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Abstract : 

We propose a concrete representation of leptons and quarks In differb t generations 

In the geometrical approach to the rishon model where rishons behave as the fundamental 

representations of the SU(3) S SU(3) group. The model allows a unif i td descriotion 

of both hadronic and leptonic decays of elementary particles. 
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1 . INTRODUCTION 

The rishon model was introduced as a simple way of explaining the spectros­
copy of quarks and leptons. However, in the absence of a dynamical scheme the model 
raised more questions than it answered. For instance, it was very difficult to understand 
the non-existence of spin 3/2 leptons and quarks and/o1* composites of wo rishons and 

2 
one antirishon, the statistics obeyed by rishons, etc. Recently, In a sen- cf papers , 
Harari and Seiberg have supplemented the original proposal with a dynamical theory 
which explains most of the questions listed above. They start with a local luge theory 
based on the group SU(3) C ® SU(3) H , which is assumed to be an exact s/mmetry of 
nature at all levels. One assumes also that the scale parameters obey A_ « A,, . AM 
rishons are massless, spin 1/2 objects, obeying ordinary Fermi statistics. The rishons T 
and V belong to the (3,3) and <3~,3) representations of SU(3)_ » SU(: H . It is 
further assumed that all non-singlets, whetrier in color or hypercolor Income • ̂ nfined. 
Only hypercolor singlets survive at energies below A H and only color singlet? -jrvive 
at energies below A-, , where they will all be approximately massless compar J to the 
corresponding scales. Any other multiplets are supposed to acquire masses of the order A. 

One central question that must be answered by any mode! which reproduces the 
observed lepton and quark spectroscopy is the question of generations. Apart from the 
rather trivial statement that higher generation» are excitations of the first one, there 
are only two attempts to explain the existence of generations in the rishon model. 

g 
Harari and Seiberg , based on the Identification of a broken global axial symme­

try, propose that higher generations ar<> different combinations o' seven-rishon states 
the 3 rishons of the first generation plus a T T V V composite. Diffe-ent generations 
are distinguished by the value of an axial charge X . 

4 
A different approach was recently considered by Gelmini , who assumes that tho 

distinction between generations is given by the different color structure of the original 
3 rishons : the physical states (leptons and quarks) are obtained by combining rishon-
antirishon pahs or gluons with the 3 rishons in order to obtain color singlets (leptons) 
or trip'jts (quarks). Both these approaches are too general yet to explain the processes 
in which the generation number is not conserved. 

C 
A different development of the rishon model has been advanced by one of us . ^$ One constructs rishons as vectors in a color spa^e and then one proceeds to construct 

objects which are either singlets (leptons) or triplets (quarks) in color and which are * 
composed out of 3 rishons. Using the graphical techniques of vector algebra a compre- f 
hensive study of tho first few generations has been made and the decay modes of quarks of. 
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and leptons have been investigated. One drawback, however, was that in the absence 
or hypercolor, this model suffered from the same limitations as the original Harari-
Shupe conjecture. 

In the present paper we propose a new, Improved version of the geometrical ap­
proach that takes into account both color and hypercolor. It gives an elegant and unified 
description'of both hadronic and leptonic decays of elementary particles. 

The rishons are defined by their transformation properties under SU(3)„ 8 SU(3) H . 
We have the following assignments : Ts (3,3) , Ttf- (3,3") , V e ( 3 , 3 ) and 
V f ( 3 , 3 ) . Sine» all rishons belong to the fundamental representation of a SU(3) we 
can interpret the rishons as vectors (rank-one tensors) in the color space and vectors 
in the hypercolor space. Graphically we distinguish the representation 3 from T by 
attaching to each line a direction (arrow). We denote a vector in color space by a 
straight line and a vector In hypercolor space by a dotted line. Our conventions are 
shown in the graphical representations of the rishons in Fig.1 : 

T » 

Fig. 1 

It will be convenient to work directly on the graphical representations of the 
rishons in constructing leptons, quarks and hadrons. We therefore present a short review 
of the graphical techniques of spin algebras. 

2. GRAPHICAL TECHNIQUES ° 

We use a graphical technique analogous to the one currently employed in the 
analysis of angular momentum algebra and which is just a visualization of explicit 
analytic calculations. There exists in fact a bljection between the graphical method and 
the analytic one. For instance, the summation over repeated indices rule is graphically 
translated as the rule in Fig.2 

Fig. 2 
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Thus, any diagram without free lines ( i .e. all lines start and end in a vertex) 

will be an invariant in the corresponding space (i.e. will belong to the identity repre­

sentation}. Similarly! when one takes the tensor product of two representations 3 and 

3~ in the color or hypercolor space, the singlet in 3 « Ï = I < I is represented by 

a closed diagram (see Fig.3) 

K 
Fig. 3 

The notation ô implies that the only dependence of the considered expression on color 

indices is given by the free lines representing a vector and a covector (which transform 

respectively as 3 and 3" ) . The closed diagram corresponds to the color singlet while 

the remaining tine is just ° c e i • 

The third fundamental rule of the graphical method refers to the decomposition of 

the product of two identical representations : 3 9 3 = 3~ + 6 (see Fig.4 ) 

Fig. 4 

The lines representing tensors of rank 1 , X can be a tensor of rank 0, 1 or 2 . 

Since we are interested only in the state belonging to 3" ( i .e. we work only with vec­

tors) and not in the one corresponding to 6 ( X = 0 and x s 2 ) we shall omit the 

sum over X and always consider that X = 1 . 

We note that fre 3-vertex diagram represents just the Clebsch-Gordan 

coefficient in the tensor decomposition and, since all our tensors have rank 1 , 
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As a consequence of the preceding rules one obtains without difficulty trie results 

shown in Fig.5 : 

X 7* <; 

> - < 

Fig. 5 

We shall refer to the results in Fig. S as the pinching rules. 

3. CONSTRUCTION OF LEPTONS, QUARKS AND HADRONS 

Our model, by construction, will contain only singlets or triplets in either color 
or hypercolor. Following Harari and Seiberg, we assume that only hypercolor singlets 
have masses in the range accessible to present experiments and therefore we shall 
ignore hypercolor triplets. We shall also avoid the problem of bosons made up of rishons 

which are not quark - antiquark combinations. 

The simplest fermion, built out of 3 riahons, which belongs to the (1,1) represen­
tation will involve a mixed product in both color and hypercolor. That is, one takes the 
vector product of two rishons and than the scalar product of the dirishon with the third 
rishon. The graphical representation is shown in Fig.6 . It is obvious that the method of 
construction of this object is just the projection on 1 In the product 3 8 3 8 3 (or 
3 9 3 ® 3 ) . We stress that in every 3-vertex, whether in color or ir. hypercolor, the 
three arrows must all point the same way with respect to the vertex. By definition, one 

can only take vector products of vectors belonging to the same representation and scalar 
products of vectors belonging to conjugate representations. The object just constructed is 
identified to a lepton. All the arguments presented in Ref.2 about the spin, mass, etc. 
and in Ref.5 about Internal quantum numbers apply equally well here. 



5. 

Depending on the directions of the arrows, we identify the following four leptons 

»* . ( T T T ) , a" • ( T ï f ) , v g . ( V V V ) and v e « < V V V ) . As an example, 

Flg.6 shows the a* and v e . 

Note that an isospin-doublet corresponds to identical color line-orientation and 

to different hypercolor line-orientation 

Fig. 6 

We introduce next the graphical representation of vector bosons. Since w. shall 

assume that all decays can be obtained by applying the pinching rules, we cons: ."uct vector 

bosons by joining two leptons and applying the reverse of the pinching rule. A fpw examples 

are given in Fig.7 t where we used the reverse of the pinching rule on the color lines, 

and they correspond respectively to y ( Z c ) , W" and W + 

y» « — k .*—• K S—• k 

Yi*h±—-*——i > W - 4' •— 1 > W * . <S-~~4—.—,—_:> 

A *— 

* 
y 

—K x 

X y 

Fig. i 

- Ï 

First we note that it fs not possible to construct in this way an object which 

separates, when applying the pînching ruie, into e~v or e + v . In other words, 

interactions between leptons mediated by vector bosons will conserve the lepton quantum 

numbers. Second, our use of the label " vector - boson " is not entirely justified. 

Indeed, these diagrams determine only the internal quantum numbers of the bosons, not 

their spin. As we shall see later, certain scalar objects will have the same diagramaticai 

representation. 

Out of three rishons one can construct only one other kind of fermion, which 

will be singlet in hypercolor and triplet in color. This object, to be identified as a quark, 

is constructed by taking a mixed product in hypercolor and a double vector product in 

color. Two examples are shown in Fig.8 ; 
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uc - * : :^> ,. <£>\ 

Flg.B 

The free color line indicates that u and d are triplets in color while u and 

d will be antitriplets. 

Hadrons built up of two quarks will be constructed by taking the scalar product 

(in color space) of the two quarks. Since one can only take scalar products of a triplet 

with an arititriplet, one sees that all such hadrons will be made of a quark and an anti-

quark. As an example we present the graphical representation of a M 2 = i (p ) 

in Fig.9 

C ' S Si 

N> 
N -

- ^ 

Fig. 9 

An important observation that can be made at this point is that the charge of 

the vector bosons represented in Fig. 7 , does not depend on the orientation of the color 

lines. This fact will enable us to obtain the coupling of the vector mesons to quarks. 

First, we make the assumption that all structures of tho kind shown in F ig .7 , which 

differ only by the orientation of one or more color lines, represent the same object. This 

is a natural consequence of the fact that internal quantum numbers are not changed when 

we change the arrow on one color line. For instance, all four diagrams in Fig. 10 re­

present a W" or a p~ 

<—-•»-
/ 

- i — 3 > 

\ 

1%.'-) ( d , TT) fû\d) <e~,u e) 
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in the second and third diagrams, applying twice the pinching rule on two lines, 
as shown in Fig„5 , we easily identify the 7T and d quarks. 

In general, in any rishon model, if we couple W~ at one end to leptons 
( T T T - V V V ) and at the other end to quarks ( f f v - V V T ) , a rearrangement 
of the rishons is necessary in between the two couplings. In our model this is obtained 
by simply changing the arrow on one color line. In the absence of a dynamical theory, 
which would allow calculating the effect of flipping the arrow on a color line, one 

could roughly associate a factor e m / f with each flip. In addition to vector meson 
dominance, which hers follows from the identity of the diagrams describing the photon, 
p , u , etc , we predict also that W* (W~) will be dominated by p * (p ~) at 

2 2 
Pu» B m . We stress again that spin is not incorporated in our approach and the 
diagrams in Fig. 10 can equally well describe objects of spin 0 . 

We go next to the construction of higher generations of leptons and quarks. We 
assume that higher generations are described by more complicated color structures. In 
principle, the hypercolor structure could also be more complicated, however, since hyper­
color forces are restricted to a much smaller range, the different hypercolor configurations 
will fluctuate rapidly into each other, destroying the separate identity of each configuration. 
This point has been emphasized atso in Ref.4 . 

The simplest way to increase the complexity of a color structure would be to 
introduce insertions like the one in Fig.11 on color lines. But, it is easily seen applying 
the pinching rule on two lines, that one bubble is equivalent to an arbitrary number of 
bubNes : 

Fig, 11 

We will therefore assume that the kind of insertions shown in Fig.11 can be made 
to appear or disappear on any color line, without changing the character of the object to 
which the line belongs. In other words, we will consider only structures which are " one-
line irreducible " . The simplest one is the " Mercedes star " shown in Fig. 12. 
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We identify the four leptons, corresponding to the different possibilities of arrow 
orientations on color and hypercolor lines as |i , u~ , v and 7 . The four quarks 
belonging to the second generation are shown in the same figure. 

Fig. 12 

The insertion of the Mercedes star bubble could have been done also on the lower 
vertex of the diagrams in Fig.B . One can either assume that these two possibilities are 
identical, and use either of them as convenient, or take a linear combination of the two 
when defining states belonging to the second generation. In this paper, wa shall assume the 
former to be true. None of the results to be derived here will depend on this choice. 

Finally, we give in Fig. 13 the structure of the leptons and quarks belonging to the 

third generation 

Fig. 13 

One can continue and construct higher generations. In our model there is no limit 
on the number of generations, it is however conceivable that a dynamical calculation will 
show that some color configurations might be highly unstable and thus limit the number 
of generations. 



4. DECAYS OF ELEMENTARY PARTICLES 

Wa are at this point ready to consider the decays of leptons and hadrons. But 
before doing that we have to discuss certain constraints on the way we use the pinching 
rule, which are imposed by the physical fact that the vector bosons couple to lepton -
antilepton (or quark - antiquark) pairs of th'> same generation. 

>-< - x • >-<n* 
Fig. 14 

Diagramatically, the constraint is shown in Fig.14, where i denotes the struc­
ture associated with the leptons of the i-th generation. By requiring that the two 
vertices must belong to the same generation we guarantee that the vector bosons do not 
couple to two teptons (quarks) of different generation. Indeed, using the pinching rules 
in Fig. 14 we get 

v—.—r-

^ 1 — , — i _^ 

*1 • K 

£ < 

2 * 

Fig. 15 

The sum over i (number of generations) will be naturally cut-off by 
energy-momentum 6 - functions. 



10. 

We proceed now to discuss the decays of known leptons and hadrons. We consider 

first decays in which the generation number is conserved. Every color line can be inter­

rupted by a hypercolor line without affecting the quantum numbers : this is equivalent 

to creating (or annihilating, if we reverse this process) T T or V V pairs in a 

manner which mattes them obviously irrelevant in counting the quantum numbers. Further­

more, all decays will be obtained via the process shown in Fig. 16 , i.e. by pinching on 

the hypercolt : lines 

u decay : 

Fig. 17 exemplifies the above rule in the case of p decay 

< > 

Fig. 17 

The figure shows that u —e> v e v The decay u » v e~v y can be 
9 li e * ^ u e 

obtained by applying once again the pinching rule. Fig. 16 shows that in general, whenever 

we have a charged particle in the final state we also have the same final state plus a 

photon (or an e e~ pair, if the photon is off mass-shell). 

T decays 

Fig.16 implies z~ —•» v W" and W" 

Reversing the arrow on one color line in the W* 

to tT d . Thus, we get T ~-^-V a~ and T~—*• v 
T r T 

on the û" d structure one gets the other decay modes 
- mm 0 - - + -

i —* - p x v , i —*»> « x t v , etc. 

—•> e 7 or W —•«*• u v e u 
we obtain the structure corresponding 

• v x~ . Applying the pinching rule 
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« decays 

Fig.18 shows the decay • * 

» — > — < - — i • > 

Using the reverse of the pinching rule and flipping the arrow on the color line 
as in Fig. 19 one obtains tfie decays c —* • 11 v , e v , JI v y and e v 7 . 

Fifl. 19 

The ratio of the * » p v versus the f —». e v decay rates is well uixjerstood 
as a mass effect. A standard calculation gives 

r (1 •— ev ) 
r (1 — | V ) 

, 2 2 , 2 
( m « - m e ' 
( m 2 - m 2 ) 2 ' 

1.28 10" 

The diagram in Fig.ig describes also • » T T > T O e~ , etc. Note that the 
decay of 1 into two photons rather than one is implied by charge conjugation, 
which is not contained in our diagrams, in general, all conservation laws related to 
external symmetries (C, P, T ) will have to be considered separately, since they are 
not included in the diagrams. 
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K decays 

Tne diagram in Fig.18 applies when one vertex is of second generation and shows 
that tha only decay possible is K ° » K * i ' « . Due to the small phase space 
available, this process is very rare. One expects a branching ratio similar to the one for 

i * » i ° a* v § , i .*. about 10" 9 . 8 

These examples should suffice to convince the reader that all generation number 
conserving decays can be obtained via the mechanism shown in Fig. 16 -

Let us now consider decays in which the generation number is not conserved, rhô 
mechanism through which a jump is mada from one generation to another Is the following 
a pinching on two hypercolor lines is made In a configuration in which the pinching rule 
does not normally apply. An example will explain batter what this means. Consider the 
decay |i » e f . The diagrams in Fig.20 show how p becomes an off-shell e 

^ . ^ 1 _ . . > 

Fig. 20 

2 2 
The electron which is now off mass shell < p = m ) will decay into an electron 
and a photon through the mechanism in Fig.16. We see that Die pinching rule was 
applied on two fines which do not obey the conditions under which the rule is usually 
applied the two lines do not separate two blocks, at least one of which is closed. 

A possible explanation of the smallness of generation number breaking decays 
compared to generation number conserving decays can be given in the context of a naive 
interpretation of the color and hypercolor lines as strings of different length. The hyper­
color lines are to be viewed as very short strings (of the order of A u " ) while the 

-1 color lines are much longer (of the order oi A . ) . The pinching rule can be applied 
to two or three hypercolor lines when they are within a distance A H ~ of each other. 
It is obvious that the probability of this happening is much higher when the hypercolor 
strings are near the ends of the color strings, since these are already kept in a small 
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region by the existing hyporcolor strings (see Fig. 16) . On the other hand, the two 
color strings on which the hypercolor strings appear in Fig.20 can be found in a much 
larger region end the probability cf them being within A H ~ of each other is very 

small. In the absence of a dynamical theory which could lend support to the above 
picture, we present it as a rough guide to guesstimates of relative branching ratios. 

Continuing our discussion of the u decay we see that Fig.20 gives, by applying 
the pinching rule on the off-shell electron,the decays M > *y , u ——•> « • " • 

and u » e T T - T i t suppression of the u — • » e v decay with respect to the 
other two can be understood as a spin effect it Is the only decay which requires a 
spin flip. 

T decays : 

Depending on which lines we choose to make the two-line pinching on, the t 
becomes either an off-shell u or an off-she!1 e . Either then decays into an on-mass-
shetl lepton and a photon (or e + « ~ ) . 

K decays : 

Consider the decay of the K* when tho second generation vertex inside the 
r quark becomes a first generation vertex, the structure obtained is that of a u d 

pair, having a mass equal to the K mass. This object decays, via the mechanism in 
-.. « - . . . - t o + + - + + o + o + Fig. 16 into a • or s s t , u v , e v , s u v . s e v „ , v ' u e ' u e 
etc. All the decay modes can be obtained by choosing all possible orientations for the 
arrows on the color and hypercolor lines. 

0 decays 

There are three generation number conserving decays first D*—*• D° e* v 

and D * — « • K 5 X * where X* = u* v , e* v , p * , « + , • * » ° , etc. There is 
enough phase space also for D — » • K X . The third decay is obtained by applying 
the pinching rule simultaneously at both ends of the D + structure : one obtains 
D* » K~ X X + where X + is as above. Finally, all the other hadronic and semi-
leptonic and leptonic decays can be accounted for using the rule in Fig.20 . 

Next, we mention the process of pinching directly on color lines, without hypercolor. 
The structures thus created are reabsorbed at another vertex. An example is given in 
Fig.21 . These processes are for instance responsible for K° - K^ mixing, o ' î - e » K * K " , 
etc. • 
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>< - >e< • >e< - >< 
Fig. 21 

Finally, if we construct baryons by taking a mixed product in color space of three 
quarks, we obtain the structure In Fig,22 

Fig.22 

Using the previous rules , one can easily account for all known decay modes, hadronic 

and semi-leptonic of the baryons. 

5. CONCLUSIONS 

We note first that, since spin and all external quantum numbers are not accounted 
for in this approach, it is not obvious from the diagrams whether a u 6~ structure re­
presents a « or a p , or whether u decays into 2 i *s or 3 * * s . All the 
constraints coming from conservation laws based on external symmetries must be added 
by hand to decide on the spin-parity-charge conjugation properties of the decay products. 
This situation is very similar to the one existing when quark diagrams were introduced. 
Indeed, quark diagrams, supplemented by the OZI rule, allowed the description of all 
hadronic decay modes as far as the internal quantum numbers of the products was 
concerned, but spin had to be put in by hand. Our scheme is entirety analogous to quark 
diagrams. It allows an understanding of which decays are possible and which are not and 
a rough qualitative estimate of branching ratios. The main advantage with respect to 
quark diagrams is that it allows us to find not only the hadronic decays but all the semi-
leptonic and leptonic ones as well. We present it as further evidence that the rishon 
model can do more than just provide a mnemonics for the spectroscopy of quarks and 
leptons. 
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Figure Captions 

Fig. 1 The graphical representations of the rlshons T and V . The rishon T ( V ) Is 
obtained graphically by changing the direction of arrows on the lines representing the 
rishon T ( V ) . 

Fig. 2 : Graphical rule for summation over repeated indices. 

Fig. 3 : Graphical representation of the tensor product of the representations 3 and 
in a closed diagram. 

Fig. 4 : Graphical representation of the tensor product of the representation 3 in a 

closed diagram. 

Fig. S : Graphical representations for 3 9 3 9 3 and 3 « 3 ® 3 . 

Fig. 6 - Graphical representation of the leptons e + and \> 

Fig. 7 : Graphical representation of the y (Z ) , w~ and W + . 

Fig. 8 : Graphical representation of u and d . 

Fig. 9 : Graphical representation of x ( p ) . 

Fig. 10 : Equivalent graphical representations of W~ . 

Fig. 11 : One-line reducible insertions on color lines. 

Fig. 12 : Simplest irreducible diagram characterising the leptons and quarks of the 
second generation. 

Fig. 13 : Graphical representations of the leptons and quarks of the third generation. 

Fig. 14 : Graphical representation of the constraints Imposed on the pinching rule by 
generation number conservation. 

Fig. 15 : Generation number conserving pinching rules for vector bosons. 

Fig. 16 : General rule for generation number conserving decays. 

Fig. 17 : M decay . 

Fig. 18 : K decay . 

Fig. 19 : • decay . 
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Fig. 20 : Generation number breaking mechanism for the decay 11 a et • 

Fig. 21 : Example of pinching directly on color lines. 

Fig. 22 : Graphical representation of a baryon. 


