neutrino 

( ^C!) Qj 
M > I 0 1 S GeV and m is a conventional Dirac mass, then the eigenvalues of 

Che mass matrix are M and m 2/M - a^_ as wanted . This mechanism can be 

actually realized using a 126-plet of Higgs (it contains an 5U(5) singlet) but 

Che vacuum expectation value is a free parameter. Hittan has shown that without 

introducing the 126_, one can generate a two loop sass in a simple 30(10) 

model. In this model one has 3 multiplets of Higgses, a vector 10_ giving masses 

Co the fermions (I6f), aspinor 16- which breaks 0(10) down to SU(5), and Che 

adjoint 45„ which realizes the breaking of SU(5) to SU(3) * SU(2) * ÏÏ(1), 

Since v_ can only get mass via an effective 126 interaction,we need to look to 

Che simplest way to obtain a 126. Using 10-, 16- and 45„ one obtains 

stands 

for the 45-plet of gauge bosons of SO(10) 

45 

45 

The net outcome in that for each generation 

+ crossed. 

m y -v I eV , aiy ^ 100 eV and n^ "\- I-10 1 



Il 

Theaa estimates ara consistent with experimental bounds stating that 

m < 35 «V» a < 500 KeV and a < 200 MeV. 
• u T 

However cosmological bounds are much more stringent and may imply to take aa grand 

unification scr*la a larger scale than 1 0 1 5 GeV as usually understood in all the 

calculations. 

Hierarchy 

As seen in the previous section GOT*s seem to provide a very appealing 

scheme for the unification of all inter--tions in a natural way due to the evo­

lution of the coupling "constants". However all the constructions are unable to 

explain why ' M_/lt, *>• 1 0 1 Z in a natural way. Let us see oc Che simple SU(5) 

model how the problem comes in. In SU(5) the breaking of the symmetry is 

achieved by 2 Higgs multiplets 24„ and 5„. The 24-plets breaks SU(5) -»• SU(3) * 

x SU(2) x IJO) and gives a mass to the X and Y gauge bosons because they couple 

SU(3) and STJ(2) indices. X and Y are very peculiar objects in that they 

mediate proton decay and in order to give a proton lifetime consistent with what 

is known they better be superheavy 

Mj y -v 1 0 1 S GeV. 

This means that the vacuum expectation value of the '£.<*„ v., <v 1 0 1 5 GaV. On the 

other hand the 5-plat of Higgs makes the second step of breaking 

SUC3) x S0(2) x u(l) * SU(3) x U C D ^ 

and gives a mass to the weak interaction bosons W~, Z. This imposes chat 

T . ^ 10 2 GeV an extremely small number as compared with the scale of unification. 

The situation is even worse if one considers chat radiative corrections will couple 

"effectively" the 24 and the 5„, and Che only way to prevent the 5„ co get 

enormous contributions at this level is to impose "unnaturally" thet some combi­

nation of parameter.*; in Che potential is of order STlO"" 2 4). Of course such a 

miracle has to occur at each order of the perturbation expansion. A possible way 

out is to introduce tupersynaEetry (SUS?) in the scheme, a symmetry which 

relates bosons and fermions. In this way quadratic divergences of the scalars may 

disappear and only logarithmic ones (like for fermions) survive; one also protects 

scalars from gecting huge masses by the chiral symmetries of their fermionic partners 

until SUSÏ is broken. Experimental observations do noc exclude a breaking scale 

of 1 0 2 - 3 Getf.this is comfortable to obtain M„ ^ (0 2 GeV. Of course new gene­

ration accelerators will be able to see if supersyometry is present at ouch a low 



This subsection ia intended to say a few words on a question which has been 
revived recently and in which GUT*s sees to give a natural explanation provided 
one uses "Biggs tricks". 

In quantum chromodynaoics instanton solutions generate an extra term •£. 
in the Lagrangian which violates F and OP. 

*B 32i? 2 uvpc w 

where G 
The electric dipole momenc of the neutron gives a bound on CP violation by strong 
interactions} which implies 3 < 10" 9. Why should 9 be so small or could it be 

19) zero? Feccei and Quinn proposed a mechanism which solves the problem at the 
20) expense of introducing a new light particle: the axion . Let us consider the 

SU(2) * 0(1) model of weak interactions with the u and d quarks; the chain 
of arguments leading to the axion can be summarized as follows: 

- Suppose u and d quarks are not massless (as strongly suggested by current 
algebra) and that we give them masses with 2 different; Higgs doublets 4 , $. 
(a crucial ingredient) r then the Lagrangian is invariant under a global chiral 
IT ( 1 ) Peccei-Quinn 

Ycd , Yet* . , +2itx , . -2i<x , u * e'5 u ; d •*• e'S d ; $ -t- e ^ ; * 2 * e $1 

This allows us to rotate away the parameter 9 and get rid of the annoying CP 
violation. However this is not all the story. 

When * 1 and $ 2 acquire non zero vacuum expectation -alues (vev), gauged 
SU(2) x tj(l) and global U(l) p_ get broken: hence 4 Goldstone bosons. Three of them are 
eaten by the W £ and the Z to acquire masses, the remaining one is the axion 
which would bt: rjassless if instaurons were not present. Because of instantons 
0(1) is an approximate symmetry and the axion has a small mass. The physical 
parameters of the axion can be calculated and one finds that its mass and its 
couplings to matter are inversely proportional to the vev of the Higgses,in our 
case * I0 2 GeV : 

The axion was searched and not found (so far), more, as it is, it rises enormous 
problems for star evolution! 



is the following: one builds a GUT and adds the suitable Biggs multiplets 
so as to obtain an extra chiral symmetry ?(!}._. When the "grand" breaking 
occurs, U ( l ) p 0 *•* a * s o broken but now what enters in the oass and couplings of the 
grand unified axion is M_ ^ 1 0 1 4 G«V which reduces these by 14 orders of magni­
tude e.g. m^ -\* 10" a eV. 

We do not see the axion just because ve cannot see itl An example of possible 
22) SU(5) model is the one proposed by Wise, Georgi and Glashov who usa two 5 's 

and 24_ + i24_'. Of course the "unnatural" small 8 parameter has been replaced 
by a "suitable" addition of Biggs multiplets. 

III. THE HIGGS POTENTIAL MINIMUM PROBLEM 

Let G be a (compact) gauge group which is spontaneously broken down to its 
subgroup 5. He have to solve the following problems: 

e 
i) Find the representations R of G containing a vector ô associated with 

the vacuum expectation value <$> invariant under (and only under) the sub­
group S. S is th* stabilizer or little group of $ i 

S - {g e G ! g(*o> - iQ) - Stab (*Q) - G^ . 

S 
ii) Find the invariants of the representations R_ in order to obtain the most 

S general G invariant polynomial of degree 4 from R G» which will be the 
Biggs potential V($) (the restriction to degree 4 being imposed by renor-
malizability). 

' " " R G 
corresponding Higgs potential admits exactly S as little group. 

Informations for part i) can be found in Refs (24) and (25) for G - S0(n) 
and SO(n). Indeed general theorems are given there characterizing the G irre­
ducible representatic s which admit a vector invariant under a subgroup S, for 
a large class of subgroups S. 

Actually this problem can be seen as a first step for the classification of 
the orbits under G of a G representation - such a program is quite huge, 
except for special cases as SU(3) (see Ref. 24). It is worth to mention that 
the results obtained in Refs (24, 25) are specially simple for a direct application. 
As an example let us mention the following ones: any SU(n) representation . 
R U j . . . *__,) (associated with the Young tableau with \y boxes in the first 
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which is sQj(n-p) * U(p)] n-p > p > 1 if and only if 

X. - 2\ and X positive number 

ii) \ t > k. 

Note that condition i) implies R(\ .... * D - 1 > to be self conjugate and such 
n—l 

that I \. - uX. 
i-1 l 

la the same way 2(1 ... \,_i) will contain a vector the stabiliser of which 
is tJ(n-l) if and only if: * 2 • ••* • \ • ? X , and a vector stabilized 
under SU(n-0 if and only if X 2 • ... • \ ft — \ 

Techniques developed to prove theorems of this kind uses extensively the 
Gel'fand Zetliu basis for SU(n) and SO(n), allowing an explicit realization 
of the representations and suitable to deduce the eigenvalues of the U(l) factors 
in the decomposition of a representation of G with respect to subgroups con­
taining these tT(I) factors, and other results such as anomaly formula for SU (a) 

25) representations . 

- The second problem concerning the construction of the invariants of the repre-
j 

RG 
and orthogonally. Then what ia known from invariant theory is that 
(1) the polynomial invariants separate the orbits; (ii) every 6 invariant 
polynomial (C -function) F can ba written as a polynomial (C -function) F with: 

F(«) - P(8j(«),...,6 (•) );4 e R a = R 

(i.e. an integrity basis). 
Let ua remind * J that the orbit of m e R_ is the set G(m)-{g($)|g e G} 

if one denotes by g($) the transformed of $ by g. If two points m and m' 
are on the same orbit, their little groups (or stabilizers) G and G , are 
conjugate. However two points m and m' need not to be on the same orbit to 
have conjugate little groups. By definition, they are an the same stratum; in 
other words the stratum 5(D) in the union of all orbits such that the little 
groups of their points are all conjugated. One ha 
orbits, as well as partition of • R_ into strata. 
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Therefore the decomposition of &„ into orbits and strata is equivalent to 
the classification of little groups far R_. The number of little groups for a 
given representation is finite and a partial ordering (defined by inclusion) 
exists among them (that is: S is smaller than S 2 if Sl is included into S 2 

up to a conjugation). 

Then with respect to this ordering» the minimal little group H is unique 
- what is not the case in general ior the maximal little group (if we exclude in 
R„ the 0) - and the associated stratum has the property to be open dense: it 
ia also called the generic stratum. 

The number p of functionally and algebraically independent invariants for 
the representation R is: 

X 
1 dim R_ - dim G + dim (S ) 

where S 0 is the little group of the generic stratum - or minimal little group. 

Let ua consider, as an example, tbe case G » SU(2) acting on the fundamental 
two dimensional (real on the quatennionic field) representation. Then dim Rg • 4 
(on the real) and the only possible little group is the identity. Therefore there 
exists only u • 4-3+0 • 1 invariant, i.e. the scalar product Z z if S s R . 

is only one little group which is the subgroup S0(2) and one invariant (y • 6-8+3). 
Now looking at the 8-dimensional (adjoint and real) representation of SU(3), two 

26) different little groups 
Indeed considering 8--,,, 
h on which SD(3) acts as follows 

can be found, i.e. StT(2) x 0"(D and U(l) * 0(1). 
as the set of 3 x 3 hertnitean traceless matrices 

U e SU(3) 

We see that any , h can be put by SU(3) action on a diagonal form 

h - Pe 1 
^ -(a+e>) 

There exist therefore two kinds of orbits - or two strata - following the 3 
eigenvalues are all different (little group - ff(l) x u(l) ) or two of them are 
equal (little group - S0(2) x o(l) ) . In this last case the orbit can be 
parametrized by 

• ( ' • J 
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We can notice that in R 8/R-{0} (i.e. if we forget about the multiplicative 

parameter Ç ) there exists only one orbit in the stratum associated with the 

little group StT(2) x 0(1) ; the orbit G(h 0) is said isolated in its stratum 

(see a complete definition later). 

In our example we see immediately that far any e > 0 

'1 + e 

*• -2-2e J •2-2e . 

is no more stabilized by SU(2) x 0(1) but by 0(1) * 0(1). 

The two independent invariants can be chosen to be 

I 2 - T r h 2 and I 3 - Tr h
3 • 3 det h 

which satisfy: 

13 > 6 I 2 

2 " 3 

The strict inequality: l| > 6 I? on the generic stratum is replaced by the 

equality l| • 6 I 2 on the isolated orbit. We see explicitly on this simple 

example che property above mentioned that che polynomial invariants separate the 

orbits (and strata). 

Now comes che last problem Co be solved, i.e. the Higgs potential 7($) with 

| e E . must have as absolute minimum * such that its little group G* » S is 

fixed in advance. 

Â detailed study of this problem has been made in some special cases. In the 

case of R- irreducible, a detailed study has been first given by Li for 

G • SU(N) or S0(n) and R_ ot the type vector, second can»; syiaaiefcric and anti­

symmetric and adjoint representation. For exceptional groups, Higgs acalars in 

the adjoint representations are discussed in Re£. (29). 

In the interesting case of G • SD(5), the minimal breaking can be achieved 

with the adjoint 24 breaking SU(5) •+• SU(3) x SU(2) x 0(1) and a vector one 5, 

producing the second breaking up to S0(3) * B ^ O ^ - L e t U s denote by $1 the 

5 x 5 traceless hermitean matrix and H. (i,j • I...5) the complex vector which 

transform respectively as the adjoint and fundamental representation of S0(5). 

If the discrete symmetry $; •+• -$. is imposed one gets for the Higgs potential 

V(#,H) - - y u*Tr^ + | a(Tr<>2)2 - 1 V

2 H + H 

j X<H H ) a + o(H H) Tr* 2 + y b Tr** + S H % 2 H 



It has been shown ' that the absolut* minimum of this potential can be 
on an orbic with the little group StK3) x 0"(1) for values of the coef­
ficients b > 0 and S < 0. Then the "naturalness" of the symmetry Is pr«served, 
that is the range of the coefficiants in V(4>,H) is not limicad to apecific values 
(which make Che minimum "unstable"). The hierarchy is preserved (see section II) 
by choosing ("by hand") Che ratio |x|2/fi2 « 1 if H and $ are parametrized 
as follows: 

H - (x(0,0,0,0) and * - diag (o,o,6,o<-3/2 + E ) . $<"3/2 + e)) 

In the 6 - S0(I0) case, the breaking can occur with the help of a 16, 45 
and 1C as follows: 

S0(10) — SD(5) — S0(3) x SU(2) x 0(1) —'SU(3) x o(l) 
16 45 10 

A detailed study of the Higgs potential with a 45 + 16 + To" représentation can 
be found in Ref. (32). 

Is it possible to find a mathematical criterion for the minimum of the Higgs 
potential, such that the breaking appears mora natural? Although one cannot 
answer completely to this question, a way of thinking seems particularly attractive. 

33) About ten years ago, Michel and Radicati , studying various examples in elementary 
particle physics, remarked that the directiona of breaking appear on isolated orbits 
in the representations on which the symmetry group acts. From this property they 

34) conjectured the following theorem, which was proved by Michel : 

Theorem: Let G be a compact Lie group acting smoothly (i.e. infinitely diffe­
rentiate mapping) on the real manifold M, and let m G M. Then the properties 
(a) and (b) are equivalent : 

(a) the orbit G(m) is critical, i.e. the differential d f , of any smooch 
real G-invariant function f on M vanishes for m 1 <= G(m). 

(b) the orbit G(m) is isolated in its stratum, i.e. there exists a neigh­
bourhood V of a such that if p e G(m), p e 7(m), then the little 

He realize the importance of this theorem for the Higgs problem but at the 
same time ita limitations. The above property allows to replace very elegantly 
an analysis problem: search for the extreme of a G-invariant function by a geome­
trical one: classification of the isolated orbits. The theorem is general in the 
sense that Che property is valid for any G-invariant function. 

However, it does not fit completely with our problem, since we are interested 
not in any extreoum, but in the minimum of our potential. One may think that the 
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restriction of G-invariant functions to fourth degree polynomial could be of some 
simplification. Ic has been passible to show (only) on some examples that the 
adniraa of the Higgs potential lies on a critical orbit: that is Che case in 
SU(5) + OT(3) * U(i) with a 24+5 3 1 ) 3 5 J as well as in Sn(u) <**? only the adjoint 
représentation is used 

Michel, studying in detail Landau theory of second order phase transitions, 
has conjectured the following property: if the Higgs potential depends only of 
one irreducible (on the real) representation, its minima huve maximal little groups. 
Indeed if isolated orbits (or critical orbits) have little groups which are maxi­
mal in the set of little groups, the converse is not true in general, i.e. it can 
exist maximal little groups to which are not associated isolated orbits. 

- Let us bring a precision on the above conjecture: if the minimum of a Bigga 
potential might be on an arbic associated with a maximal little group, this does 
not mean Chat any orbit associated with a maximal little group works. For example, 
if one considers Che spinor representation 64 of 0(14), one finds three maximal 
little groups, actually SU(7), G(2) x G(2) and SU(3) x 0(7), but only Che two 
first correspond to absolute minima of the .Higgs potential . 

It is clear tbat more work is needed in this appealing direction, where the 
geometry of Che orbit space plays a prédominant rôle. In chat spirit, it is worth 
to mention the recent study given In Ref. (39). The au Chora 3'cate the following 
theorem, which have quite interesting consequences: 

Theorem: The vector space spanned by Che gradients at $ of the polynomials 
invariants of an integrity basis coincides with the invariant slice through 4-

First this theorem calls for some definitions. If we denote T the subspace 
of the representation (= R ) spanned by the elements t<J> with t e g Lie algebra 
of G (tangent space) and 5, its orthogonal complement in R n (global slice), 
che invariant slice S* will be the subspace of S> spanned by Che G. -invariant 
vectors of S (G, being the little group of $). One recover? Michel's theorem 
as a consequence of this statement, but one can also deduce from it several pro­
perties. In particular, equations of strata can be obtained by studying the 
principal minora of the symmetric matrix: 

P (+) - ? dL 8 (*) 3 i 8_(«) a,S - 1 q 
i-1 

where the 8 are che q homogeneous G-invariant polynomial of an integrity basis. 
Their method allows also to state conditions for the minima to exist and to be 
natural (stable) and to clarify the origin of a class of pseudogoIdstone bosons 
(see the paper for more detailsl). 
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CONCLUSION 

As a conclusion it appears clearly that Che choice of Biggs scalars i~ of 
first inportance in the gauge theories of unification. They are a very convenient 
way to describe some general features of physics like synmetry breaking or mass 
generation, however they do not provide quantitative explanation for the observed 
phenomena. To say the worse they, in some sense, parametrize our ignorance of the 
dynamical behaviour of gauge theories. We referred often to the concept of natu­
ralness, which is at the S U M level aa aesthetics: beautiful ideas should work! 
This is the reason why we think that a more mathematical approach for selecting 
Higgs representations could yield a natural solution. In this line of thought 
superrunified theories ' which use supersyonetry and can describe gravity could 
also, as a bonus, provides natural aoawers co the question that scalar particles 
raise. Grand unified theories are appealing,superunified theories'could be great! 
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