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PREFACE

The purpose of this set of lectures and notes is to
give the student a working knowledge of the classification and
construction of sets of n-particle states transforming according
to definite irreducible representations (irreps) of the symmetric
group Sn' I have tried to answer the obvious question of why
such states have any relevance to the physics of collection of
fermions be they electrons in atoms, nucleons in"nuclei,or quarks
in baryons or multi-baryonic states., Since the application in
this latter area is pérhaps the least well documented, I give my
examples here. There is no claim to originality in these notes
except perhaps in the order and method of presentation.

The verbal presentation of the lectures was given
during three sessions at TRIUMF (Vancouver) in the week of Oct.
17-24, 1980. Not all aspects of these notes could be covered in
such a short beriod,but this expanded set is given here for the
benefit of the student. It is hoped that through the notes the
student will be encouraged to further reading. The short biblio- .
graphy is meant as a stepping stone in this direction and is cer-
tainly not meant to be exhaustive. Further references can.of
course be found in the reference lists of my bibliography.

Many aspects of representation theory are not -
unique to the symmetric group. For this reason PART I reviews

some of the general ideas and leads up to proofs of five major
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theorems for finite groups, the latter two of which the practi-
£ioner wi;l find to be pa;ticularly useful. PART II moves on to
the symmetric group proper and, through example, explains the
ingenuity of the Young tableau and Yamanouchi label notation to
describe all properties of the irreps of S,. I show here also
simple proofs of how products of functions belonging to definite
irrebs of S, can yield totally symmetric or antisymmetric func-
tions. These are but simple examples of the Clebsch-Gordan coup-
ling scheme for S, that is explained, but with the general
method fpr constructing the coefficients relegated to Appendix B.
I have included sectioné on the meaning of fractioﬁal parentage,
the construction of coefficients in faétored form, and how such
ideas are of practical use in the calculation of matrix

elements.

In PART III I briefly explain why the Young
tableau notation can also be used to describe irreps of Up and
SUy - and is indeed preferable to the pafticle physicist's habit
of using the dimension to describe the irreps. I discuss the
classification of states according to product spaces and end with
examples of the classification of baryon resonances, assuming
these to arise from orbital excitation of three quarks in a
confining potential. |

’ ' Probably the greatest difficulty in understanding
representation theory is comprehending the notation. It must be
admitted that this is often the faglt of authors not'exglaining

their notations and definitions perhaps (shudder!) with the
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arrogant assumptién that their usage is so standard if does not
need to he explained. I attempt to help the reader understand my
notation through the collection of definitions in Appendix A.

This preface was written whilst flying at 37,000
feet over the Rocky Mountains on the'BbEING—747 returning me from
Vancouver to Eastern Canada. Thié combination of viewing some of
Nature's most magnificent structures and man's ingenuity in
placing me in such a position perhaps best describes the physi-
cist's almost unique position in.being able to view - again with
machines of man's ingenuity - the fascinating world of sub—afomic
physics. I hope the notes will provide part of the "boarding
pass" for the students who wish to 'fly' into this unique viewing
positioﬁ.

Finally I would like to thank my hosts at TRIUMF,
University of British Columbia and Simon Fraser University, for

a most interesting and enjoyable week.
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_ PART I
WHAT IS A GROUP?

Formally a group is defined (ref. 1) to be a
set G of entities g4 defined under a law of corhination

(we use the multiplication symbol X or nothing at all) such that
(a) 1if g, and g, are in G, then so is 8 % 8y5

(b) the asuociative law applies,i.e. ‘g x (g,xgy) = (glng)xg3;

(c) a "unit" element E exists such that Exg; = g;xE =g, for

(d) to every element g; there is an inverse element g{l
-1 _ -1 _
such that g; X8y T 8; %8y = E.

We restrict our attention to groups of trans-
formations on a Hilbert space of funections Cwa) considered -
to form a linearly independent set. The action of the group

transformation can thus be written

where T a(gi) are the set of expansion coefficients for the

B
particular group element g;- We now prove that the matrices

P(gi) form a group isomorphic to the group of transformations

g

i

Clearly if gjxgi = gjgi = gy then



gj giwa

I Tooleiles¥,
B

i

) I‘Ba(gi)I‘YB(gj)wY

By

L Tyo Bl

. Y

(-we use henceforth the summation convention).

Thus since forms a linearly independent set
v, .

FYa(gk) = FYB(gj)rBaégi)

or in matrix language r(gk) = r(gj)r(gi). Thus the law of
combination for matrices mirrors the iaw of combination for
the transformation opers*ors. Clearly the associative law

holds for matrix multiplication and the unit matrix I will

correspond to the "unit" element E of the group. Since

-1 _
g;xg;" = E then

P(gi)-P(gzl) = T(E) = T

and henée the matrices I are non-singular. Thus the set of
matrices F(gi) forms a group that exactly mirrors the group
of transformations 855 they thus form a matrix répresenfa—
tion (or simply a representation) of the group G.

The Sét of matrices F(gi) are defined with
réspect to a particular set of functions wa' Suppose we

define a new set of functions ¢B = Saswa where S is a



non-singular matrix. Since g, ° rya(gi)wy then

3 . . -1
gi¢a - Sasrya(gi)wy - SaBryang)gy s

(S_lr(gi)8)68¢6

s”Irs also form a representation

The set of matrices F'(gi)
of the group which is said to be equivalent. Thus matrix
representations are not unique - in fact there are an

infinite number of them (-as many as there are non-singular
matrices S).

So far we have not said anything about the
dimension of the matrices F(gi). In general, if vy form an
infinite complete set then the matrices will be infinite
dimensional. For certain groups (we call them compact
groups - and the only ones concerning us in,these lectures)
we can find transformations S such that gii the group elements
g; transform only over a finite set of functions ¢a' Further-
more a transformation S' cannot be found that forms a smaller
set. This finite set of functions ¢, is said to carry an

irreducible representation of the group 6. If there are k

functions in the set ¢,» then the matrices F(gi) are k-dimen-
sionai and we are said to have a k-dimensional irreducible

representation or k-dimensional irrep.

Exaumple:

Consider the set of permutations (82) of two objects 1 and 2.
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There are two elements of the groups E and P12' Let the num-
bering be carried by three objects a, 8 and y. Thus we

have a slx-dimensiocnal space a182, a281, alYZ’ aQYl,
81Y2’ 82Y1' The matrix representations are

-1 o : B S IR N |
) 0 ' 0 12 C 0 ) 0
0 1! ! 1 0! .

L - = e e e - - ot
e - - - o F e = = - e e e = = —— -

31 0]
Already we see that this six-dimensional representation is
composed of three two-dimensional representations carried
by the three sets of functions_(alsz, aQBl),(alyz, a2Yl),
(BlYQ, BQYI).' But none of these two-dimensional representa-
tions is irreducible. In the first case we can, for example,

define two new functions

¢, = YI72 (0B, * a,B;)
¢ = V/1/2 (a B, = a,8;)

With respect to these baszis states the group operators E and

P have matrix rapresentations

12
; S
E -~ 1 P12 1
1 ; -1



Clearly we have reduced the original six-dimensional repre-
sentation to involve two basic irreducible matrix represen-

tations of S2 namely

E + [1] Py, [11]

and

E + [1] Pig ™ [-11]

These two representations are one-dimensional and they are
different. One of our problems is to find a way of character-
ising the representations that in some way tells us what the
matrix representations are. One could of course call the first
representation #1 and the second representation #2, but,

unless one has a good memory, it would be hard to remember
which was which. We shall return to this problem later,

but for now we shall use the letter [fj to indicate a charac-
terisation of a particular representation.

Note incidentally that in this example Qe have
two different one-dimensional representations and so it makes
no sense to use the dimension as a characterisation of the
representation. This is true for the characterisation of the
representations of many groups. The habit of high energy phy-
sicists of dsing the dimension to characterise the represen-
tations of the special unitary transformation group (SUn)

is to be discouraged.




RELEVANCE TO PHYSICS

In all branches of physics we are concerned with
sets of stationary states which characterise the physical sys-
tem under study (molecule, atom, nucleus, baryon) in certain
energy states. These states arise as the eigensolutions of

a Hamiltonian H

Hy, = Egb (1.1)

Suppose H to be invariant with respect to all the transforma=-
1

tions of a group G,i.e. gng; H for all g.eG.

Then by operating by g; on the left of eqg. 1.1
we find -
- -1

g, Hy,6 =g; He,"g,9, = E g

0®i"q

i.e. H(giwa) = Ea(giwa)

Thus, if wa is an eigensolution with energy Ea’ (giwa) is
also an eigensolution with thé same energy. Thus the eigen-
solutions of H come in sets of'degenerate states. Fach set
carries a representation of the group 6. From each set,
functions can be defined which carry an irreducible represen-
tation_label f. Thus the éigensolution of H can be wqitten

Y(fy) where

HY(£y) = EW(fy)
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where f characterises the representation and y characterises
the state within the representation (- there will be as many
y labels as the dimension of f). ©Note that the "energy"
depends on the representation label f but not y. [Actually
it is possible for the degenerate states to belong to more
than one irrep. The point is that all members of an irrep
are degenerate. Degeneracy of some irreps usually signifies
a higher symmetry group.]

| A simple example of this is the invariance of
H with respect to the generalised group of rotations (in
orbital and intrinsic space) which is isomorphic to the
group SU2 (ref. 17). Each eigensolution of H can therefore
be characterised with respect to the representation of the

SU, group - usually written J (instead of f), i.e. the

2
angular momentum label, The degenerate states within the
representation J are usually characterised in this case by
the symbol M (instead of y) - i.e. the magnetic quantum

number. We will return later in Section 3 to discuss more

about SU2 (or in general SUm) and the characterisation of

the representations. With the harmonic oscillator hamiltonian

states with different angular momenta can be degenerate,
e.g. a J=0 and 2 for the 2-quantum states or J=1, and 3 for
the 3-quantum. This degeneracy arises from the invariance
of the oscillator Hamiiténian.with respect to SU, transfor-
mations among the oscillator quanta in the three spatial

directions.ls)



-8 -

SOME USEFUL THEOREMS

1. Any representation of a finite group is equivalent to a
representation by Unitary matrices.

2. Schurs Lemma - the only matrix that commutes with all matrices
of an irreducible representation is the unit matrix I mul-

tiplied by a constant (d).

1
3. 1If rf(gi) and 1t (gi) are two irreducible representations
of dimension lf and Zf,,respectively, and M is a rectan-
t
gular matrix such that Pf(gi)M = Mrf (gi) for all gy

then
1. if Zf # lf, M=0
2. 1if 2. = & either M= 0 or f = f'.

f !

4. The Orthogonality Theorem

£4 F h
P . P_ - . ) = 6 oy 6 - 6 [ '’
L Tyy(83) I5 51 (ey £F Pyy Cy'yr i

where h is the dimension of the group (i.e. # of group elements);

zf is the dimension of the representation (i.e. size of matrices).

5. Basis functionsbelonging to different representations,or

different rows of the same representation,are orthogonal

£ry. £

,'<¢y,|¢y> = § N

ff'syy



Theorem #1

Any representation of a finite group is equiva-
lent to a representation by a unitary matrix.

We prove that given any representation we can

construct from it a representation with unitary matrices.

Proof. Let P(gi) be the matrix representation of the group

element g Cons%ruct the matrix
H=J rg.)r (g.) (1.2)
= Z gi gi 4.
i

+ . s . .
[T is the adjoint of T, i.e. the complex conjugate

transpose. ]
The matrix H 1s Hermitian,i.e. HaB = Héa
#* * & & _
[HBa" ) (FBY(gi)Pay(gi)) =7 Pay(gi)rey(gi) = HaBJ
i i
But any Hermitian matrix can be diagonalised by a unitary

matrix made up from the orthogonal vectors of the secular
equation (HVa = dava).

Thus D =U "HU

. d 1
with D d2 U = [ Vl V2 cvene Vn]
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o
n

I Ut regrtig;u
i

-1 =1 _+
? UTT T(g U UTT T (g U

1
= I rigp r¥g)  with Tt o= uThru
i
Now all the eigenvalues di >0
E
- ? ?
[From eq. 1.3 daaaB =7 Fay(gi) Fsy(gi)
i
j.e. d = J T (g.) I'¥g.) > 01
T Yo oy i oy “i
i
Thus we can construct the unit matrix
- -% t ' -%
I=D"[T'(gd)T'" D
i
where
-%
p™¥ = |91
d—%
2,
.d-%
n
Consider now the matrix T"(gi)A= D_g F'(gi)D

This matrix is unitary because

(1.3

+%
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r"(gj)r"+(gj) p~¥ I'(gy) D**[IJD*rv+<gj>Df*

1
-3

D‘*r'(gj)b+*[D‘* 7 P'(gi)F'+(gi)D_%]D%P’+(gj)D

1
-1 + ok .
=D ] F'(gj)F‘(gi)(F'(gj)P'(gi)) D (1l:4a)
i .
=07¥ ] r'(g) I'g 7" (1.4Db)
k

= E

In making the'change from eq. l.4a to l.4b we use the fact

that if g:8: = 8 then f(gj)F(gi) z F(gk) and that

ol

g4 = By

z .
i %

At

The matrices I"(g;) form a unitary representa-
tion of the group. They were defined in terms of the original

representation by

¥.-1

—Fy=t y~L r(up?

r(g;) = DUt ru p*¥ - (upt ¥

Thus S = UD % is the transformation from the original basis
defining T to the new basis defining T'".
From here on we shall always assume a represen-

tation to be unitary.
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Theorem #2

Schur's Lemma - the only matrix that commutes with
all matrices of an irreducible representation is the unit matrix
possibly multiplied by a constant (4).
Corollary -~ if a non-constant matrix can be found tﬁat com~
mutes with all matrices of a representation then the repre-

sentation is reducible.

Proof - Let M commute with all P(gi)

i.e. Mr(gi) = F(gi)M for all g;-

Hence

rfg Mt o= F+(gi) (1.5)

Because of Theorem #1 we can assume all T to be unitary with-

+ . ool

out loss of generality: T =T Hence multiplying

eq. 1.5 on left and right by P(gi) we prove

M' T(gy) = TigM'

. . +
Thus if M commutes with T, so does M and hence so do the

Hermitian matrices H

, = M" and B = 1i(M-M"), but the

matrices HD (p = t) must be constant because
HT =TH
P

uHrut:=yrH U
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with U the unitary matrix of eigenvectors of Hp’ then
U H, vlu ruvt=uru
i.e. DPUPU’ =UTU™D

with DP the diagonal matrix of eigenvalues of Hp’ i.e.

_i

D T{ =T'D rr=uru
b P
or
g(Dp) 6aB BY _grdB BY( P)YY
i ' - .
(Dp)aa FaY GY(DP)YY (no summation over o)
* [(D.). -(D ]P' =0

.o Paa P‘Y‘Y

1 - - .
If (D) o # (Dp)YY then PaY(gi) =0 for all g; in the group, i.e.
T'' is reducible (and hence T' is reducible). If T (and hence
I'') is irreducible then (Dp)aa = (Dp)YY for all a,y, i.e.

Dp = de, with dpa single constant. Hence

UH U =D =d.1I
b P
. i} S
i.e. Hp = dPI and hence M= 2(d+ id )JI.
Corollary: 1if a non-constant matrix M can be found that com-

mutes with all I' then the representatlon can be reduced by the
transformations U T U~ -1 with U the matrix of eigenvectors cf

H, = (M-*M ).
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Theorem #3

If Fl(gi) and Pz(gi) are two irreducible repre-
sentations of dimension Ly and 22,respective1y, and if M is

a rectangular matrix such that
Fl(g.)M = Mr2(g.) for all g. (1.6)
i i i

1. if 2. # 2 then M =10

1 2

2. 1if 21 = 22 either M=0 orT

(1) (2)

"
—
.

Proof':
Again because of Theorem #1 assume Ff to be

unitary matrices. Then

+ 1+ _ L2+ +
M T (gy) = T (g M
but
+ - -1
r(g;) = I‘(gi )
+ _ -1 .y
[r (gi) = I'(gy) - unitary property of T
) -1 . ) - -1
= I‘(gi ) - since I = T(E) = F(gigi )
= Tgy) Tigph
o R -1
and hence P(gi ) = (P(gi)) .]
Thus _
+ 1, -1, _ .2, -1, .+
M T(g;”) =T (gs" ) M
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Multiplying both sides by M and using ed. 1.6 we get

MM+P1(g;1) - ri(g

- +
~L )y
i
+ . . . .
Thus MM 1is a matrix that commutes with the representation

. . . . + .
matrices Pl and if these are irreducible then MM is a con~-

stant (Theérem #2)

Mt = a1

' 2
if £, = &, then the determinant [MM*| = |M|2 =at  Ifa+#o

then |M| # 0 and M has an inverse. Therefore
1 — 2 -1
rl(g;) = Mrlcg;m

and the representations are equivalent.

Ifd =0, then M = 0 for 21 = 22.

If ll #Zz [let us suppose £2 <£1] then M has ll rows and £2
columns and MM' is an 21 X21 square matrix. Construct the square
matrix N from M by adding (21-20) columns of zeros. Clearly the
determinant of N is zZero and hence the determinant of NN+ =0.

But NN+ = MM+ and hence MM+ = 0. Since MM+ = dI this proves

that 4 = 0.
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Theorem #u

The Orthogonality Theorem.

[Note: this is probably the most important theorem of
representation theory and must be remembered].
T®

,(gi) I‘—s—’,(gi) = fo Gyg; Gy,}—’, h/,Q,f

£
Ir 7

Dyy
i
where h is the dimension of the group (i.e. # of group elements)

%. " " " irrep f.

Proof: with an arbitrary 2f><2f rectangular matrix X construct

M=fricg) x rih
i

Now

f f f F, -1, .F, -1 f
r )M r L) T (g.) r . r .Y T .
(g]) g (g]) (g;) X (g5 (g:l (g])

1

£ T -1 f
- . T g T .
L g r (gjgl) b4 (gjgl) ] (g]?
1

M T(g.)
(g]

Hence from Theorem #3 if f # £ then M = 0

. ) £ Fo, -1, _
i.e. Mg = ) FaY(gi)X FGB(gi ) =0

i

Y$



- 17 -

Since X is arbitrary it can take for a particular y,8 X&d =1, but zero
otherwise. Hence

f

-1
; F (g ) Tggle;™

=0

i.e. 1T (g ) F (g ) =0

If £ = f then M = d.T. (if T is irrep, by #2)

. £ f -1, _
) raY(gi) X5 Tep8; ) = d 8,5
Again since XYG is arbitrary choose it such that all XyG =0

except for one element,e.g. Xvw = 1. Then

£, =1, _
; (g ) rws( ) = dsae

choose ¢ = B and sum over &

f, -1, .f -
; T (81 ) rav(gi) = d 2

- f _ -
= ; T v (g7 g ) =} r y(E) = hé
1

i

re d = héwv/lf

Thus
1T (g ) T B(g Ly = 8,880 14

£ T _
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Projection Operator

Consider the operator

2 ) 2
f _ 'f f =1 _°f £ -1 - £ £
Torg = & L Tyyes) g5 = 7 I Tyy(eideg = 5 I Toiy(8;)e;
i i 3
Now
— ) _ _
N T =, —(g. =
TY'Y ‘py h 2.: yy‘(g‘_) y'y(gl ) ‘py'
L % -
. _f £ o T
" h ) 1"yy'(&l) Fy y'(gi) ‘Py|
i
T . £
6ff 6y§ 6yl§'l 1!'}" = (Sf_f- 5y~§ tby'

from the orthogonality theorem. Thus Ti'y operating on the
y function ¢§ of the T representation gives zero unless
f=FTand y =y in which case it yields the y' function of the
f representation.

If Tf,y operates on any function ¥ the answer
is zero unless Y contains a part transforming like the y

function of the f representation: 1if it does the resulting

function is the y' state f representation. Note that the

operators T§'y are idempotent, i.e.

T 'y

£ T
T= = S8 -, T
y'v Ty i



f
[Proof: Ty'

writing

L2 -
£ F f £ . -1 -1
7 I 1 Tyyi(e;) T55eEl) gy
k
L= : - —
£f7f £ £* F -1
_;T ) Fyy'(gi) F;a(gi)] F-}-I-a(gk) &y
k1 ’
) —
f f ~1
—1;1* Gf-f—' 5y§, z T;y,(g_k) gk
k
'~ using the orthogonality theorem
£
S¢F Syyr Tyry
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Theorem #5

Functions, belonging to different representa-
tions or to different rows of the same representation are

orthogonal, i.e.

£fy,f
< > = § .= &8 —
ll’qu’y ¢ OfF Syy
Proof
f _ .f oy T
g; wy = Py'y(gl)wy'
f _F F
and g lb; = I‘;v;(gi) ‘Ds;v

CF -1 f
=L vy leie; vy>
i
F, f
= h <y= >
wylwy

T F f f
¥<T y'y(gi) w§v| ry'y(gi) wy|>
1

F .F% f f
? <w§¢JT §l§(gi) ryry(gi) ’wy;>

1
. . _ h T | f
- fo Gy'y' ny Rf <¢§v|wyv>
£, f. _ f f
<w§|¢y> - fo 5y§-z <¢y'|¢y'>/if
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Clearly if all states of a representation are also normalized

the latter equation reduces to
£ ' '
<YP= > = §, =8 —
v5lv,>

£ff “yy

- another important result. that should be remembered,
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PART 11

THE SYMMETRIC GROUP Sn

The symmetric group is the set of all permuta-

J

tions of n objects (say o-, j=1, **+n). The general operator

for this group has the form of products like Pi where

112..'1}(

172 k 1 =2 k k+1l n
= 1 2 e o a k k+1 LR 2N} n 1 1 1 ‘... 1
= |a] : ay o a; > A FL FiFeecdi

i i
1 k+l n ~-selected from the
set of numbers
(1,2,*+*n)
Note that any such operator can be written as

products of transpositions

Pi i eeed, “Fi 3 Py g *""Fy
1t Nk 1%2 *2%3 k-1"k
Note also that any transposition can be written
as products of local transpositions of adjacent numbers,i.e.

L P v

if 1<j, P..=P i,i+1

15~ Fi,141 Pisn,ie27 7 Bo2 32 Py, 5F50,50
Thus if we know the matrix representation of the local transpo-

sition operators we can construct, by matrix multiplication,

the representation matrices for all other operators.
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For Sn therefore we need. to know how to con-

struct irreducible matrix representations for I, PlQ’

seep Note that for Sn-l we need the matrix

P23’ n—2,n—l’Pn-l,n'
representation for I, PlQ’ P23'f'Pn—2,n-l' The standard
Young representation for the matrix representations of Sn
is such that they are made up of irreducible representations
of 82’83""Snér Only the matrix representation for Pn~1,n
has to be declared in going from Sn—l to Sn'
Before giving the method of classifying repre-
sentations of Sn, or of giving the standard representation
matrices for the local transpositions, let us first look at
some examples which will give the somewhat abstract presen-
tation up to now some reality.
In Part I (page 5) we have already deduced,
for 82, two irreps which.are carried, for example, by basis
states ¢, = VI72 (a;B, *+ B;0,) and ¢_ = VI72 (a8, - Bia,).

Assuming o and B are orthogonal single partiéle states,

the matrices for E and P12 are:

for ¢, = v1/2(ag+Be) : T(E) =[1] rcp;,) =[1] - the s-irrep

for ¢

vY172(oB-Ba) : T(E) =[1] F(Pl2) =[-1] - the a-irrep

Note that ¢ _ and ¢_ are orthogonal which they must be accord-
ing to our Theorem #5 (page 20). This statement is true even

if o and B are not orthogonal, i.e. <a|f> # 0. In this latter
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case however the functions ¢, should be defined

e
¢, _J_Z_(_I?OLIB> (aB + Ba)

in order that the representation matrices have the Unitary
character shown. Thus single-particle orbits do not have to
be orthogonal to classify many-particle states according to
the irreps of Sn (cf. ref. 13,14). We shall assume ortho-
gonality of single-particles states in what follows, however,
since it is then less cumbersome in the writing of many-par-
ticle'funcfions.

Let us now consider three-particle states in
which two of the particles are in the g-~orbit and one in the

B-orbit. Clearly we can immediately write down a symmetric

function
v = V173 (caB + aBa + Bao) (2.1a)
= V173 aaB + V273 V1727 (aB+Bado (2.1b)
= /273 o V172 (aB+Ba) + V173 Baa (2.1¢)

This state carries the one-dimension irrep of S3 for which

the local transposition matrices and identity matrices are

T(E) = [1] P(Pl2) = [1] ' P(P23) = [1]
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There are three compdnents to the state ¥ and
therefore we can write down two orthogonal states to .
These states will belong to a different irrep (or irreps)
of 83 since they are uncoupled to y by the local transposition
operators (Theorem #5 - page 20). How are these states to be
defined? | | |
The standard method of Young is to define the
states such that they belong to an irrep of 82. In the form
of writing ¢ in eq. 2.1b the symmetry of ¢ with respect to
82 is made obvioﬁs - since ao and vI/2(cB+Ba) both transform
according to the s—represehtation of 82. Clearly we can

write down an orthogonal state to Y that also transforms

according to the s representation of 82 namely

Q, = VY273 aaf - V173 ¥1/2(aB+Ba)da

This state does not define a one-dimensional representation

of S, because, although P1291 = +191,we-find

3

_ 1 1
Pyglly = - 50 £ 5 /3 Q

23 1 2

with

92 = +/1/2(aB~Bala

The two functions Ql and 92 carry a two-dimensional represen-
1

. . _ .1
tation of S, since P,,2, = -12, and P, 0, =+30, * 3 Y3 Q. The

representation matrices for the transpositions are thus



+1 _1 /3
- 2 2
AF(P12) = F(P23) =
-1 +/3 1
2 2

The ambiguity in sign for the off-diagonal matrix element of
F(P23) is a result of the freedom of choice of relative

phase between ., and 92. Note incidentally that 92 trans-

1
forms like the a-representation of Sye



- 27 -

YOUNG TABLEAUS AND YAMANOUCHI SYMBOLS

Clearly we wouid like a better way of classify-
ing the representations of Sn which tell us more about the
structure .of the representation than the arbitrary symbols
s, a, ¥, 2 that we used in the previous section to character-
ise irreps for 82 and S3. The Young Tablgau is such a classi-
fication. In this scheme a particle is denoted by a square Ej.
A two-particle symmetric state is characterised by two squares
in a row [ ] |]. A two-particle antisymmetric state is charac-
terised by two squares in a column E{. A particular state is
characterised by putting (in general) the numbers from 1 to n

in the tableau such that they increase in both rows and columns.

Thus in our examples

s =[] and ¢, = [1]2]

aEH and ¢_=E'

The three-particle state ¢ is symmetric with respect to both
P12 and P23 and therefore is characterised by the symbol
[1]2]3]. The state 9, is symmetric w.r.t. Py and therefore
the numbers 1 and 2 must appear in the tableau that character-
ises the @ rep in a symmetric way. The state 2, is antisym-

metric w.r*.'t..'F’l2 and therefore the numbers 1 and 2 must appear

in the tableau that characterises the @ rep in an antisymmetric
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way. We see that the tableau EFlsatisfies both these criteria

with
= [1]2]
Ql = jl
and
- 11]3]
92 = 2]

The shape of the tableau characterises the representation.
The numbers within the tableau characterise the state of the

repfesentation. There are only two ways of putting the num-

bers 1, 2 and 3 in the Itableau with numbers increasing

in rows and columns and therefore this correctly character-

ises the two dimensional irrep.
Rather than always draw the tableau we can

simply state the number of squares in each row thus

(31 = [T

[21]

[1111

"
/M
-]

w
-
it

The particular state of a representation can be classified

by a numbered tableau,e.g. ; 2Lor by declaring (from right to

left) in which row the numbers 1, 2, **° n (in general) appear.
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Thus (211> 2]

i
(3]

(121) 3]

1
2]

The latter are referred to as the Yamanouchi symbols of the
[21] Young Tableau.

Given the Yamanouchi labelling of a Young
Tableau we can easily construct the matrix representation
for thé local transposition Pn_1 . The general rules are

’n
as follows.l’s)

1. If n-1 and n are in the same row Pn-l,n

2. If n-1 and n are in the'saﬁe column P
- _ _ n-l,n

=+]
_J'J_J (2.2a)

(2.2b)

3. If n-1 and n are in different rows and columns of a

tableau then

P = 1 !‘Jﬂi:l n-l
n-1l,n n 2 - ,
- n _ (2.2¢)
‘ n=1 .

where |[n| is the number of lines crossed in the tableau

(moving along rows and columns) in going from n-1 to n and
the sign of n is +(-=) if the move from n-1 to n is in a

(anti-) clockwise. direction. One can immediately verify that
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this general rule yields in the particular case of the [21]

irrep of S3 for P23

i I R
3 2 -2
73 |, & .1
2 -2 2

as deduced on page 26.
tions in a representation is chosen such

appears in the definition ea. 2.2c.

Problems

1. Write down and classify according‘to
formed by putting three particles in
B and vy.

2.  Write down all the Young Tableau for
S, and state their dimensions.

4y
3. Construct the matrix representations

P,, for the irrep [31]) of S, -

The standard relative phase of func-

that the + sign

S3

three orbits a,

the six states

all the irreps of

for P12’ P and

23
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Notation (See alsc Appendix B)

I always try to use the same notation so let

us review this:

f - designation of a Young Tableau for Sn;
Y - a Yamanouchi label for the Young Symmetry f;
Y=(pqy) - a Yamanouchi label in which particle number n

is in row p, particle n-1 is in row g and the
remaining particles 1. 2, ... n-2 have a Yamanouchi

distribution y.

The results of eq. 2.2 will be expressed in general by the

expressions

_ £ £
Bin-1lftPay)> = a  |f(pay)> + B |f(apy)> (2.3)

with af and ng taking the values given in eq. 2.2 according

to the case.

£ \2 f \2
: )+ =1
Note (apq (qu)
and
af = —af if Bf 0
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THE ADJOINT REPRESENTATION T

‘ There is some ambiguity in the literature as
to what exactly is meant by the Adjoint representation. I
define this to mean the representation in which the ng
coefficients in eq. 2.3 have negétive.sign. This represen-
tation is carried by the same set of basis states as for the

standard representation but with some of the relative phases

among the states of the representation changed.

THE DUAL REPRESENTATION

" Given a Young Symmetry f, the Dual Symmetry is
the one in which rows and columns have been interchanged.

Thus

Symmetry f Dual Symmetry %

21 [T [11] B
[111 F ' 21 = [T

[21] = | [21]

In the‘latter case we call the [21] symmetry self-dual.

Note however that the dual of the state [211] = % 2'of the

[21] representation is the different state

3]

- 11
(121) = H .




The Dual Symmetry can be declared in the stan-
dard representation or the adjoint representation. (N.B. In
ref,9, for example,the terminology adjoint means both what I

‘have called adjoint and dual - be cawveful!!l).

Inner Product (Clebsch-GBordan Expansions)

Suppose we have two (or more) spaces in which the
particles 1, 2, ... n have states defined. Tor example, we
could declare the orbital wave functions of n particles, the
spin wave function, the flavor wave function, the color wave
function, ete. In each space we can declare the symmetry with
respect to transformations with respect to Sn'

The question now is to find the symmetries of the combined
spaces. For two spaces in which we have defined states ¢(f'Y")

and T(f"Y"), in general

SCETYNIT(E"Y™) = §  (£'Y'E"Y"[Y) ¥(£Y) ' (2.4a)
£CY)
where ¥ is the combined T space. The coefficients
(£'Y'E£"Y"| fY) are the Clebsch-Gordan coefficients for S,

The eq. 2.4a has an inverse

YOEY) = F (E'YUEUYU[EY) o(£'Y'IT(ENY™) (2.4D)
YVYH
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Let us examine this expansion in some special

cases:

S, W21 = Vi (Y Y+, ):0([21(A1)) = Vi (40,+050,)

Pp([111C21)) =V/% (wawB-waa):¢([11](21)) = /% (¢a¢s‘¢e¢a)

Clearly
¥([21(11)), = ([21(11))¢([21(11)) (2.5a)
¥([23(11)), = ¥([111(21))¢([111(21)) : (2.5b)
¥([111(21)); = ¥([21(11))¢([111(21)) (2.5¢)
¥([111(21)), = ¥([111(21)) ¢([2](11)). ' (2.5d)
Thus :
([2](11)[21(11)1[2](11)) =1
([117C¢21)0113¢21)]021¢11)) = 1
([21(11>0113¢21)|[11]C21)) = 1
([113¢21)[21¢11)[[111¢21)) = 1

We have had to distinguish two different states in eqs. 2.5a
and b with subscripts because the overall symmetry is not
enough to completely specify the states. In this situation

it is usual to declare the symmetries of the subspaces. Thus

W([Z](ll))l = yY([L[21C21] [2](11))

Y([113(21)), = ¥w([[2101117 [111(21)) etec.

with the svmmetries in the ¥ and ¢ spaces being given in that order.
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In general one has to work hard to get the CG-coefficients of

S, (see Appendix B), but they are simple (as above) in a few

cases.

Example 1:

Consider the state ¥ :Jdi Z YEY)p(LY)
f
Y

=4 1 uw(f(pay))e(f(pay))

bay

where dg is the dimension of the representation f. Now

- T £ £
Pn,n-l ¥ "l&}' ) (apq v(f pay) + qu p(£(apy)))
Py

(a;q¢(f pay) + S;q ¢ (flapy)))

T £ .2 f 2 ' _
-.‘la—f- ) {[(apq) + (qu) 1 e (£(pgy))d(£fipay))
pqy

£ £ f £ .
+
+ [apq qu qu aqp] p(f pqy)¢(f(qpy))

e

V%% L w(£f(pqv))o{£f(pqy))

nqy :
=y
. f (2 f (2 £ f
s ( ) + = T -
ince | apq (qu) 1 and apq aqp
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Since the states Y(fy) and ¢(fy) are defined in the standard

Young representation then the above proof holds for all sub-

groups 82, 83,---Sn__:L of Sn' Thus ¥ is symmetric w.r.t. all ,
local transpositions and hence is a completely Symmetric

function, i.e. transforms like the Young Tableau

(n] =} [ [+-«««T] (n boxes)
Hence (fYfY|[nl) = 1.
Example 2:
Consider the state:
= 'l_' X
¥ = ofF T w(EY) e (FY)
oy !'
=Jal— T w(F(pay))p(E Bay) (2.7)
£ pQy
Again
P L L ) [of P(£(pav)) + st Y(f qpy)I*
n n-1 df : DA = pa e

pqy

[ f = :::)
- (£( ) -
qu ¢ Pay B

g b

P
a o (f(apy))]

_1f. I {r-cef D% - (8] 321 ¥ (£(pay))o (F (pay))
pay o

[—d;qB;q - Biqagp] ¢(f(pqy))¢(%(qpy))

‘Jal— T (E(pay))e(f pay)
£ Py

= -
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T o . .
Again since ¥Y(f(pqy)) and ¢(f pqy) also belong to irreducible
representations of 82,83,'--Sn_1, the function ¥ is antisym-
metric w.r.t. all local transposition operators P12, P23,

P Hence Y transforms like the antisymmetric repre-

n=-2 n-1"
sentation
Ve
1" B (n boxes)
L]
Example 3:

Prove that if ¥ = ¢([nl(1™))P([£]Y) then ¥ transforms like
the Y Yamanouchi label for the symmetry [f]. Note that we

could consider ¢ to be a symmetric operator.

Example h:
Prove that if ¥ = ([£f1Y)¢([1"](n,n-1++++1)) then ¥ trans-

forms like the ¥ Yamanouchi label for the symmetry [%].
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THE RELEVANCE OF S, TO FERMION PHYSICS
- The Use of Antisymmetric Functions

I find even amorig experienced theorists aimis—
understanding as to why we use antisymmetric functions to des-
cribe collections of fermions. It is true that the Pauliiprinci-
ple prevents any two "like" particles being at the same space-
time point or, equivalently, in the same state. - The Pauli prin-
ciple doesn't say anything about unlike particles however. Thus
an electron with spin-up and another electron with spin-down can
both be in the state ¢,. The point is that there is only one
such physical state which we could write ¢;¢;. We could also
write the state ¢;¢J but we must not consider both ways of writ-
ing the state otherwise we would be double counting. Thus we
could declare a system of states by declaring an order (spin-up
states are written first and spin-down second, for example). Such
an approach is not useful for algebraic manipulations. For this
we declare the physical state to be described by the antisymme-
tric combination /5(¢;¢; -¢;¢;)and consider the symmetric combin-
ation /§(¢;¢; + ¢;¢;) to be redundant. The advantage of the
scheme of representing collections of fermions by antisymmetric
states only is that we never double count and, if we use algebra
for a state, e.qg. /§(¢:¢2’ - ¢2'¢2) for undeclared spins s and s',
we find that when s = s', the state vanishes, j.e. the Pauli

principle is obeyed. The antisymmetric repfesentation has
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particular advantage when we consider symmetries with respect to
transformations in selected subspaces,e.g. spin, or isospin or
color.' If the transformations are such as to give two part-
icles exactly the same quantum numbers, the antisymmetry of the
total state will guarantee that the function will disappear, i.e.
ensure the Pauli principle is obeyed. Even when there are no
like particles the use only of antisymmetfic states ensures no
double counting.

We showed in the previous section how to construct
antisymmetric states from two spaces (say spin and orbital) by
taking the adjoint/dual symmetry in one space with the standard
symmetry in the other. For more than two spaces we have to use
in principle the Clebsch-Gordan series to construct from one set
of spacéé a function of adjoint/dual symmetry to the (Clebsch-
Gordon summed) symmetry of the remaining functions (see ref. 13

and 14 for an example in the case of six quark states).
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CALCULATION OF ONE-BODY MATRIX ELEMENTS WITH ANTISYMMETRIC

FUNCTIONS

Let ¥ and Wn be two antisymmetric functions of
n particles. And let T = I T(i) be a symmetric one-body

i
operator. We can write

<Y |T|Y > = n<wn|T(n)]¥n> (2.8)

Any antisymmetric function of n particles can be written as
a sum of products of an antisymmetric function of the first
(n-1) particles with the state of the last particle, i.e.

Wn,zaZB Cog Yn-1(@)v(R) | (2.9)

where o denotes the structure of the function of (n-1) parti-

cles and B that of the remaining particle (as selected from

the n-particle states of Wn) and CaB are the ffactional paren-

tage coefficients.

Example:
if v, o= ‘% (oBY-ayB+yaB-yBa+Bya-Bay)
EJ%<<%Y+I§‘?<1+%B)
where

~

oB = % (aB-Bo) etc.

In this case

a8,y = “By,a = Cya,8 * @
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Combining egs. 2.8 and 2.9 we can write

(¥ _;(@)> <yp(B)|T|P(B)>

<¥_[T|¥ > =n ] Cuela® ¥n-1
-
s

8
B

Thus the matrix element of a single-body operator between
n-particle antisymmetric states can be w?itten in terms of
sums of products of fractional parentage coefficients,
overlaps of (n-l)-particle functions and single-particle
matrix elements. The extéension to m~-body operators is now

obvious

< {Tm) ¥ > = (I'I:l)z CyCs <Y pCad ¥ (ad><y (BY|T(m)]¥ (B)>

wﬁere_now (;),isAa biﬁomial coefficient; the CGB now stand
for the fractional parentage coefficients reducing an n-
particle antisymmetric state to sums of products of (n-m)-
particle antisymmetric states with m-particle antisymmetric
states; the overlap function is now for (n-m)-particle states

and we have to know m-body matrix elements for Tm'
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FRACTIONAL PARENTAGE COEFFICIENTS IN FACTORED FORM

If antisymmetric states are constructed in

factored form similar to eq. 2.7 (page 36),e.g.

e 21022
¥ ([£D) -J% § e ([£1(py)e ([E1(E7)) (2.11)
Py

then the fractional parentage coefficients can also be writ-

ten in factored form. Let us consider an example and then

we can write down the general formula.

Example
Earlier we showed that three particle functions of [21] sym-

metry could be written

. _ .2 I f1
d>3([2l](211)) = {; oo B - J@' J—;— (aB*Bala

S % a’s - J% aB oo with oB = J%(awea)
and _
<1>3<[21](121))V= &R o . 5P = 4E (ag-gaw)

\ A3

- Let us consider similar types of states in the Q-space,i.e.

‘Jg a?p --4% ab a

"

Q,([211(211))

and

H
1
&
o]

93<[2’1]<m))
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The antisymmetric state of three particles has the form

¥, = y3 [0,([211€211))0, ([21]T2T) + ¢,([211(121),[211711)]

E‘% [(Jg a8 - J% %8 a)(~ab a) + (aB 0‘)(@ a’py - J%— ab a)l

I

[+ J% (-1)(a?8b)(Ba) - 3 (-1)(aB &) (aa)
(+1) yZ (&8 a®)ab + 1(- Y3 (5B 3B) (@a)]

Clearly T3 has begn written in terms of antisymmetric states
of the first two particles with the last particle having

the Greek/Roman structure (Ba) or (aa) or (ab) or (ca).

The cfp's have factored forms,e.g. (q%)(-lx with each factor
arising from the one-body'reduction of each symmetry. .

Matrix elements of a one-body operator now have the form

N

[% <a2abfa'2a'b’><6alTlB’a'>

(T3[T1[Té) = 3

<aB E%Ia'ﬁ' £T£'><aa|Tla'a'>

+
wiH

P~
V2 <a255h'6'aﬁf><BaITfa'a'>

1
w|

V2 <af £E|a'2 575'><aa[T|B'a'>

}
wi

<&B a2|&T§’ a'2><ab[T|a'b'>

+ .
w|ro

p——_
<GB ab|a'B' a'b'><aa|T|a'a'>

+
w|

continued
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- % Y2 <aB a? a'B' a'd"™><ab|T|a'a’>

- % v2 <aB abla'B!’ a'2><aa|T]a'b'>] (2.12)"

Note in this last expression that even if the primed states
are not orthogonal to the unpriﬁed states, overlaps like

—_— .
<aB|a'B'> = 0 because of Theorem #5 (- states belonging to

different representations are orthogonal - page 20).

Note if T1 is replaced by £ 1 £ 3 then for the diagonal
- i

matrix element <¥_|T|¥,> = 3. [Check that the R.H.S. of eq.
" 2.12 does indeed give this number.] Such a check can always

be made on a final result to ensure that mistakes have not

been made. For a two-body operator note J 1 = ES%:ll.
. i<j
For an m-body operator ) 1= (M.
i<j<keee m

For the general reduction of eq. 2.11 for a one-body operator

we would write each factor

o ([£1(py)) = ) (a[fp]:BI}[f])¢n_1(a[fp]y)¢l(8) (2.13a)
aB
where ( : 11 ) denotes a fractional parentage coefficient
for the symmetry [f] derived by removing one square from the

p1 -row such that the (n-l)-particle state has symmetry [fp](cf.
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Appendix A for notation) and Yamanouchi label y with general

structure &¢. In the example we had

(@2027:8[1211) = 42

(aBL2]:af}[21])
~
(@Bf111:al}[211) = +1 etc.

Similarly

@ ([flpy) = ] (alf 1:p[ILEDR, _, (alf 39w, (b ' (2.13Db)
’ ab

Substituting eqs. 2.13a and b into eq. 2.11 we get

p
Y (LED = ] \/EER CISS LSS MUES AL
5 _

wn_l(aa[fp])¢l(8)wl(b) (2.1w)

where the summation over the (n-l)-particle Yamanouchi label

v in eq. 2.11 yields (with a normali ation coefficient d. )

p
the (n-l)-particle antisymmetric state
- 1 £z
¥ ealf 1) = T e (a[fp]y) f,_,Calf 1y) (2.15)
P ¥y

We have then in eg. 2.14% reduced the n-particle antisymmetric
state to sums of products of cfp's (now in factored form), of

an (n-1) antisymmetric state and the last particle.
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PART III

THE UNITARY GROUPS Um’ SUm

The unitary groups Um is the set of unitary
transformations among m objects. Any unitary matrix can
be diagonalized by means of another unitary matrix S to

yield eigenvalues with unit modulus. Thus

id
u=s1le L, S
14,
e, -
e, i¢
.e mJ
n
_ 1 -1
=1lgar S|
n ‘. S
cl¢m
= exp is™1 ¢l S |
.. s‘ (3.1)
.¢m
bq.
Since S is unitary and ‘., is a real diagonal matrix
_1.b *Om
then S l[ . 1S = H is Hermitian. If ¢, are restricted s.t.

.0
0 < ¢, < 2m then there is a 1:1 correspondence between the

unitary transformation and the Hermitian matrix. When H=0

this corresponds to U = I.

The Hermitian matrix can always be written in

terms of a set of m2 1inearly independent matrices
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_ . 1 .
Gij"‘ = [(Eij +Eji) + l(Eij —Eji)] —(l—'i'ﬁ?

where Eij is the mxm matrix with zeros everywhere except at
the ij element, where there is a 1. Thus we can always write a

unitary matrix U as
U = exp(i g Cy 640 (3.2)

with the arbitrary coefficients Cour When the Ca are very small

we can write

Uaml+iJcCoe (3.3)
o a o

The Ga are known as the infinitesimal operators of Um or the

generating operators.

The property that products of unitary
matrices form a unitary matrix implies that the commutators

of’Ga are expandable in terms of the Generating matrices
- Y - _
[G,,6g] = )X g Oy {N.B. [Eij,EkL] = Ejo8ix Ekjﬁil}
Y : .

If a unitary transformation is suppoéed to act on a system

of n particles then

[
n

U(1) U(2) +++ Un)

exp i ] C (G (1) + G (2) + +=+ G (n)) (3.4)
o ;
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This follows since transformation on the space of different
LY

particles commute. The generdting operators-fof an n-particle

sg?ce are symmetric functions of particle numbers.

The group SU_ of unimodular unitary matrices
is the set of transformations formed from all the generators
of U except the identity. Thus there are m2-1 generators
for SUm which are trace-less. [Prove that the unitary
matrices so formed form a group.]

Because the unitary transformations are made up
of generating operators which are symmetric in particle number
(i.e. tfansform, like thélYoung Symmetry [nl]) it feollows that
the action of fhe unitary transformation on a state Y([flY)
with symmetry [f] and Yamanouchi label Y, yields a state
also with symmetry [f] and Yamanouchi lébel Y (see example
3 on page 37). Thus unitary transformations only transform
among states with the same Young Symmetry. The states of the
given Young Symmetry thies form a basis for a representation
of Um' Thus the U2 transfobmations among two states o and '8
transform among the two particle states with symmetry [2]

° : .
T :

o, J; (a8 + Ba), BB (3.5)

but do not couple these states to the state with symmetry

(111

. V%'(GB - Ba) ' (3.6)
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We can thus use the Young Symmetry label [f]
also to describe the representafions of Um' 0f course the
dimension of the representation [f] for transformations of
Um is not the same as the dimension of [f] for Sn' In the
case of U, given above the [2] symmetry is one dimension w.r.t.

2
82 and can be represented by any one (or combination of) the
states in eq. 3.5. The transformations 9f U2 transform among
the three states of eq. 3.5 (but neither mére nor less). Thus
the three states in eq. 3.5 form a three-dimensional basis

for U,. The one state in eq. 3.6 forms a one-dimensional

basis for U2.
The tableau [f] for SUm denotes a representation
with dimension
fi-f.+j—l

d([fl U ) = i - (3.7)
m 1<i<jem 17

th row of the tableau

where fi is the number of squares in the 1
f. [For the proof of this see ref. 1, eq. 10.25 and Sec. 10.4].
Irreducible bases for Um are also irreducible for the subgroups
SUm, however, representations differing only by columns of m
boxes are equivalent. The representations of SUm are described
by the set of m-1 numbers: (fy-f,, fo=fy +ee,f . -f ).

For SU2 the representations are thus described

by one number which, for this special case, is usually written

S = (fl'f2)/2 - i.e. a spin quantum number.
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Note that from eq. 3.7 the dimension of a

representation of U2 or SU2 is

a([fl SUZ) = fl-f2+1 25+1

- i.e. the familiar dimensions of a state with spin S.



THE CLASSIFICATION OF STATES

Single fermion states are endowed with a number
of properties associated with symmetries in the Universe.
Thus we now recognize that states have an orbital/spin char-
acter, flavor, color - and perhaps other quantum numbers as
yet to be recognized. We wish to construct many-fermion
states in which the character of the sta%e in the separate
space (orbital/spin, flavor, etc.) is manifest. How do we do
this?

First note that collections of fermions can be
described by antisymmetric funections only. Thus we can con-
sider these functions to be méde up of an orbital/spin state
with some Young Symmetry [f] and a combined flavor, color
(and whatever else) - space with dual-adjoint symmetry ;.

We divide the problem in this way because there are only a
finite number of flavors and colors (at least to our knowledge
at the moment) but an infinite number of orbital states. So
whatever restrictions there are in the problem will be deter-
mined by the flavor/color space. Actually it is tempting to
include the spin also with the flavor/color space and I have
done this in refs. 13 and 14, but in the discussion of quarks
within baryons it is perhaps wise to always treat quarks as
relativistic particles, i.e. keep orbital and spin spaces

closely associated. This is the approach I shall follow in

these lectures.
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'In the classification of states, we shall
therefore only consider the possible flavor and color sym-
metries in a symmetry f of the combined flavor/color space.
For the sake of argument we shall consider only a two-dimen=-
sional flavor space and three-dimensional color space. The
combined flavor/color space is thus six dimensional. OQur

classification will be such as to give the reduction

Us(flavor/color) - Uz(flavor) x U3(color)

For one particle we have

Ds"(Dz ng)s (3.8)

where the subscript numbers give the dimension of the Young
Tableau w.r.t. the appropriate unitary group using eq. 3.7.
For two particles in [] ] symmetry in U, we know from our

earlier discussions (cf. eq. 2.6) that the symmetries in

both the U 3

2 and U, spaces have to be the same. Thus

l I21 -+ (l IJa x| I |5)18 +(Bl x 83)3 (3.9%a)

Also following the discussion around eq. 2.7 we can imme-

diately write

B15 = L) - Bg)g * (Bl [ TX)e (3.9b)
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Note that the number of states formed by putting two particles
in a six-dimensional space is 62 = 36 of which 21 are symmetric
(7D and 15 are antisymmetric (EEP. Consider now three
particles. Again the completely symmetric ("] [ ] )and com-

bPletely éntisymmetric states are easy to write down

[T dge » (LI x T T hgduo ( = J8)16 +(§ " @)
_ o h/o

.__2 1

(3.10a)

H, Eoeg) o) ),

(3.10b)

Note that for a two-dimensional flavour space we cannot con-

struct a state with symmetry Ei ~ hence the zero dimension.

We have now to discover the breakdown of the lsymmetry

Y

in the six-dimensional space. Returning to eq. 3.9a we see
that by adding a single square to both the LHS and RHS we

find

CTIx0 = LTI ‘*(E]:Ij+_J )« (o - )

+ 41+ Ei X 4J+ Eﬂ
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Since we know the breakdown of [ | | | for Ug in eq. 38.10a

we can deduce

2, ) T (PR,

- .
. IR E% x ] (3.10¢)
— 2 Lap o . 8fo

We note from the dimensions of [ | [ |, ., Ei of Uy that

62 = 56 + 20 + (2 x 70)

The factor of 2 is needed for the 70-dimensional represen-

tation because ] is 2-dimensional w.r.t. 83}




PHYSICS OF BARYON RESONANCES

Let us now see what these rather abstract state-
ments tell us about the physical world of collections of

quarks.

First we note that the only matter that has
been revealed to us in experiments is colorless matter -
more correctly color-singlet matter. This is matter for

which the Young Tableau come in columns of three squares,e.g.

3-quarks + Eﬂ [111] 6~quarks * [222]

9-quarks * [333] etc.

All these reps are equivalent w.r.t. SU3(color). Picking
out just theée representations. of U3 from eq. 3.10

we can write the classification of Table I. In this

table we have also given the breakdown of the combined
orbital/spin space into separate orbital and spin symmetries.
In this latter case we consider only those symmetries which
exist for a two-dimensional spin space. For the flavor
symmetry we have written the [111] symmetry even though this

will not exist for a two-dimensional flavor space.
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TABLE 1

f(orbital/spin) f(flavor/color) | f(orbital) f(spin)| f(flavor) f£(color)

Let us now rewrite the table using the familiar spin S and
isospin T labels (-assuming now a 2-dimensional flavor

space)



f(orbital/spin) f(flavor/color) f(orbital) Spin | Isospin Color

[3] 1 [3] 3/2 | 3/2 [1%]
(211 1/2 3/2 [13].
[21] [21] (31 172 | 172 1%

[21] '3/2 1/2 [133
[21] 1/2 1/2 [133
[13] 1/2 1/2 [13]

Now we can begin to understand the classification of baryon
resonaﬁces. If three quarks are in s orbits the orbital symmetry
is [3] then the only spin and isospin labels are (% %) and
(% %) which we identify with the A and N.

If one quark is in a p stéte (i.e. 32p config-

uration) we could have

orbital symmetry =}[3] (ST) = (% %), (% %)
, - (L3 31 11
[211 (ST) = 3 2), (3 2), (5 2)

The first set with orbital symmetry [3] are spurious states
of excited centre of mass motion. |

[The centre of mass co-ordinate is R =1z ri,which is sym-
metric in all particles. Thus multiplyin; an 53 state by R
we get a state with l-quantum excitation but still with [3]
symmetry (using example 3 on page 37). The one-quantum

excitation 1s clearly on the centre of mass. Hence the

52p[3] state ig spurious.]
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Thus the lowest negative parity resonance is expected to

have [21] orbital symmetry with classification

L S J T
(Szp)[21] 1 1/2.  1/2 3/2 (2)
3/2
1 1/2 172 1/2 (N)
' 3/2
1 3/2 172 1/2 (n)
3/2
5/2

Just this number of states have been observed in the low energy
N/A spectrum and Isgur and Karl (ref. 12) have shown this space

to carry the properties of the observed states.
(Exercise - classify the two-quantum states. Beware of
spurious states of both [31] and [21] orbital symmetries!]

The calculation of nucleon/delta resonances can

be done directly using relative coordinates

Py = V1/2 (rl—rz)
Py = V/1/86 (r1+r2-2r3)

which was in fact the approach taken by Isgur and Karl (ref.
18). TFor example the state having os excitation on both the

Py and 0y coordinate in an oscillator has the structure
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exp -{(012+022)/2b2}with oscillator length parameter b.
Clearly this state is symmetric with respect to P12 and P23
and hence belongs to the [3] symmetry of SQ. A p—orbit on
the o; coordinate has the structure wi n o; exp—(+p12+022)/2b2.
Clearly wl belongs to the [11] fepresantation of 82, wQ the
[2] representation and ¥is ¥, carry the [21] representation
with Yamanouchi labels (121) and (211), respectively. The
states are therefore identical to the internal structures of
the single-particle state 52p of [21] symmetry.

The use of internal coordinates is straight-
forward and one might think should be preferred. When it
comes to using relativistic mechanics the independent
particle picture has to be used, however, despite the
difficulties associated with the definition of the centre of
mass. My own approach here is to select states, using the
Symmetry classificatioh, such that they are non-spurious in

the non-relativistic limit.



Notation

£

Y=([pgly)

£
P(qu)

£f,fr £
or Y,Y',Y"
ete.
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APPENDIX A
DEFINITION AND NOTATION

a Young Tableéu for a symmetry of Sn’ the Sym-
metry group of n particles.

a Yamanouchi labels’g for the Young Symmetry f.
a Yamanouchi label in which the nth particle is
in row p of f, the (n-l)-th particle in row q and
the remaining particles have a Yamanouchi distri-
bution y. The labelling refers to the standard-
Young-Yamanouchi representation (cf. below).

a Yamanouchi label for the diagonalised Young-
Yamanouchi-Rutherford representation below

th and (n-l)th particle has definite

in which the n
(but unspecified) symmetry. Where the symmetry is
to be specified we write Pq or pq to denote the
symmetric or antisymmetric pairing.

a Young Tableau of Sn-l (Sn—2) derived from the
tableeu f of Sn by the removal of a square in

the -h (and qth) row(s).

tt . ¢ Dleau of the dual symmetry to f obtained by
interchanging rows <nd columns.

when used in the same expression refer to orbital,

color and isospin-spin spaces, respectivzly.
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Definitions

. . 9
l. Standard Young-Yamanouchi representation  for the trans-

position P in the symmetry f is defined as follows for

n,n-1
the three possible types of Yamanouchi labelling:

case 1 for p=q P_ | £(pay)> = +1|f(pqy)>
n,n-1

case ii for p>q with Y=(pqy) existing but not ¥=(qpy)

Pn,n-l|f(qu) = -1|f(pqy)>

case iii for p>q with Y=(pgy) and (qpy) existing

——

o1 ~1
Pn,n—1|f(qu)> f - i[f(pqy)> + KHE—— | f(qpy)>
P |£Capy)> = D=L e(pgy)> + L £(qpyd>
n,n-1 u u q

Here u is the axial distance (number of lines crossed counting

along rows and columns) between the nth

particle and (n—l)-th
particle in the Young Tableau f.

In general we write

P | £(pay)> = a§q|f<pqy>> + nglf(qpy)> (A-1)

ny,n~l

with a;q and ng taking the above values depending on the

situation (e.g. ng = 0 in cases 1 and ii).

2. Adjoint Young-Yamanouchi representation for the transposi-

tion P in the symmetry f is the same as that for the

n,n-1
standard representation except that all the ng coefficients

are negative.
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3. Diagonalised Young-Yamanouchi-Rutherford representation

is such that the last pair of particles have definite symme-

try. In terms of the standard representation we may write

for the three cases:

Case i | £([pqly)> | £(pay)> -

1

Case 1ii | £CLpgly)> | £(pay)>

(Vu+1l |£(qpy)> + vu-1|£(pqy)>)/v2u

Case iii (p>q) [f([pqly)>

[£CRy)>

(/u=-1]f(qpy)> - Vu+1|f(pay)>)/V2u

In general we write

| £(Lpaly)> = qulﬂpqyb + 6£q|f<qpy>> (A=2)

with the above definitions for y and § depending on the

situation.
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_ APPENDIX B
CLEBSCH-GORDAN COEFFICIENTS FOR THE SYMMETRIC GROUP S

With the notation of Appendix A, a state |[f"Y">
can be constructed from two sets of states |[fY> and |f'Y'> by

the Clebsch-~Gordan expansion

[£my"> = § S(fYy £'y'[£"y™) [fY>{£r'Y'> (B-1)
Yy!
where S(fY f'Y'|£f"Y") is the Clebsch-Gordan (CG) coefficient.
Hammermesh (ref. 1 - Section 7.14) has shown how the CG
coefficients for Sn can be related to these for Sn-l by a

matrix K. With Y = (pqy) (cf. Appendix A) we may write

S(f (qu) fl(plqul)lf"(P"q"y"))

K(E p £1p'[£7p") S(E (Qy)EL, €'y ) £ Camy™)

K2(f(pq)f'(p'q’)If"(p"q")) S(f__ y f! . y']fan" y") (B-2)

pq p'q
t equal’ty is as given by Hammermesh. The second
followr by a second application of the theorem

7/

1..ating the CG for Sn_1 to those for Sn—2 and the definition

Kp(£(pa) £'(p'q")[£"(p"q") = K(£ p £'p'|£"pMIK(E, @ £],a"[£2,9") (B-3)
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Hammermesh also shows, with the notation of Appendix A,

that the K matrices may be calculated using the following

relationships:
f £ £
KCE p £1p'£7D") KCEL a4 £2,0" 500" Capg apigr = agugn)
+ K(f p quvlfnPN) K(f_ ¢ fl'pl‘f""qn) af Bf: ,
P q P Pq "P'Q
+ K(f q f1pl|fnpn) K(f_ p f’vQ'lf"nqn) Bf af: .
q P P Pd P q
+ K(f q £'q'|£7q") K(£_ p-£!,p' |£2,a™ 85 ) ,
q q _P Pd "P'Q
= KC(£ p £'p'|£"q"™) K(£_ q £',q'|£",p™ Bl. (B-1)
P P q P'qd

(with o and 8 defined in A-1) and the ortho-normal condition

I KCE p £1p7[E"DT) KCE p £1p! [EEMSCEN, FY,)
’ P
Pp’ (B-5)

= G(f"f") 8 (P"E")

The above expressions allow the determination of K relating
the CG of Sn to Sn_1 once the K relating the CG of Sn-l to
S,_, are known. Since (trivially) K(11 11{11) = 1, all

K matrices can be determined by iteration. The K, matrices

being products of K matrices (cf. eq. B-3) are thus also

~ determined.
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The determination of the K matrices above is
for the standard Young-Yamanouchi represehtation. We
define a K matrix for the diagonalised Young-Yamanouchi-

Rutherford representation by
K(f[Pq] fl[quI],f"[P"q"])

f" f" ~
LU + 6 "t

£ £ 2 £ £ 2 '
P P ) )
)y 1q1 ) Opngr * Spngn Fpngn

+ 8 + 8 )
Pq pg pq” 'p'q’ p'q' 'p

x K2(f(PQ) f'(p'q')lf"(p"q"))

with %pq K,(£(pq) £'(p'q’)|£"(p"q")
= K,(£(gp) £'(p'q")|£"(p"q")) etc.

and the ¥ and § defined in eq. (A-2).

The elements of the K matrices required in the
quark-cluster problem are listed in Table § of ref. 13. Note
that the K matrices have the property that all elements are
zero unless the product of the symmetries of [pgl and [p'q']
is equal to the symmetry for [p%q"].

The K matrices relate the CG coefficients of §_

to those for 5 _, in the d-YYR representation.
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