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Abstract :

We propose a concrete representation aof leptons and quarks in differc t generations
in the geometrical approach to the rishon model where rishons behave as the fundamaenta!l
representations of the Sl_l(:!)c ® su(a)H group. The mode! allows a unified descriotion
of both hadronic and leptonic decays of elementary particles.
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1. INTRODUCTION

The rishon model was introduced 1 as a simple way of explaining the spectros-
copy of quarks and leptons. However, in the absence of a dynamical scheme the model
raised more questions than it enswered. For instance. it wes very difficuit to understand
the non-existence of spin 3/2 leptons and quarks and/or composites of wg rishons and
one antirishon, the statistica obeyed by rishons, etc. Recently, in a seri. cf papers 2 )
Harari and Seiberg have supplemented the original proposal with a dypamical thaory
which explains most of the questions listed above. They start with a local 1uge theory
based on the group SU(::I)c ] SU(.’!)H , which is assumed to be an egact symmetry of
nature at all levels. One assumes also that the scale parameters obey Ag << Ay - All
rishons are massless, spin 1/2 objects, abeying ordinary Fermi statistics. The rishons T
and V belong to the (3,3) end (F,3) representations of SU(S)C ®» Suc q - Mt
further assumed that all non-singlets, whether in color or hypercolor hncome : cnfined.
Only hypercolor singlets sufvive at energies below AH and only color singlets irvive
at energies below A where they will all be approximately massless compar 4 to the
corresponding scales. Any other multiplets are supposed to acquire masses of the ardera.

One central question that must be answared by any mode: which repraduces the
observed lspton and quark spectroscopy is the question of generations, Apart from the
rather trivial statement that higher generations are excitations of the first one, there
are only two attempts to explain the existence of generations in the rishon model.

Harari and Seibarg 3, based on the Identification of a brokea global axial symme-
try, proposs that higher generations are aifferent combinations o’ seven-rishon states
the 3 rishons of t?}e first generation plus a T Fvv composite. Different generations
are distingu.shed by the value of an axial charge X .

A different approach was recently considered by Gelmini 4, wiio assumes that the
distinction between generations is given by the different color structure of the original
3 rishons : the physical states (leptans and quarks) are obtained by combining rishon-
antirishon paiys or gluons with the 3 rishons in order to obtain color singlets (leptons)
or trip'sts (quarks). Both these apnroaches are too general yet to explain the processes
in which the generation number is not conserved.

A different development of the rishon model hes been advanced by one of us5 -
One constructs rishons as vectors in a color spase and then one proceeds to construct
objects which are either singlets (leptons) o¢ triplets (guarks) in color and which are
composed out of 3 rishons. Using the graphical techniques of vector aigebra a compre-
hensive study of the first few generations has been made and the decay modes of gquarks
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and leptons have been investigated. One drawback, however, was that in the absence
of hypercolor, this model suffered from the same limitations as the original Harari-
Shupe conjecture,

In the present paper we propose a new, improved version of the geometrical ap-
proach that takes into account both color and hypercolor. It gives an elegent and unified
description- of both hadronic and leptonic decays of el ry particies.

The rishons are defined by their transformation properties under SU(S)C e su(a)H .
We have the following assignments : Tg(33), T« (3.3), Ve (5,3) and
Ve (3,5). Since all rishons belong to the fund I repr ion of a SU(3) we
can interpret the rishons as vectors (rank-one tensors) in the color space and vectors
in the hypercolor space. Graphically we distinguish the representation 3 from T oy
attaching to each line a direction (arrow). We denote a vector in color space by a
straight line end a vector in hypercoior space by a dotted line. Qur conventions are
shown in the graphical representations of the rishons in Fig.?
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Fig. 1
it will be convenieit to work directly on the graphical representations of the
rishons in constructing leptons, quarks and hadrons. We therefore present a short review
of the graphical techniques of spin algebras.

2. GRAPHICAL TECHNIQUES 8

We use a graphical technique analogous to the one currently emplayed in the
analysis of angular momentum alaebra‘s and which is just a visuelization of expficit
analytic calculations. There exists in fact a bijection between the graphical method and
the analytic one. For instance, the summation over repeated indices rule is graphically
translated as the rule in Fig.2 :
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Thus, any diagram without free lines (i.e. all lines start and end in a vertex)
will be an invariant in the corresponding space (i.e. will belong to the identity fepre-
sentation). Similarly, when one takes the tensor product of two representations 3 and
3 in the color or hypercolor space, the singlet in 3 @ F =148 s represented by
a closed diagram (ses Fig.3)

[T C

Fig. 3

The notation & implies that the only depend of the idered expression on color

indices is given by the free lines representing a vector and @ covector (which transform
respactively as 3 and 3 ). The closed diagram corresponds to the color singlet while

the remaining fine is just acc' .

The third fundamental rule of the graphicai method refers to the decomposition of
the product of two identical representations : 3@ 3 = T +6 (see Figd)

Fig. 4
The lines representing tensors of rank 1, X can be a tensor of rank 0, ¥ or 2.
Since we are interested only in the state belonging to 3 (i.e. we work anly with vec-
tors) and not in the one corresponding to 6 (X =0 and X = 2) we shall omit the
sum over X and always consider that X = 1.

We note that ihe 3-vertex diagram represents just the Clebsch-Gordan

coefficient in the tensar decomposition 7 and, since all our tensors have rank 1 ,
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As a consequence of the preceding rules one obtains without difficuity the results

shown in Flg.5 :

We shall refer to the results in Fig.5 as the pinching rules.

3. CONSTRUCTION OF LEPTONS, QUARKS AND HADRONS

Our model, by construction, will contain only singlets or triplets in either color
or hypercolor. Following Harari and Seiberg, we assume that only hypercolor singlets
have masses in the range accessible to present experiments and therefore we shall
ignore hypercolor triplets. We shall also avoid the problom of bosons made up of rishons
which are not quark - antiquark combinations.

The simplest fermior, built out of 3 rishons, which belongs to the (1,1) represen-
tation will involve a mixed product in both color and hypercolor. That is, one tekes the
vector product of twa rishons and then the scalar product of the dirishon with the third
rishon. The graphical representation is shown in Fig.8 . It is obvious that the method of
construction of this object is just the projection on 1 In the product 3 ® 3 ® 3 (or
T ®3@3). We stress that in every 3-vertex, whether in color or i hypercolor, the
three arrows must all point the same way with respect to the vertex. 8y definition, one
can only take vector products of vectors belonging to the seme repressntation and scalar
praducts of vectors befonging to conjugate reprasentations. The object just constructed is
identified to a lepton. All the arguments presented in Ref.2 about the spin, mass, etc.
and in Ref.5 about internal quantum numbers apply aequally well here.
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Depending on the directions of the arrows, we identify the following four leptons :
e = (TTT ,e” = (TTT), Vo= {(VVV) end Ty = (VV V). As an example,

Fig.6 shaws the e’ and Vg *

Note that an isospin-doublet corresponds to identica! color line-orientation and
to different hypercolor lins-orientation :
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Fig. 6

We introduce next the graphical representation of vector bosons. Since w< shall
assume that all deceys can be obtained by appliying the pinching rules, we cons:iuct vector
b by joining two lep and applying the reverse of the pinching rule. A few examples
are given in Fig.7, where we used the reverse of the pinching rule on the color lines,
and they correspond respectively to ¥ z% , W and WY

First we note that it is not possible to construct in this way an object which

separates, when applying the pinching rule, into e-ve or e’Ge . In other words,
interactions between leptons mediated by vector bosons will conserve the lepton quantum
numbers. Second, our use of the label " vector - boson " is not entirely justified.
indeed, these diagrams determine only the internal quantum numbers of the bosons, not
their spin. As we shall see later, certain scalar objects will have the same diagramaticat
representation.

QOut of three rishons one can construct only one other kind of fermion, which
will be singlet in hypercolor and triptet in color. This object, to be identified as a quark,
is constructed by taking a mixed product in hypercolor and a double vector product in
color. Two examples are shown in Fig.8 :
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Fig. 8

The free color line indicates that u and d are triplets in color while U and
d  will be antitriplets.

Hadrons built up of two quarks will be constructed by taking the scalar product
(in color space) of the two quarks. Since one can only take scalar products of a triplet
with an antitriplet, one sees that ail such hadrons will be made of a quark and an anti-
quark. As an example we present the graphical representation of a Mz' =2t (pH
in Fig.9

- ~ i ~
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Fig. 9

An important abservation that can be made at this point is that the charge of
the vector bosons represented in Fig.7 , does not deperdd on the arientation of the color
lines, This fact will us to obt: the pling of the vector mesons to quarks.
First, we make the assumption that all structures of the kind shown in Fig.7, which
differ only by the orientation of one or more color lines, represent the same object, This
is a natural consequence of the fact that internal quantum numbers are not changed when
we change the arrow on one color line. For instance, all four diagrams in Fig.10 re-

presenta W~ ora p

P2 N,




7.

in the second and third diagrams, applying twice the pinching rule on twa lines,
as shown in Fig.5, we easily ldentify the U and d quarks.

In general, in any rishon model, if we couple W~ at one end to leptons
(TTT- VVV) and at the other end to quarks (TTV-VVT), a rearrangement
of the rishons is necessary inbetween the two couplings. In our model this is obtained
by simply changing the arrow on one color line. In the absence of a dynamical theory,
which would allow calculating the effect of flipping the arrow on a color line, one
could roughly assocjate a factor o mzlf with each flip. In addition to vector mason
dominance, which here follows from the identity of the diagrams describing the photon,
p,w ,etc, we predict also that W* (W™) wlll be dominated by p * (p ~) at
Pw = mi . We stress sgain that spin is not incorporated in our approach and the
diegrams in Fig.10 can equally well describe objects of spin 0 .

We go next to the construction of higher generations of leptons and quarks. We
assume that higher generations are described by more complicated color structures. In
principle, the hypercolor structure coufd aiso be more complicated, however, since hyper—
color forces are restricted to a much smaller range, the different hypercolor configurations
will fluctuate rapidly into each other, destroying the separate identity of each configuration,
This point has been emphasized aiso in Ref.4 ,

The simplest way to increase the complexity of a color structure would be to
introduce insertions like the one in Fig.11 on color lines. But, it is easily seen applying
the pinching rule on two lines, that one bubble is equivalent to an arbitrary number of
bubbles :

We will therefore assume that the kind of insertions shown in Fig.11 can be made
to appear or disappear on any color line, without changing the character of the object to
which the line belongs. In other words, we will consider only structures which are * one—
line irreducible . The si one is the " Mearcedes star ™ sghown in Fig.12,




We identify the four leptons, corresponding to the different possibilities of arrow
orientations on color and hypercalor lines as u * VI vu and vu . The four quarks

belonging to the d generation are shown in the same figure.

Fig. 12

The insertion of the Mercedes star bubble could have been done also on the lower
vertex of the diagrams in Fig.8 . One can either assume that these two possibilities are
identical, and use either of them as convenient, or take a Jinear combination of the two
when defining states belonging to the second generation. In this paper, we shall assurne the
formers to be true. None of the resuits to be derived here will depend on this choice.

Finally, we give in Fig.13 the structure of the leptons and ~uarks belonping to the
third generation .

Fig. 13

One can continue and construct higher generations. In our medel there iz no limit
on the number of generations. it is h ivable that a dy ical calculation will
show that some color configurations might be highly unstable and thus Ilimit the number
of generations.




4. DECAYS OF ELEMENTARY PARTICLES

We are at this point ready to consider the decays of leptons snd hadrons. But
before doing that we have to discuss certain constraints on the way we use the pinching
rule, which are imposed by the physical fact that the vector bosons couple to lepton -
antilepton {or quark - antiquark) pairs of ths same generation.

J{b]- ] -

Fig. 14

Diagramatically, the constraint is shown in Fig.14, where i denotes the struc-
ture associated with the leptons of the i-th generation. By requiring that the twa
" vertices must belong to the same generation we guarantee that the vector bosons do not
cauple to two leptons (quarks) of different generation. Indeed, using the pinching rules

in Fig.14 we get :
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Fig. 15

The sum over i (number of generations) will be naturally cut-off by

energy-momentum & - functions.
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We proceed now to discuss the decays of known leptons and hadrons. We consider
first decays in which the generation number is conserved, Every color line can be inter-
rupted by 8 hypercolor line without affecting the quantum numbers : this is equivalent
to creating (or annihilating, if we reverse this process) TT or VV pairs in a
manner which maxes them obviously irrelevant in counting the guantum numbers. Further-
more, all decays will be obtained vie the process shown in Fig.18 , i.e. by pinching on
the hypercold: lines

———t——i AT
----, - -----l—-l---§ —_ - 4---0-—9--;»

Fig. 16

u decay :

Fig.17 exemplifies the above rule in the case of u decay :

P e e N
~ ™ i ~

\\ \‘\ \‘\ /’/ N

~, N .
- -3 =y e - B L - ey S .
- ~ .

-
,/ ,/ - . 7
Fig. 17

The figure shows that u = v, 'y ;9 . The decay 1 —p Vv °-"e ¥ can be
obtained by applying once again the pinching rule. Fig.16 shows that in general, whenever

we have a charged particle in the final state we also have the same final state pius a
photon (or an e’ o~ pair, if the photon is off mass-ghell).

t decays

Fig.16 implies t —s- v W and W —~+ 0"V  or W ¥

Reversing the arrow an one calor line in the W~ we obtain the structure corresponding
to Ud . Thus, we get T .->v1 p-and T —m v 2~ . Applying the pinching rule
on the U d structure one gets the other decay modes : t —p ¢ p° v

L4
- - - -+ -
T —p P :Dv 3 T = 1 X lv',ehc.

T



= decays

Fig.18 shows the dccay 2* —a 2° °+"e :
——
‘ ~, / ~ ,_/
,,/ (/‘ \\ (,‘
C—am 1 } - - --.7 ———— e f————]
\\ i \‘\ ~ ~ ~
~ re ~ - ~,
N ———t

Fig. 18

Using the reverse of the pinching rule and flipping the arrow on the color line
as wn Fig.19 one abtsins the decays ¢ —& pv, 8v, Huvy and e vy.

-7 ’ ~
e - ~,
re ~ ~,
C——- e =D - e ey
~ i ~ i
P
\\ \\ -,
N —p”

The ratic of the % ——p p v versus the 5 —p ©v decay rates is well understood
as a mass effect. A standard caiculationB gives

F (x ~ m 2 (mz-mz)z 4
Ro.-Lle = ev) (2 _x e . im o10”
r (r — pv) m (m' -m )

The diagram in Fig.19 describes also -°_> *Y., ¥ e’ e, etc. Note that the
decay of «° into two photons rather than one is implied by charge conjugation,
which is not contained in our diagrams. in general, all conservation lews rejated to
external symmetries (C, P, T) will have to be considered separately, since they are

not included in the diagrams.
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K decays
The diagram in Fig.18 applies when one vertex is of second generation and shows
that the only decay possible is K%—we K* o™ ¥ o - Due to the small phase space
available, this process is very rare. One expects a branching ratio similar to the one for
+ o _+ . -9
R A Y i.». about 10 ~ .
Thess examples shouid suffice to convince the reader that all generation number

conserving decays can be obtained via the haniasm shown in Fig.16 .

Let us naw consider decays in which tha generation number Is not conserved, The
mechanism through which a jump is made from one gensration to another is the following :
a pinching on two hypercolor lines is made in a configuration in which the pinching rule
does not normally apply. An example will explain better what this means. Consider the
decay p —» ® vy . The diagrams in Fig.20 show how u becomes an off-shell e

™, N
- 4 D - —_ D
»* i 7
p s
Fig. 20

The electron which is now off mass shell { pe2 = m“2 ) will decay into an electron
and a photon through the mechanism in Fig.16. We see that the pinching rule was

applied on two lines which do not obey the conditions undar which the rule is usually
applied : the two lines do not separate two blocks, at least one of which is closed.

A possible explanation of the smaliness of generation number breaking decays
compared to generation number conserving decays can be given in the context of a naive
interpretation of the color and hypercolor lines as strings of different lenpth. The hyper-
color linas are to be viewed as very short strings (of the order of A H-1 ) while the
color lines are much longer (of the order oi Ac-1 }. The pinching rule can be applied
to two or three hypercolor lines when they are within a distance A H-1 of each other.
It is obvious that the probability of this happening is much higher when the hypercolor
strings are near the ends of the color strings, since these are already kept in a small
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region by the existing hyparcolor strings (see Fip.16) . On the other hand, the two
color strings on which the hypercolor strings appear in Fig.20 can be found in & much
larger region and the probatility ¢f them Leing within AH'1 of each other is very
small, In the absence of a dynemical theory which could lend support to the above
picture, we present it as a rough gukde to guesstimates of relative branching ratios.

Continuing our discussion of the p decay we see that Fig.20 gives by applying
the pinching rule on the off-shell slectron,the decays y ——=te 0y , p =—b o6
and 4 = ¢ y Y. The suppression of the p — ey decay with respect to the
other two can be understood as e spin effect : it Is the only decay which requires a
spin tlip.

T decays:

Oepending on which ifines we choose to make the two-line pinching on, the t
becomes either an off-shell p or an off-shell e . Either then decays into an on-mass-
shell lepton and a photon (or e*e” ).

K decays :

Consider the decay of the K* : when the second generation vertex inside the
§ quark becomes a first generation vertex, the structure obtained is that of @ u a
pair, having 8 mass equal tc the Kinass. This object decays, via the mechanism in

Fig.18 into 2* »® or x* 1t 27, "+vu ,e*v. , 1 ° u'v‘l s loe've,
etc. All the decay des cen be obtained by choosing all possible orientations for the
arrows on the color and hypercolor lines.
D decays :

There are three generation number conserving decays : first D'—e D% e* v o
and D* —+ K® X* where X' = u*v o'v. s opt o xt, 1t 1%, etc. There is

enough phase space also for D'—» K° : x*. The third decay is obtained by applying
the pinching rule simultaneously at both ends of the D* structure : one obtains
D' —= K™ x* x* where X" is as above. Finally, all the other hadronic and semi-

teptonic and leptonic decays can be for using the rule in Fig.20 ,

Next, we mention the process of pinching directly on color lines, without hypercolor.
The structures thus created are reabsorbed at another vertex, An exampie is given in
Fig.21 . These pr ara tor inst: v ible for KO - K° mixing, D% e K*K",

etc.



\-t\

14,

pabodbedHbq

Fig. 21

Finally, if we construct baryons by taking a mixed product in color space of three
quarks, we obtain the structure In Fig.22

>
/

-
’

Fig.22

Using the previous rules , one can easily account for all known decay modes, hadronic
and semi-leptonic of the baryons.

§. CONCLUSIONS

We note first that, since spin and all external quantum numbers are not accounted
for in this approach, it is not obvious from the diagrams whether a ud structure re-
presents a x' or a p’, or whether w decays into 2z 's of 3x's . All the
constraints coming from conservation laws based on external symmetries must be added
by hand to decide on the spin-parity-charge conjugation properties of the decay products.
This situation is very similar to the one existing when quark diagrams were introduced.
indeed, quark diagrams, supplemented by the OZI gsule, aliowed the description of all
hadronic decay modes as far as the internal quantum numbers of the products was
concerned, but spin had to be put in by hand. Our scheme is entirely analogous to quark
diagrams. It allows an understanding of which decays are possible and which are not and
a rough qualitative estimate of branching ratios. The main advantage with respect to
quark diagrams is that it allows us to find not only the hadronic decays but all the semi-
leptonic and leptonic ones as well. We present it as further evidence that the rishon
model can do more than just provide a mnemonics for the spectroscopy of gquarks and
{eptons.
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Figure Captions

Fig. 1 : The graphical representations of the rishons T and V. The rishon ?(V) is
obtained graphically by changing the direction of arrows on the lines representing the
rishon T(V) .

Fig. 2 : Graphical rule for summation over repeated indices,

Fig. 3 : Graphical representation of the tensor product of the representations 3 and 3
in a closed diagram.

Fig. 4 : Graphical representation of the tensor product of the representation 3 in a
closed diagram.

Fig. 5 : Graphical representations for 3 ® 383 and 3838 3.
Fig. 6 - Graphical representation of the leptons et and T e "
Fig. 7 : Graphical representation of the 1(Z°) , W and wt,
Fig. 8 : Graphical representation of u and d .

Fig. 9 : Graphical representation of (et .

Fig. 10 : Equivalent graphical representations of W~ .

Fig. 11 : One-line reducible insertions on color lines,

Fig. 12 : Simplest irreducible diagram characterising the leptons and gquarks of the
second generation.

Fig. 13 : Graphical representations of the leptons and quarks of the third generation.

Fig. 14 : Graphical representation of the constraints imposed on the pinching rule by

generation number conservation.

Fig. 1§ : Generation number conserving pinching rules for vector bosons.
Fig. 16 : General rule for generation number conserving decays.

Fig. 17 : u decay .

Fig. 18 : x decay .

Fig. 19 : x decay .



Fig. 20 : Generstion ber breaking hanl tor the decay p ~—i» oy .
Fig. 21 : Example of pinching directly on color lines.

Fig. 22 : Graphics! representation of a baryon.




