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PREFACE

The purpose of this set of lectures and notes is to

give the student a working knowledge of the classification and

construction of sets of n-particle states transforming according

to definite irreducible representations (irreps) of the symmetric

group Sn. I have tried to answer the obvious question of why

such states have any relevance to the physics of collection of

fermions be they electrons in atoms, nucleons in nuclei,or quarks

in baryons or multi-baryonic states. Since the application in

this latter area is perhaps the least well documented, I give my

examples here. There is no claim to originality in these notes

except perhaps in the order and method of presentation.

The verbal presentation of the lectures was given

during three sessions at TRIUMF (Vancouver) in the week of Oct.

17-24, 1980. Not all aspects of these notes could be covered in

such a short period, but this expanded set is given here for the

benefit of the student. It is hoped that through the notes the

student will be encouraged to further reading. The short biblio-

graphy is meant as a stepping stone in this direction and is cer-

tainly not meant to be exhaustive. Further references can of

course be found in the reference lists of my bibliography.

Many aspects of representation theory are not

unique to the symmetric group. For this reason PART I reviews

some of the general ideas and leads up to proofs of five major



theorems for finite groups, the latter two of which the practi-

tioner will find to be particularly useful. PART II moves on to

the symmetric group proper and, through example, explains the

ingenuity of the Young tableau and Yamanouchi label notation to

describe all properties of the irreps of Sn. I show here also

simple proofs of how products of functions belonging to definite

irreps of S n can yield totally symmetric or antisymmetric func-

tions. These are but simple examples of the Clebsch-Gordan coup-

ling scheme for S n that is explained, but with the general

method for constructing the coefficients relegated to Appendix B.

I have included sections on the meaning of fractional parentage,

the construction of coefficients in factored form, and how such

ideas are of practical use in the calculation of matrix

elements.

In PART ill,I briefly explain why the Young

tableau notation can also be used to describe irreps of Um and

SUm - and is indeed preferable to the particle physicist's habit

of using the dimension to describe the irreps. I discuss the

classification of states according to product spaces and end with

examples of the classification of baryon resonances, assuming

these to arise from orbital excitation of three quarks in a

confining potential.

Probably the greatest difficulty in understanding

representation theory is comprehending the notation. It must be

admitted that this is often the fault of authors not explaining

their notations and definitions perhaps (shudderi) with the
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arrogant assumption that their usage is so standard it does not

need to be explained. I attempt to help the reader understand my

notation through the collection of definitions in Appendix A.

This preface was written whilst flying at 37,000

feet over the Rocky Mountains on the BOEING-747 returning me from

Vancouver to Eastern Canada. This combination of viewing some of

Nature's nost magnificent structures and man's ingenuity in

placing me in such a position perhaps best describes the physi-

cist's almost unique position in being able to view- again with

machines of man's ingenuity - the fascinating world of sub-atomic

physics. I hope the notes will provide part of the "boarding

pass" for the students who wish to 'fly' into this unique viewing

position.

Finally I would like to thank my hosts at TRIUMF,

University of British Columbia and Simon Fraser University, for

a most interesting and enjoyable week.
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PART I

WHAT IS A GROUP?

Formally a group is defined (ref. 1) to be a

set G of entities g. defined under a law of combination

(we use the multiplication symbol * or nothing at all) such that

(a) if g1 and g2 are in G, then so is g ^ g ^ ;

(b) the associative law applies,i.e. g, x (gjXgq) = Cg-,xg2)xg3;

(c) a "unit" element E exists such that Exg. =g.xE = g. for

all g±;

(d) to every element g. there is an inverse element gT

such that gi x gT = gT x g i = E.

We restrict our attention to groups of trans-

formations on a Hilbert space of functions (IJJ ) considered

to form a linearly independent set. The action of the group

transformation can thus be written

8

where ro (g.) are the set of expansion coefficients for the
pot i

particular group element g... We now prove that the matrices

T(g.) form a group isomorphic to the group of transformations

Si"

Clearly if g j ^ = gjgi = gk then
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3Y

Y

(-we use henceforth the summation convention)

Thus since ip forms a linearly independent set

or in matrix language T(g.) = r(g.)F(g.). Thus the law of
K ] 1

combination for matrices mirrors the law of combination for

the transformation oper*+ors. Clearly the associative law

holds for matrix multiplication and the unit matrix I will

correspond to the "unit" element E of the group. Since

Six&l = E then

r(gi)-r(gT
1) = r(E) = i

and hence the matrices T are non-singular. Thus the set of

matrices T(g-) forms a group that exactly mirrors the group

of transformations g.; they thus form a matrix representa-

tion (or simply a representation) of the group G.

The set of matrices F(g.) are defined with

respect to a particular set of functions ifi . Suppose we

define a new set of functions $„ = S .^ where S is a
p cxp ex
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non-singular matrix. Since g.ti = r (g. )iii then
1 a ya 1 y

The set of matrices r'(g.) = S~ TS also form a representation

of the group which is said to be equivalent• Thus matrix

representations are not unique - in fact there are an

infinite number of them (-as many as there are non-singular

matrices S).

So far we have not said anything about the

dimension of the matrices T(g.). In general, if \p form an

infinite complete set then the matrices will be infinite

dimensional. For certain groups (we call them compact

groups - and the only ones concerning us in-.these lectures)

we can find transformations S such that all the group elements

g. transform only over a finite set of functions <j) . Further-
1 Ct

more a transformation S' cannot be found that forms a smaller

set. This finite set of functions d> is said to carry an
a

irreducible representation of the group G. If there are k

functions in the set <$> , then the matrices r(g.) are k-dimen-

sional and we are said to have a k-dimensional irreducible

representation or k-dimensional irrep.

Example:

Consider the set of permutations (S ) of two objects 1 and 2.



There are two elements of the groups E and P._.

bering be carried by three objects a, 6 and y.

have a six-dimensional space a j » , ao^i» ai

ma"trix representations are

Let the num

Thus we

I ->• 1 0

0 1

0

0

0

1 0

0 1 .

0

0

0

p . . ->•
12

0

1

0

0

1

0 0
0

l

0

1

0

0

l

0

0

1

0

i i o

I ° 1

Already we see that this six-dimensional representation is

composed of three two-dimensional representations carried

by the three sets of functions (a,3_, a $, ), (a,Yo' anYi'i

(g y , $ Y-I )• But none of these two-dimensional representa-

tions is irreducible. In the first case we can, for example,

define two new functions

With respect to these basis states the group operators E and

P, „ have matrix representations

f J "I1 -J
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Clearly we have reduced the original six-dimensional repre-

sentation to involve two basic irreducible matrix represen-

tations of

and

S., namely

E + [1]

E •*• Cl]

P12 H

P H

- [1]

• [-1]

These two representations are one-dimensional and they are

different. One of our problems is to find a way of character-

ising the representations that in some way tells us what the

matrix representations are. One could of course call the first

representation #1 and the second representation #2, but,

unless one has a good memory, it would be hard to remember

which was which. We shall return to this problem later,

but for now we shall use the letter [f] to indicate a charac-

terisation of a particular representation.

Note incidentally that in this example we have

two .different one-dimensional representations and so it makes

no sense to use the dimension as a characterisation of the

representation. This is true for the characterisation of the

representations of many groups. The habit of high energy phy-

sicists of using the dimension to characterise the represen-

tations of the special unitary transformation group (SU )

is to be discouraged.
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RELEVANCE TO PHYSICS

In all branches of physics we are concerned with

sets of stationary states which characterise the physical sys-

tem under study (molecule, atom, nucleus, baryon) in certain

energy states. These states arise as the eigensolutions of

a Hamiltonian H

H* = E | (1.1)
• Ya era

Suppose H to be invariant with respect to all the transforma-

tions of a group G,i.e. g.HgT = H for all g.eG.

Then by operating by g. on the left of eq. 1.1

we find

g . H i|i = g . H g . g-\\) = E g.ij>

i . e . H(g-4) ) = E (g.tjj )& i r a a i r a

Thus, if i> is an eigensolution with energy E , (g.ty ) is

also an eigensolution with the same energy. Thus the eigen-

solutions of H come in sets of degenerate states. Each set

carries a representation of the group G. From each set,

functions can be defined which carry an irreducible represen-

tation label f. Thus the eigensolution of H can be written

i|)(fy) where

HiKfy) = EfiKfy)
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where f characterises the representation and y characterises

the state within the representation (- there will be as many

y labels as the dimension of f). Note that the "energy"

depends on the representation label f but not y. [Actually

it is possible for the degenerate states to belong to more

than one irrep. The point is that all members of an irrep

are degenerate. Degeneracy of some irreps usually signifies

a higher symmetry group.]

A simple example of this is the invariance of

H with respect to the generalised group of rotations (in

orbital and intrinsic space) which is isomorphic to the

group SU. (ref. 17). Each eigensolution of H can therefore

be characterised with respect to the representation of the

SU_ group - usually written J (instead of f), i.e. the

angular jnomentum label. The degenerate states within the

representation J are usually characterised in this case by

the symbol M (instead of y) - i.e. the magnetic quantum

number. We will return later in Section 3 to discuss more

about SU_ (or in general SU ) and the characterisation of

the representations. With the harmonic oscillator hamiltonian

states with different angular momenta can be degenerate,

e.g. a J=0 and 2 for the 2-quantum states or J=l, and 3 for

the 3-quantum. This degeneracy arises from the invariance

of the oscillator Hamiltonian with respect to SU» transfor-

mations among the oscillator quanta in the three spatial

directions.
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SOME USEFUL THEOREMS

1. Any representation of a finite group is equivalent to a

representation by Unitary matrices.

2. Schurs Lemma - the only matrix that commutes with all matrices

of an irreducible representation is the unit matrix I mul-

tiplied by a constant (d).

f f'
3. If r (g.) and r (g-) are two irreducible representations

of dimension £ f and £_,, respectively, and M is a rectan-

f f'
gular matrix such that T (g.)M = Mr (g^) for all g.

then
1. if £ f 4 £f, M = 0

2. if Zf = Hf, either M = 0 or f = ff.

4. The Orthogonality Theorem

i

where h is the dimension of the group (i.e. # of group elements);

&- is the dimension of the representation (i.e. size of matrices)

5. Basis functions belonging to different representations,or

different rows of the same representation,are orthogonal
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Theorem #1

Any representation of a finite group is equiva-

lent to a representation by a unitary matrix.

We prove that given any representation we can

construct from it a representation with unitary matrices.

Proof. Let F(g.) be the matrix representation of the group

element g.. Construct the matrix

H = I r(gi)r
+(gi) (1.2)

i

[F is the adjoint of T, i.e. the complex conjugate

transpose.]

The matrix H is Hermitian5i.e. H „ = H Q

Otp pCt

But any Hermitian matrix can be diagonalised by a unitary

matrix made up from the orthogonal vectors of the secular

equation (HVa = d ^ ) .

Thus D =

with D = U -

n J
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= I u"1 r(gi)r
+(gi)u .

i

= I u"1 rcgi)u u"
1 r+(g;L) u

i

= I rl(gi) r
t+(gi) with rf

Now all the eigenvalues d. > 0

CFromeo. 1.3 = £ F^fg.)

Thus we can construct the unit matrix

where

D

i = D * I r'(g.) r1

i

,-*

»-*

+ ^"

0]

Consider now the matrix F"(g.).

This matrix is unitary because

(1.3)
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+
 D~*I r'(gj)r

I(gi)(r
I(gj)r'(gi))

+ D

= D~* I r'(gk) r-
+(gk)D"* d.4b)

k

= E

In making the change from eq. 1.4a to 1.4b we use the fact

that if g.g. = g then T(g.)T(g. ) = T(g ) and that

? g^gi = ^ gk-

The matrices T"(g.) form a unitary representa-

tion of the group. They were defined in terms of the original

representation by

r"(gi) = D ' V - ' T U D+* = (UD"1"*)"1 T(UD+%)

Thus S = UD is the transformation from the original basis

defining r to the new basis defining T".

From here on we shall always assume a represen-

tation to be unitary.
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Theorem #2

Schur's Lemma - the only matrix that commutes with

all matrices of an irreducible representation is the unit matrix

possibly multiplied by a constant (d).

Corollary - if a non-constant matrix can be found that com-

mutes with all matrices of a representation then the repre-

sentation is reducible.

Proof - Let M commute with all r(g.)

i.e. MF(gi) = r(gi)M for all g±.

Hence

M+ = M+ T+(g±) (1.5)

Because of Theorem #1 we can assume all r to be unitary with

out loss of generality: r = r~ . Hence multiplying

eq. 1.5 on left and right by T(g.) we prove

+M + r(g;L) =

Thus if M commutes with r, so does M and hence so do the

Hermitian matrices H+ = M+M
+ and H_ = i(M-M+), but the

natrices H (p = ±) must be constant because

y = r HP

u H r u"1 = u r H u"1
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with U the unitary matrix of eigenvectors of H , then

u H u"1 u ru"1 = u r u'1 u H u"1

i.e. D U r U"1 = u T U"1 D

with D the diagonal matrix of eigenvalues of H , i.e.

D r1 = r' D rf = u r u"1

p p

or

summation over

If (D p) o a * ̂ p V v then raY(£i} = ° f ° r — gi in the group' i-e

F1 is reducible (and hence T is reducible). If T (and hence

T') is irreducible then (D ) = (D ) _ for all ot,Y> i.e.
p aa p YY

D = d I, with d a single constant. Hence

U H U"1 = D = d I
P P P

i.e. H = d I and hence M = i(d+-id_)I.

Corollary: if a non-constant matrix M can be found that com-

mutes with all T then the representation can be reduced by the

transformations U T U with U the matrix of eigenvectors cf

H+ = (M + M
+ ) .
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Theorem #3

1 2

If r (g.) and r (g.) are two irreducible repre-

sentations of dimension £•, and £„, respectively, and if M is

a rectangular matrix such that

r1(gi)M = Mr
2(gi) for all gi (1.6)

1. if £1 i %2 then M = 0

2. if JL = £„ either M = 0 or r ( 1 ):r ( 2 ).

Proof:

Again because of Theorem #1 assume r to be

unitary matrices. Then

i) = r
2+(gi)M

+

but

[r (g.) = F(g.)~ - unitary property of r

= TCgT1) - since I = r(E) =

and hence T(gT1) = (r(gi))"
1 .]

Thus

M + r^-CgT1) = r 2^: 1) M +
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Multiplying both sides by M and using eq. 1.6 we get

T1) = r1(g71)MM+

Thus MM is a matrix that commutes with the representation

matrices r and if these are irreducible then MM is a con-

stant (Theorem #2)

MM+ = d I

if £1 = %2 then the determinant |MM
+| = |M|2 =d 1. If d i 0

then |M| ^ 0 and M has an inverse. Therefore

= Mr2(gi)M~
1

and the representations are equivalent.

If d = 0, then M = 0 for l1 = £2»

If JĴ  i SL2 [let us suppose Z < £ ] then M has £, rows and %2

columns and MM is an A * JL square matrix. Construct the square

matrix N from M by adding (£.-Jl0) columns of zeros. Clearly the

determinant of N is zero and hence the determinant of NN = 0.

But NN = MM and hence MM =0. Since MM = dl this proves

that d = 0.
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Theorem #4

The Orthogonality Theorem.

[Note: this is probably the most important theorem of

representation theory and must be remembered].

I ryy.<gi> r | V ^ i > = *ff «yy «y.y- h/*f
i

where h is the dimension of the group (i.e. # of group elements)

£ " " " irrep f.

Proof: with an arbitrary Hjx if rectangular matrix X construct

M = I rf(gi) x r
f(g:

1)

Now

rf(g.) M = I r
f(gj) r

fcEi) x r
f(gT

1) rf(g7
1) rf(g.)

= C I ̂ (gjgi) x rf(g.gi)-
13 rf(g.)

rf(gj)

Hence from Theorem #3 if f i f then M = 0

f f~ -1

i
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Since X is arbitrary i t can take for a particular y,8 X g = 1,but zero

otherwise. Hence

X r ( g ° ^ l h s °

i

If f = f then M = d.T. (if f is irrep, by #2)

Again since X - is arbitrary choose it such that all X „ = 0

except for one element, e.g. X = 1. Then

f f -1

i

choose a = 6 and sum over a

i > = d

•. d =

Thus

h / tf

o r ^ rav ( gi ) rg6Cgi'1 = 6ff S R 6 h/«.f.
i
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Projection Operator

Consider the operator

T I r J ^ } *? I r J ( g I 1 ) g i s T- l ry'y(gi)giy'y(

i i i

Now

^ r

i

= 6ff 6 yy V y ' l'y' = 6ff 6yy ^y1

from the orthogonality theorem. Thus T , operating on the

y function tj;— of the f representation gives zero unless

f = f and y = y in which case it yields the y' function of the

f representation.

If T , operates on any function i|/ the answer

is zero unless ty contains a part transforming like the y

function of the f representation: if it does the resulting

function is the y' state f representation. Note that the

operators T , are idempotent, i.e.

y'y V y ff yy1 V y
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[Proof: T J I y T | , - - ^ I Tfyy, (g.) r|-,(g. ) gT1 gT1

ij

writing

SjLg- = gv and g. = g, gTD i K 3 K I

we have

Jc i

rjyl(g.) r|*a(g.)] r|a(gk) £

~ IT 6ff 6yy' l ryyt(gk) gk

k i

ft,

k

- using the orthogonality theorem

= 6ff 6yy' Ty'y
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Theorem #5

Functions,belonging to different representa-

tions or to different rows of the same representation are

orthogonal, i.e.

V y ff yy

Proof

and

v , f i f v f i +

y ' f I -1 f

i

<vi-f lr
r-,-(g.) rf, (g.) I i()f,>

y y y i y y i y
i f l r , ( g . ) r ,
y y y i y y

i

ff y'y' yy Jlf
 vy l | Ty'

y y ff yy
y1
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Clearly if all states of a representation are also normalized

the latter equation reduces to

_ $ _
ff yy

- another important result that should be remembered.
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PART II

THE SYMMETRIC GROUP Sn

The symmetric group is the set of all permuta-

tions of n objects (say or, j=.l, •••n). The general operator

for this group has the form of products like P. . . where
X1X2 xk

i ...i i«i 4'"4 4+1 •••»!
1X2 xk xl X2 1k xk+l xn

u ? • • • a 3 ? a * 1 - - - a 1 ? > i , j£±_^i._i«- • • ii.
12 X3 xl xk+1 xn 1 2 3 n
• 6 -L K+i n -selected from the

set of numbers

Note that any such operator can be written as

products of transpositions

P. . . = P. . P. . ••»P.
^ V ^ k V2 X2X3 ^

Jijote also that any transposition can be written

as products of local transpositions of adjacent numbers,i.e.

if i < i P =P P •••P. . p P . • . P
it i < ] , F i j *±±+1 r i + l i + 2 3 2 j l r j a j ^ j 2 : 5 l ^ i

Thus if we know the matrix representation of the local transpo-

sition operators we can construct, by matrix multiplication,

the representation matrices for all other operators.
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For S therefore we need to know how to con-
n

struct irreducible matrix representations for I, P-j^,

P23'***P 9 T P I n " N o t e "that for S -, we need the matrix

representation for I, P, o, P0Q'*«P 0 ,. The standard

Young representation for the matrix representations of S

is such that they are made up of irreducible representations

of S_jS,»*" S .,. Only the matrix representation for P ,
z o n—J- n—1, n

has to be declared in going from S _, to S .

Before giving the method of classifying repre-

sentations of S , or of giving the standard representation

matrices for the local transpositions, let us first look at

some examples which will give the somewhat abstract presen-

tation up to now some reality.

In Part I (page S) we have already deduced,

for S_, two irreps which are carried, for example, by basis

states 4>+ = /T7I (a132
 + 3xa2> and <j)_ = /T7I (a1B2 - S ^ j

5 "

Assuming a and B are orthogonal single particle states,

the matrices for E and P,? are:

for <)>+ = /T7I(ae+3oi) : T(E) = Cl] F(P12)=Cl] - the s-irrep

for <{>_ = /l7I(a3-ea) : r(E) = [1] r(P12> = [-1] - the . a-irrep

Note that <}i+ and § are orthogonal which they must be accord-

ing to our Theorem #5 (page 20). This statement is true even

if a and $ are not orthogonal, i.e. <a13> i 0. In this latter
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case however the functions $+ should be defined

( a 3 +~ e a )

in order that the representation matrices have che Unitary

character shown. Thus single-particle orbits do not have to

be orthogonal to classify many-particle states according to

the irreps of S (cf. ref. 13,14). We shall assume ortho-

gonality of single-particles states in what follows, however,

since it is then less cumbersome in the writing of many-par-,

tide functions.

Let us now consider three-particle states in

which two of the particles are in the a-orbit and one in the

6-orbit. Clearly we can immediately write down a symmetric

function

= /I73 (actB + aBa + Baa) (2.1a)

s /T73 aaB + /T71 /T71 (aB+Ba)a (2.1b)

= /2~7J a /T/l (ag+Ba) + /I7T 6aa (2.1c)

This state carries the one-dimension irrep of S for which
•3

the local transposition matrices and identity matrices are

r(E) = [1] r ( p
1 2

) = C l ] r ( P23 } = C l 3
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There are three components to the state \\> and

therefore we can write down two orthogonal states to ip.

These states will belong to a different irrep (or irreps)

of S_ since they are uncoupled to ty by the local transposition

operators (Theorem #5 - page 20). How are these states to be

defined?

The standard method of Young is to define the

states such that they belong to an irrep of S . In the form

of writing lj; in eq. 2.1b the symmetry of ty with respect to

S? is made obvious - since cm and /l/2(ct3+3ot) both transform

according to the s-representation of S . Clearly we can

write down an orthogonal state to i|> that also transforms

according to the s representation of S_ namely

Sl± = ST/Z ctaB -Sl7J /l/2(a8+BcOa

This state does not define a one-dimensional representation

of S3 because, although P12^l
 = + 1^i» w e f i n d

P23% = " I °1 * I ̂  °2

with

ao = ±/l/2(a6-3ct)a

The two functions fi, and °,_ carry a two-dimensional represen-

tation of S3 since ?12®2
 = "in2 a n d P23fi2 =+l^2 * I ^ Ql' T h e

representation matrices for the transpositions are thus
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r<p12) =
+1

-l

r(P23) =
±/3

1
2

The ambiguity in sign for the off-diagonal matrix element of

r(P23> is a result of the freedom of choice of relative

phase between &1 and $?„. Note incidentally that fi2 trans-

forms like the a-representation of S?.
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YOUNG TABLEAUS AND YAMANOUCHI SYMBOLS

Clearly we would like a better way of classify-

ing the representations of S which tell us more about the

structure of the representation than the arbitrary symbols

s, a, if), Q that we used in the previous section to character-

ise irreps for So and So. The Young Tableau is such a classi-

fication. In this scheme a particle is denoted by a square [~1 •

A two-particle symmetric state is characterised by two squares

in a row | | | . A two-particle antisymmetric state is charac-

terised by two squares in a column J-j . A particular state is

characterised by putting (in general) the numbers from 1 to n

in the tableau such that they increase in both rows and columns.

Thus in our examples

s = | | | and 0+ = |1|2|

a = H and 4 = 3

The three-particle state i(j is symmetric with respect to both

P 1 2 and P . and therefore is characterised by the symbol

111 2 | 3 |. The state fi, is symmetric w.r.t. P, „ and therefore

the numbers 1 and 2 must appear in the tableau that character-

ises the JJ rep in a symmetric way. The state fl is antisym-

metric w.r.t. :P and therefore the numbers 1 and 2 must appear

in the tableau that characterises the n rep in an antisymmetric
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way. We see that the tableau J-f-1 satisfies both these criteria

with

and

The shape of the tableau characterises the representation.

The numbers within the tableau characterise the state of the

representation. There are only two ways of putting the num-

bers 1, 2 and 3 in the — — ' tableau with numbers increasing

in rows and columns and therefore this correctly character-

ises the two dimensional irrep.

Rather than always draw the tableau we can

simply state the number of squares in each row thus

[21] =

[111] = [I3] =

The particular state of a representation can be classified

TTTby a numbered tableau, e.g. kH—',or by declaring (from right to

left) in vrtiich row the numbers 1, 2, ••• n (in general) appear.
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Thus (211) .

(121) =

The latter are referred to as the Yamanouchi symbols of the

[21] Young Tableau.

Given the Yamanouchi labelling of a Young

Tableau we can easily construct the matrix representation

for the local transposition P _, . The general rules are

as follows.1,6)

1. If n-1 and n are in the same row P.n-l,n = +1

2. If n-1 and n are in the same column P , ,—' =-J
n"1'n —I

3. If n-1 and n are in different rows and columns of a

tableau then

(2.2a)

(2.2b)

n-l,n
m 1

IT n
i,
n-J

[n"

J
n-1

where |ri| is the number of lines crossed in the tableau

(moving along rows and columns) in going from n-1 to n and

the sign of n is +(-) if the move from n-1 to n is in a

(anti-) clockwise direction. One can immediately verify that

(2.2c)
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this general rule yields in the particular case of the [21]

irrep of S, for P
o 23

i sr
2 - 2

as deduced on page 26. The standard relative phase of func-

tions in a representation is chosen such that the + sign

appears in the definition ea. 2.2c.

Problems

1.

2.

3.

Write down and classify according to S, the six states

formed by putting three particles in three orbits a,

3 and y.

Write down all the Young Tableau for all the irreps of

S^ and state their dimensions.

Construct the matrix representations for P ., P?3 and

P34 for the irrep [31] of S^.
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Notation (See also Appendix B)

I always try to use the same notation so let

us review this:

f - designation of a Young Tableau for S ;

Y - a Yamanouchi label for the Young Symmetry f;

Y=(pqy) - a Yamanouchi label in which particle number n

is in row p, particle n-1 is in row q and the

remaining particles 1, 2, ... n-2 have a Yamanouchi

distribution y.

The results of eq. 2.2 will be expressed in general by the

expressions

Pnn-l' f ( p q y ) > = «Jql
f(Pqy)> + 3pq|f(qpy)> (2.3)

f f
with a and g taking the values given in eq. 2.2 according

to the case.

and
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THE ADJOINT REPRESENTATION I

There is some ambiguity in the literature as

to what exactly is meant by the Adjoint representation. I

define this to mean the representation in which the ft

coefficients in eq. 2.3 have negative sign. This represen-

tation is carried by the same set of basis states as for the

standard representation but with some of the relative phases

among the states of the representation changed.

THE DUAL REPRESENTATION

Given a Young Symmetry f, the Dual Symmetry is

the one in which rows and columns have been interchanged.

Thus

Symmetry f Dual Symmetry f

C23

[21] = U—I [21] = U—I

In the latter case we call the [21] symmetry self-dual.

Note however that the dual of the state [211] = |^|2I of the

[21] representation is the different state

(121) = f p
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The Dual Symmetry can be declared in the stan-

dard representation or the adjoint representation. (N.B.'In

ref.9, for example,the terminology adjoint means both what I

have called adjoint and dual - be careful!!).

Inner Product (Clebsch-Gordan Expansions)

Suppose we have two (or more) spaces in which the

particles 1, 2, ... n have states defined. For example, we

could declare the orbital wave functions of n particles, the

spin wave function, the flavor wave function, the color wave

function, etc. In each space we can declare the symmetry with

respect to transformations with respect to S .

The question now is to find the symmetries of the combined

spaces. For two spaces in which we have defined states $(f'Y')

and r(f"Y"), in general

)r(f"Y") = [ (f'Y'f"Y"|fY) Y(fY) (2.4a)

f(Y)

where ¥ is the combined $T space. The coefficients

(frY'f"Y"|fY) are the Clebsch-Gordan coefficients for S .

The eq. 2.4a has an inverse

KfY) = I (ffYff"Y"jfY) $(frY')r(f"Y") (2.4b)

Y'Y"
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Let us examine this expansion in some special

cases:

S2.

Clearly

(2.5a)

(2.5b)

(2..5c)

(2.5d)

Thus

(C2](ll)[2](ll)|[2](ll)) = 1

(Cll](21)[ll](21)|[2](ll)) = 1

([2](ll)[ll3(21)|[ll](21)) = 1

([11](21)[2](11)|[11](21)) = 1

We have had to distinguish two different states in eqs. 2.5a

and b with subscripts because the overall symmetry is not

enough to completely specify the states. In this situation

it is usual to declare the symmetries of the subspaces. Thus

V([ll](21))1 = K t m C l l ] ] [11](2D) etc.

with the symmetries in the ij> and <j> spaces being given in that order.
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In general one has to work hard to get the CG-coefficients of

S (see Appendix B), but they are simple (as above) in a few

cases.

Example 1:

Consider the s t a t e ¥ = J ^ J i|i(fY)cf>(fY)

Y

\|i(f(Dqy))<|>(f(pay))

pqy

where df is the dimension of the representation f. Now

p vi -. i -*• v r -X

n,n-l
pqy

*(f(qpy)))

pqy

% 6 + B a

= 4/^- I i!/(f(pqv)H(f(pqy))
f pqy

since (a ) + ( 8 ) = 1 and a = -a .
pq pq pq qp
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Since the states tfKfy) and <!>(fy) are defined in the standard

Young representation then the above proof holds for all sub-

groups So, S_,«««S T ofS . Thus ¥ is symmetric w.r.t. all

local transpositions and hence is a completely Symmetric

function, i.e. transforms like the Young Tableau

Cn] = I 1 I H I (n boxes)

Hence (fYfY|[nl) = 1.

Example 2:

Consider the state:

f Y(Y)

J=- I ^(fCpqy))^ pqy) (2.7)
af

pqy

Again

P ,¥ = J-^- I [af ^(f(pav)) •+
n n-1 i d r • L T>q r -

pa r

pqy

C-af <()(f(pqy)) - 3^ <J>(f(qpy))]

1 I {[-c«f )2-(Bf )2;
f pq pq

pqy

pqBpq " Bpq°qp3 * < f < P q 5°

E - JTT I ^^f(pqy>H(f pqy)
pqy
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Again since fCfCpqy)) and <f>(f p.qy) also belong to irreducible

representations of S0,S,,''
!S -, , the function ¥ is antisym-

metric w.r.t. all local transposition operators P12»
 P23' "*"

P ... Hence ¥ transforms like the antisymmetric repre-

sentation

n-a": (n boxes)

Example 3:

Prove that if V = 0 ([n] (ln) )i|i( [f ]Y) then ¥ transforms like

the Y Yamanouchi label for the symmetry [f]. Note that we

could consider J to be a symmetric operator.

Example 4:

Prove that if ¥ = ĵ([f ]Y)<f.([ln](n,n-l* • • *1)) then V trans-

forms like the Y Yamanouchi label for the symmetry [f].
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THE RELEVANCE OF S n TO FERMION PHYSICS

- The Use of Antisymmetric Functions

I find even among experienced theorists a mis-

understanding as to why we use antisymmetric functions to des-

cribe collections of fermions. It is true that the Pauli princi-

ple prevents any two "like" particles being at the same space-

time point or, equivalently, in the same state. The Pauli prin-

ciple doesn't say anything about unlike particles however. Thus

an electron with spin-up and another electron with spin-down can

both be in the state <f>a. The point is that there is only one

+ j.
such physical state which we could write d> A . We could also

write the state ^>^a but we must not consider both ways of writ-

ing the state otherwise we would be double counting. Thus we

could declare a system of states by declaring an order (spin-up

states are written first and spin-down second,for example). Such

an approach is not useful for algebraic manipulations. For this

we declare the physical state to be described by the antisymme-

tric combination ^*($a$a ~ ̂ct̂ a"
1 a n^ consider the symmetric combin-

ation ^^^a^a
 + ^a^a^ t o b e r e d u n d a n t« T n e advantage of the

scheme of representing collections of fermions by antisymmetric

states only is that we never double count and, if we use algebra

for a state, e.g. /%($s$s - (j>s <j>s) for undeclared spins s and s1,

we find that when s = s1, the state vanishes, i.e. the Pauli

principle is obeyed. The antisymmetric representation has
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particular advantage when we consider symmetries with respect to

transformations in selected subspaces, e.g. spin, or isospin or

color. If the transformations are such as to give two part-

icles exactly the same quantum numbers, the antisymmetry of the

total state will guarantee that the function will disappear, i.e.

ensure the Pauli principle is obeyed. Even when there are no

like particles the use only of antisymmetric states ensures no

double counting.

We showed in the previous section how to construct

antisymmetric states from two spaces (say spin and orbital) by

taking the adjoint/dual symmetry in one space with the standard

symmetry in the other. For more than two spaces we have to use

in principle the Clebsch-Gordan series to construct from one set

of spaces a function of adjoint/dual symmetry to the (Clebsch-

Gordon summed) symmetry of the remaining functions (see ref. 13

and 14 for an example in the case of six quark states).
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CALCULATION OF ONE-BODY MATRIX ELEMENTS WITH ANTISYMMETRIC

FUNCTIONS

Let H* and V be two antisymmetric functions of
n n • •

n particles. And let T = £ T(i) be a symmetric one-body
i

operator. We can write

(2.8)

Any antisymmetric function of n particles can be written as

a sum of products of an antisymmetric function of the first

(n-1) particles with the state of the last particle, i.e.

n I ag V l * ) (2-9)
Olp

where a denotes the structure of the function of (n-1) parti-

cles and 3 that of the remaining particle (as selected from

the n-particle states of ¥ ) and C are the fractional paren-
n oip *•

tage coefficients.

Example:

if <¥ - *L (a&-y-aYf}+-ya3-Y$a+3Ya-8aY)

/•g- (ag Y + 3Y a + Y<*

where

cTj3 = Wy (aB-Boi) etc.

In this case

<XB,Y ~ 3Y>a ~ Ya>3
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Combining eqs. 2.8 and 2.9 we can write

<*n|T|7n> = n I C a BC-g <t?n_l
(ot)l?n-

a 8

Thus the matrix element of a single-body operator between

n-particle antisymmetric states can be written in terms of

sums of products of fractional parentage coefficients,

overlaps of (n-l)-particle functions and single-particle

matrix elements. The extension to m-body operators is now

obvious

where now ( ) is a binomial coefficient; the C o now standm otp

for the fractional parentage coefficients reducing an n-

particle antisymmetric state to sums of products of (n-m)-

particle antisymmetric states with m-particle antisymmetric

states; the overlap function is now for (n-m)-particle states

and we have to know m-body matrix elements for T .
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FRACTIONAL PARENTAGE COEFFICIENTS IN FACTORED FORM

If antisymmetric states are constructed in

factored form similar to eq. 2.7 (page 36), e.g.

V C f ] ) = V ? 2 $n([f](py))nn([f](py)) (2.11)
f py

then the fractional parentage coefficients can also be writ-

ten in factored form. Let us consider an example and then

we can write down the general formula.

Example

Earlier we showed that three particle functions of [21] sym

metry could be written

= VI
= y | a2B - VI af a with of = ^

and

$3([21](121)) = og a : aJ3 = Jj (ag-pa)

Let us consider similar types of states in the fi-space,i.e.

n3<[2i](2ii)) = V4-

and

Q3([21](12D) = - ab a
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The antisymmetric state of three particles has the form

+ • 3 ( [ 2 1 ] ( 1 2 1 ) n 3 [ 2 1 ] 2 1 1 ) ]

- V? C C VI a 2 f 3 • Vi ** a)(-a^a) + ̂ o)^a2fc - VI *"b a

E Vi C + VI (-^(a^Mea) - V| (-IXaf ab)(aa)

( + 1) V | (ae a2)ab + K- Vl ) < ( ^ ab)(aa)]

Clearly V has been written in terms of antisymmetric states

of the first two particles with the last particle having

the Greek/Roman structure (ga) or (aa) or (ab) or (aa).

The cfp's have factored forms, e.g. (^-K-l), with each factor

arising from the one-body reduction of each symmetry.

Matrix elements of a one-body operator now have the form

(YglT-jJ^) = 3 | j | <a2ab|a'2atb'><3a|T|e'aI>

- | /2 <a2a

- | /2 <o3" ab|a'2 a^b'xaalT | B'a'>

|T|a'a'>

continued
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- | /2 <ag a 2 oi '31 a ' b ' x o b | T | ot ' a ' >

<aS ab|a'g' a'2><aa|T|alb1> (2.12)
J

Note in this last expression that even if the primed states

are not orthogonal to the unprimed states,overlaps like

<otlf|oit3l> = 0 because of Theorem #5 (- states belonging to

different representations are orthogonal - page 20).

Note if T, is replaced by £ 1 = 3 then for the diagonal
1 i

matrix element <¥ |T|f_> = 3. [Check that the R.H.S. of eq.

2.12 does indeed give this number.] Such a check can always

be made on a final result to ensure that mistakes have not

been made. For a two-body operator note £ 1 = ~ "~—.

For an m-body o p e r a t o r I 1 = ( ) .
jj m

For the general reduction of eq. 2.11 for a one-body operator

we would write each factor

^(CfDCpy)) = I (a[f_]:B|}[f])4 ,(a[f ly)*.(3) (2.13a)

where ( |} ) denotes a fractional parentage coefficient

for the symmetry [f] derived by removing one square from the

p -row such that the (n-l)-particle state has symmetry [f ] (cf.
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Appendix A for notation) and Yamanouchi label y with general

structure a. In the example we had

= +1 etc.

Similarly

^(CfDpy) = I CaCf l:b|}[f])Jln_1<a[f ]y)aj1(b) (2.13b)
ab

Substituting eqs. 2.13a and b into eq. 2.11 we get

I' (Cf3) = I \ - p - I (a[f ]:B|>Cf])(a[f ]:b|}[f])
* f aa p P

P

Vn_1(aa[fp])41(B)u1(b) (2

where the summation over the (n-l)-particle Yamanouchi label

y in eq. 2.11 yields (with a normali ation coefficient df )
P

the (n-l)-particle antisymmetric state

V -,(aa[f ]) = j./^
i- T $ , (a[f ]y) Q , (a[f ]y) (2.15)n— J. p w f P n—i p

* P y

We have then in eq. 2.14 reduced the n-particle antisymmetric

state to sums of products of cfp's (now in factored form), of

an (n-1) antisymmetric state and the last particle.
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PART III

THE UNITARY GROUPS U , SU
' m' m

The unitary groups U is the set of unitary

transformations among m objects. Any unitary matrix can

be diagonalized by means of another unitary matrix S to

yield eigenvalues with unit modulus. Thus

U = S-1

•e

n!

rm

n

= exp

rm

then S x[

h 1 •
L -**}

(3.1)

Since S is unitary and | '.m i | is a real diagonal matrix

]S = H is Hermitian. If <f>. are restricted s.t.

0 < (J). <. 2TT then there is a 1:1 oorrespondence between the

unitary transformation and the Hermitian matrix. When H = 0

this corresponds to U = I.

The Hermitian matrix can always be written in
2

terms of a set of m linearly independent matrices



- 47 -

where E.. is the mxm matrix with zeros everywhere except at

the ij element, where there is a 1. Thus we can always write a

unitary matrix U as

U = expCi I Ca Ga) (3.2)

with the arbitrary coeff ic ients C . When the C a re very small

we can w r i t e

U % l + i T C G (3 .3)L a a
a

The G are known as the infinitesimal operators of U or the
a • m

generating operators.

The property that products of unitary

matrices form a unitary matrix implies that the commutators

of G are expandable in terms of the Generating matrices

C ( V V = I EIB GY {N-B' CEij'Ek*] = Ei*6:k-Ekj*i)i}

Y

If a unitary transformation is supposed to act on a system

of n particles then

U = U(l) U(2) ••• U(n)

= exp i I Ca(Ga(l) + Go(2) + ••• <Vn)) (3.4)
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This follows since transformation on the space of different

particles commute. The genera'ting operators for an n-particle

space are symmetric functions of particle numbers.

The group SU of unimodular unitary matrices

is the set of transformations formed from all the generators
2

of U except the identity. Thus there are m -1 generators

for SU which are trace-less. [Prove that the unitarym

matrices so formed form a group.]

Because the unitary transformations are made up

of generating operators which are symmetric in particle number

(i.e. transform, like the-Young Symmetry [n]) it follows that

the action of the unitary transformation on a state <K[f]Y)

with symmetry [f] and Yamanouchi label Y, yields a state

also with symmetry [f] and Yamanouchi label Y (see example

3 on page 37). Thus unitary transformations only transform .

among states with the same Young Symmetry. The states of the

given Young Symmetry thu*s form a basis for a representation

of U . Thus the U? transformations among two states a and $

transform among the two particle states with symmetry E2]

act, ̂  (aB + Ba), BB (3.5)

but do not couple these states to the state with symmetry

[11]

^ | (aB - Ba) (3.6)



We can thus use the Young Symmetry label [f]

also to describe the representations of U . Of course the

dimension of the. representation [f] for transformations of

U is not the same as the dimension of [f] for S . In them n

case of Uo given above the [2] symmetry is one dimension w.r.t.

S and can be represented by any one (or combination of) the

states in eq. 3.5. The transformations of U~ transform among

the three states of eq. 3.5 (but neither more nor less). Thus

the three states in eq. 3.5 form a three-dimensional basis

for U2. The one state in eq. 3.6 forms a one-dimensional

basis for U_.

The tableau Cf] for SU denotes a representation

with dimension

f -f.+j-i
d([f] U ) = H x .3. (3.7)

m 3x

where f. is the number of squares in the i row of the tableau

f. [For the proof of this see ref. 1, eq. 10.25 and Sec. 10.4].

Irreducible bases for U are also irreducible for the subgroups

SU , however,representations differing only by columns of m

boxes are equivalent. The representations of SU are described

by the set of m-1 numbers: (f^-f^, fj-^o ***5f _i~^m^"

For SU- the representations are thus described

by one number which, for this special case, is usually written

S = (f.-f_)/2 - i.e. a spin quantum number.
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Note that from eq. 3.7 the dimension of a

representation of U2 or SU? is

d([f] SU2) = f1-
f
2
+1 E 2 S + 1

- i.e. the familiar dimensions of a state with spin S.
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THE CLASSIFICATION OF STATES

Single fermion states are endowed with a number

of properties associated with symmetries in the Universe.

Thus we now recognize that states have an orbital/spin char-

acter, flavor, color - and perhaps other quantum numbers as

yet to be recognized. We wish to construct many-fermion

states in which the character of the state in the separate

space (orbital/spin, flavor, etc.) is manifest. How do we do

this?

First note that collections of fermions can be

described by antisymmetric functions only. Thus we can con-

sider these functions to be made up of an orbital/spin state

with some Young Symmetry [f] and a combined flavor, color

(and whatever else) - space with dual-adjoint symmetry f.

We divide the problem in this way because there are only a

finite number of flavors and colors (at least to our knowledge

at the moment) but an infinite number of orbital states. So

whatever restrictions there are in the problem will be deter-

mined by the flavor/color space. Actually it is tempting to

include the spin also with the flavor/color space and I have

done this in refs. 13 and 14, but in the discussion of quarks

within baryons it is perhaps wise to always treat quarks as

relativistic particles, i.e. keep orbital and spin spaces

closely associated. This is the approach I shall follow in

these lectures.
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In the classification of states, we shall

therefore only consider the possible flavor and color sym-

metries in a symmetry f of the combined flavor/color space.

For the sake of argument we shall consider only a two-dimen

sional flavor space and three-dimensional color space. The

combined flavor/color space is thus six dimensional. Our

classification will be such as to give the reduction

UB(flavor/color) •*• ^(flavor) x u,(color)

For one particle we have

( 3- 8 )

where the subscript numbers give the dimension of the Young

Tableau w.r.t. the appropriate unitary group using eq. 3.7.

For two particles in | | | symmetry in U_ we know from our

earlier discussions (cf. eq. 2.6} that the symmetries in

both the U. and U. spaces have to be the same. Thus

• H 2 1 - (CPa * m e h a • ( £ [ * 03>3 <3.9a)

Also following the discussion around eq. 2.7 we can imme-

diately write

( 3- 9 b )
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Note that the number of states formed by putting two particles
o

in a six-dimensional space is 6 = 3 6 of which 21 are symmetric

(| | |) and 15 are antisymmetric (—) . Consider now three

particles. Again the completely symmetric (| | | 1 ) and com-

pletely antisymmetric states are easy to write down

J56 (I I I I,, * C In)10' 40 (FPFP) +
V—'2 LJ 8/16

(3.10a)

H r i20

Note that for a two-dimensional flavour space we cannot con-

(3.10b)

struct a state with symmetry - hence the zero dimension.

We have now to discover the breakdown of the — — ' symmetry

in the six-dimensional space. Returning to eq. 3.9a we see

that by adding a single square to both the LHS and RHS we

find

•n*n = (



Since we know the breakdown of

we can deduce

| for Ug in eq. 3.10a

70 /16

(3.10c)

W e n o t e f r o m t h e d i m e n s i o n s o f 1 1 1 1 , ——', of Uc thatb

6 = 56 + 20 + (2 x 70)

The factor of 2 is needed for the 70~dimensional represen-

tation because i s 2 - d i m e n s i o n a l w . r . t . S _ .
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PHYSICS OF BARYON RESONANCES

Let us now see what these rather abstract state-

ments tell us about the physical world of collections of

quarks.

First we note that the only matter that has

been revealed to us in experiments is colorless matter -

more correctly color-singlet matter. This is matter for

which the Young Tableau come in columns of three squares,e.g.

3-quarks [111] 6-quarks [222]

9-quarks [333] etc.

All these reps are equivalent w.r.t. SU~(color). Picking

out just these representations, of U, from eq. 3.10

we can write the classification of Table I. In this

table we have also given the breakdown of the combined

orbital/spin space into separate orbital and spin symmetries.

In this latter case we consider only those symmetries which

exist for a two-dimensional spin space. For the flavor

symmetry we have written the [111] symmetry even though this

will not exist for a two-dimensional flavor space.
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TABLE I

f(orbital/spin) f(flavor/color) f(orbital) f(spin) f(flavor) f(color)

nrn rrn rm

ff3

nxi

nxi

ETD

nrn rxn

Let us now rewrite the table using the familiar spin S and

isospin T labels (-assuming now a 2-dimensional flavor

space)
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f(orbital/spin)

[ 3 ]

[21]

f (flavor/color)

[I 3 ]

[21]

f(orbital)

[ 3 ]

[21]

[ 3 ]

[21]

[21]

[ I 3 ]

Spin

3 / 2

1/2

1/2

3 / 2

1/2

1/2

Isospin

3 / 2

3 / 2

1/2

1/2

1/2

1/2

Color

[ I 3 ]

[I3]

[I3]

[I3]

[I3]

[I3]

Now we can begin to understand the classification of baryon

resonances. If three quarks are in s orbits the orbital symmetry

is [3] then the only spin and isospin labels are (-r- j) and

(•j ̂-) which we identify with the A and N.

2

If one quark is in a p state (i.e. s p config-

uration) we could have

orbital symmetry = [3] (ST) = (f f), <| \)

[21] (ST) = (|f), (| \)r (J \)

The first set with orbital symmetry [3] are spurious states

of excited centre of mass motion.

[The centre of mass co-ordinate is R = £ r. .which is sym-
1 3metric in all particles. Thus multiplying an s state by R

we get a state with 1-quantum excitation but still with [3]

symmetry (using example 3 on page 37). The one-quantum

excitation is clearly on the centre of mass. Hence the

s p[3] state is spurious.]
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Thus the lowest negative parity resonance is expected to

have [21] orbital symmetry with classification

1

1

1

1/2.

1/2

3/2

1/2

3/2

1/2

3/2

1/2

3/2

5/2

3/2

1/2

1/2

(A)

(N)

(N)

Just this number of states have been observed in the low energy

N/A spectrum and Isgur and Karl (ref. 12) have shown this space

to carry the properties of the observed states.

[Exercise - classify the two-quantum states. Beware of

spurious states of both [3] and [21] orbital symmetries!]

The calculation of nucleon/delta resonances can

be done directly using relative coordinates

P2 = JTTE (r1+r2-2r3)

which was in fact the approach taken by Isgur and Karl (ref.

18). For example the state having os excitation on both the

p.. and p? coordinate in an oscillator has the structure
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2 2 2
exp -{(p, +p2 )/2b }with oscillator length parameter b.

Clearly this state is symmetric with respect to P 1 2 and V

and hence belongs to the [3] symmetry of S_. A p-orbit on

2 2 2the p. coordinate has the structure ip. "\> p. exp-( + p +p )/2b ,

Clearly iK belongs to the [11] representation of S_, <fi_ the

[2] representation and ty. , ij>- carry the [21] representation

with Yamanouchi labels (121) and (211), respectively. The

states are therefore identical to the internal structures of

the single-particle state s p of [21] symmetry.

The use of internal coordinates is straight-

forward and one might think should be preferred. When it

comes to using relativistic mechanics the independent

particle picture has to be used, however, despite the

difficulties associated with the definition of the centre of

mass. My own approach here is to select states, using the

Symmetry classification, such that they are non-spurious in

the non-relativistic limit.
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APPENDIX A

DEFINITION AND NOTATION

Notation

f - a Young Tableau for a symmetry of S , the Sym-

metry group of n particles.

Y - a Yamanouchi label8'9 for the Young Symmetry f.

Y=(pqy) - a Yamanouchi label in which the n particle is

in row p of f, the (n-1) particle in row q and

the remaining particles have a Yamanouchi distri-

bution y. The labelling refers to the standard-

Young-Yamanouchi representation (cf. below).

Y=([pq]y) - a Yamanouchi label for the diagonalised Young-

Yamanouchi-Rutherford representation below

in which the n and (n-1) particle has definite

(but unspecified) symmetry. Where the symmetry is

to be specified we write pq or pq to denote the

symmetric or antisymmetric pairing.

f (f ) - a Young Tableau of S , (S „) derived from the

tableau f of S by the removal of a square in

the -h (and qth) row(s).

f - tlr •. <.* bleau of the dual symmetry to f obtained by

interchanging rows end columns.

f,f',f" - when used in the same expression refer to orbital,
or Y,Y',Y"
etc. color and isospin-spin spaces, respectively.
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Definitions

9

1. Standard Young-Yamanouchi representation for the trans

position P , in the symmetry f is defined as follows for

the three possible types of Yamanouchi labelling:

case i for p=q P ,|f(pqy)> = +l|f(pqy)>

case ii for p>q with Y=(pqy) existing but not Y=(qpy)
pn,n-i' f ( p q y ) = -i|f(pqyJ>

case i i i for p>q with Y=(pqy) and (qpy) existing

Pn,n-ll f ( p q y ) > = " J7lf(pqy)> + ^f1 l f ( q p y ) >

pn,n-i'f(qpy)> = ^ T ^

Here y is the axial distance (number of lines crossed counting

along rows and columns) between the n particle and (n-1)

particle in the Young Tableau f.

In general we write

Pn,n-ll f ( p q y ) > = «pq | f ( P q y ) > + BJql f ( q p y ) > (A"1

with a and 3 taking the above values depending on the

situation (e.g. 3 5 0 in cases i and ii)•

2. Adjoint Young-Yamanouchi representation for the transposi-

tion P , in the symmetry f is the same as that for the

standard representation except that all the 3 coefficients

are negative.
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9
3. Diagonalised Young-Yamanouchi-Rutherford representation

is such that the last pair of particles have definite symme-

try. In terms of the standard representation we may write

for the three cases:

Case i |f([p~q]y)> = |f(pqy)>

Case ii |f(Cpq]y)> = |f(pqy)>

Case iii (p>q) |f([pq3y)> = (

|f(t!pqiy)> = (

|f(qpy)> + Ai-11 f (pqy)>)//2y"

- /iT+T|f(pqy)>)//2iI

In general we write

|f([pq]y)> = (qpy)> (A-2)

with the above definitions for y and 6 depending on the

situation.
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APPENDIX B

CLEBSCH-GORDAN COEFFICIENTS FOR THE SYMMETRIC GROUP Sn

With the notation of Appendix A, a state |f"Y">

can be constructed from two sets of states |fY> and |f'Y'> by

the Clebsch-Gordan expansion

|f"Y"> = I S(fY f'Y1|f"Y") |fY>|f'Y'> (B-l)

YY'

where S(fY f'Yf|f"Y") is the Clebsch-Gordan (GG) coefficient.

Hammermesh Cref. 1 - Section 7.14) has shown how the CG

coefficients for S can be related to these for Sn , by a

matrix K. With Y = (pqy) (cf. Appendix A) we may write

S ( f (pqy) f l < p l q ' y l ) | f M < p " q l t y I I > >

= K(f p f ' p ' | f " p " > S ( f ( q y ) f p , ( q ' y l ) | f J , , ( q I I y " ) )

= K 2 ( f ( p q ) f ' ( p ' q ' ) | f » ( p » q " ) ) S ( f p q y f 'p f q , y ' | f ^ . q n V") <B-2>

t equality is as given by Hammermesh. The second

y. followr by a second application of the theorem

l _j.ating the CG for S , to those for S „ and the definition

n-J. n-2

K2(f(pq) f
I(p'q')|f"(p"q") = K(f p f'p'|f"p")K(f q fp ,q' | fp\,q") (B-3)
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Hammermesh also shows, with the notation of Appendix A,

that the K matrices may be calculated using the following

relationships:

K(f p f p'|f"p") K(fp q f^q'|fJBq
n

K(f p f'q'|f»p») K(f p q f qtP' | fp\,q") a

K(f q f'p'lfp11) K(fq p fplq'|fj,,q»)

+ K(f q f'q'lfq") K(f q p • f q f p ' | f J nq" )

= K(f p fp'|f"q") K(fp q fp, q ' | fq'llP» ) Bp!!qt, CB-4)

(with a and 6 defined in A-l) and the ortho-normal condition

I K(f p f'p'lfp") K(f p f'p' |f"p")6(f",, f̂ ,,)

t P
P p (B-5)

= 6(f"f") 6(p"p")

The above expressions allow the determination of K relating

the CG of S to S _1 once the K relating the CG of S , to

SR_2 are known. Since (trivially) K(ll ll|ll) = 1, all

K matrices can be determined by iteration. The K? matrices

being products of K matrices (cf. eq. B-3) are thus also

determined.
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The determination of the K matrices above is

for the standard Young-Yamanouchi representation. We

define a K matrix for the diagonalised Young-Yamanouchi-

Rutherford representation by

K(f[pq] f[p1qI]|f"[p"q"])

x K2(f(pq) fCp^^lfCp'-q"))

with P K2(f(pq) f •(p'q^lf'Cp'V)

= K2(f(qp) f(p
fqf)|f"(p"q")) etc.

and the Y and 6 defined in eq. (A-2).

The elements of the K matrices required in the

quark-cluster problem are listed in Table S of ref. 13. Note

that the K matrices have the property that all elements are

zero unless the product of the symmetries of Cpq] and [p'qT]

is equal to the symmetry for Cp"q"D.

The K matrices relate the CG coefficients of S

to those for S 2 in the d-YYR representation.
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