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PREAMBLE

This short ar t ic le is intended to be a very brief review of the basic

ideas behind catastrophe theory and to discuss how i t might be applied to the

family system. However,it is written by a theoretical physicists who has

had no previous experience either with catastrophe theory as such or, what i s

more pertinent, vith family therapy or the analysis of the family system. One

might therefore ask why has he written th is a r t i c l e . The answer l i e s in an

idea of John Ryng-Hall in ut i l iz ing interdisciplinary communication in order

to try out successful concepts and models in other f ie lds , in particular,

through the. use of mathematical models. The catastrophe theory of Bene Thorn,

as demonstrated by his many works [ l] and those of E.C. Zeeman [2] and

others [3] , is an excellent example. In physics, a subject divided into many

•branches or even sub-branches (cosmology, astrophysics, plasma, solid s t a t e ,

atomic, nuclear, subnuelear and elementary part ic le physics, to mention a

few), one frequently finds that ideas and concepts from different branches can

be taken over In a completely new context. In my own f ield, elementary part ic le

physics, there are many examples of t h i s , in which models based on analogy

with the atom are constructed or techniques and concepts arising in solid s ta te

physics, such as the high temperature expansion or super-conductivity, are

used. In a l l these cases the basic physical ent i t ies are in no way related

however, the laws, which govern them, can be modelled with (or described in

terms of) the same mathematics.

Catastrophe theory has been applied to a very wide range of phenomenon

spanning the ins tab i l i t i es in mechanical systems to brain act ivi ty . Some

applications may be speculative In the extreme, however where no well organized

mathematical structures exis t , a model based on catastrophe theory is always

something one can t ry if certain prerequisites or patterns are apparent. The

la t t e r become evident when we note what in fact catastrophe theory is about,

which Is the subject of the next paragraph.

I . RUDIMENTS OP CATASTROPHE THEORY

To state catastrophe theory In i t s entirety i s a Job for a mathematician

and would require a considerable volume. However in simple terras one can follow

E.C. Zeeman [h] and consider the following mathematical system, consisting

of a function f in some multi-dimensional space ( x , y , a , . . . ) which depends on

a set of parameters a , b , e , . . . ( la ter to be Identified with the control
O Q 9

variables of a system). An example of f would be f = a x + b y + e z ,
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the level surfacesof which ( i . e . f = constant) are the conies (sphere,

ell ipsoid and hyperboloid). The particular type of conic is determined by the

values of a, b and c or the relationship between them. (For example, a

sphere corresponds to a l l the parameters being positive and equal e.g. a = 1,
P p p p

BO that f = R =jt + y + z .) If one views the situation with the conies in
the parameter space (a,b,c) then there will be special values or l ines , which

mark the transi t ion point from one type of conic to another. This division of

the function f into i t s dependence on the space of variables ( x , y , z , . . . ) and

the parameter space ( a , b , c , . . . ) is an essential ingredient in catastrophe theory.

Let us now'consider the set of stationary points in the space ( x , y , z , . . . )

defined by the vanishing derivatives of f i . e . 3f/3x = 3f/3y - 3f/3z = • ' = O.*>

If ve denote this set of stationary values of f by S, then S is a smooth

surface in the space ( x , y , z , . . . , a , b , c , . . . ) with the only singularit ies ( i . e .

points of abrupt change or multi-valuedness) of the projection of the surface

S onto the parameter space ( a , b , c , . . . ) (e .g. plane (a,b) in the case of only

two parameters) being certain kinds of folded curves, cusps and the l ike . These

are called the elementary catastrophes ajs c lass i f ied fcy Rene1 Thorn. This is

provided the function f i t se l f i s a smooth generic function, which for our

purposes means t i s essentially a smooth continuous function of i t s variables

( x , y , z , . . . ) over the domain, in vhich i t is defined. We shall refer to the

work of Thorn and Zeeman for a more precise and complete definition. We shall

also leave to the excellent l i te ra ture on the subject [ l ]-[3] a complete

discussion of Thorn's monumental theorem, only briefly summarizing the main gist

here, vhich we shall i l l u s t r a t e with some simple and standard examples.

The kind of catastrophes that can occur ( i . e . sudden Jumps in S as a

function of a , b , c , . . . ) does not depend on the dimensions of the apace ( 1 , 7 , 1 , . . . ) ,

which we shall for now think of as the response space of variables corresponding

to the control variables a , b , c , . . . In fact the catastrophe can be described

and classified in a general way in terms of only the variation and number of

control parameters. I t i s in this l a t t e r property that the u t i l i t y of the

theory, as a mathematical model of complex (i>iany variable) systems, l i e s .

This is provided that the complexity l ies in the dimension of the response space

and not In the control space. An example of such a system, which has been

discussed in terms of catastrophe theory for example by Zeeman, is the human

brain. The l a t t e r is thought of as a very large number of coupled biochemical

subsystems (cells) responding to a relatively few external stimuli.

•) I f f was the energy function of a mechanical system, then this condition

defines the stable points about which the system can osc i l la te . Hence the

terminology structural s tabi l i ty in Thorn's work.
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Let us complete this brief discussion by a few simple mathematical

examples, which can be thought of as standard reference models of Thorn's

elementary catastrophes. Consider the following (one-dimensional) function:

f = x6/6 - ax - bx2/2 - cx3/3 -

generic
This is an example of a SBioothjJfunction of the variable x, depending on four

control parameters a, b , c and d, which is used as the reference of the

so-called butterfly catastrophe. The l a t t e r eifcodies the lower order

catastrophes such as the cusp and swallow-tail, when thought of as functions

of only the parameters (a,b) and (a,b,e) respectively. (These names arise

from their graphical shape.)

The stationary surface S defined by df/dx = 0 has the form

x 5 - a - bx - ex2 - dx3 = 0 (1)

The projection of this surface onto the space (a,b,c,d) will not be single-

valued and to illustrate how one can picture this projection, we start with
2

a single parameter a and the quadratic form x - a = 0. As a function of

the parameter a this has the folded graph shown in Fig.l(a), the upper and lower

branches of which correspond respectively to x = + /a and x - - /a"1. If we look at

the situation with the cubic form x - a - bx = 0 and draw the surface S

above the (a,b) plane, we find a folded sheet like that indicated In Fig.l(b).

The projection of the fold onto the (a,b) plane Is a cusp with two branches

B and Bp, respectively, which mark the boundaries of the region of multi-

vi.luedness of x as a function of a and b. In the case where only the

upper and lower sheets of S are accessible, one calls the region between

B, and B 2 the bifurcation set and its size depends on the parameter b,

which is accordingly called the splitting parameter. The butterfly catastrophe

has the two additional parameters c and d, the possible role of which In

a specific model will be discussed later. Returning to the standard example

(1), one finds that the variation of the parameter c has the effect of

moving the surface S up or down and the cusp left or right in the (a,b)

plane as illustrated in Fig.l(c). For this reason it Is thought of as the

bias factor. Finally, the parameter d (called the butterfly factor) creates

a new structure when it becomes positive. The projection of this latter

structure on the (a.b) plane is shown in Fig.l(d). The situation as regards

the surface S is shown in Fig.2, in which we see the new structure corresponds

to a pocket in the upper surface leading to a response level between the two

in the bifurcation set of the cusp case.



The whale situation discussed above is referred to as the butterfly

catastrophe and although we have described it In terms of a one-dimensional

response space (corresponding to the variable x ) , the considerations go through

independently of the dimension of the latter space. This means if we consider

the response of a complex multi-dimensional system like the human brain, to

two or three external stimuli, we could monitor simply the behaviour of the

whole system through the level of a certain chemical or the behaviour of the

person involved, as regards determining the regions of sudden change.

One could go on to describe in a similar way other kinds of catastrophe

in Thorn's general classification theorem [5]. However this I feel is better

left to the literature provided by the main proponents of catastrophe theory,

some of which are mentioned in the bibliography. I will instead consider a

toy model describing one of the most obvious family syndromes , namely its

response to work and sleep, in order to provide an illustration of how one

might make use of catastrophe theory in the context of the family system.

II. A TOY MODEL FOB THE FAMILY SYSTEM

We end this glimpse of catastrophe theory by considering a toy model of

the disorders we suppose can occur to the family, when viewed as a system

responding to control factors such as wort; and sleep. By the word toy we

simply mean that the model we describe is in no way supposed to be taken

seriously in its own right, but instead used to illustrate the type of

strategy or thought that might go into using the theory to model family

disorders. For a far more serious example of a somewhat parallel nature and

involving apparently considerable research, we refer to the discussion of the

anorexia disorder by J. Hevesi and E.C. Zeeman [6].

Consider a family, consisting of say, a father, mother and a child and

further consider its daily routine of work and sleep. In a crude way we could

monitor the family relationships in response to the average number of hours

of work and sleep, by the amount and nature of contact among the members of

the family (with some suitable weighting). We could give the set of behaviours

S middle values for non-aggressive contacts (talk, play, etc.); lower values

for aggressive contacts (arguments, tantrums, etc.) and very high values for

little or not contact (i.e. separation). We note that the precise values

assigned to the set of behaviours S is, by the basic theorem of Thorn,

immaterial. The disorders we have in mind in the family .nystem are at the

one extreme fights and tantrums, while at the other, some kind of separation or

running away. _r-_

The control variables a and b of the catastrophe model would he

respectively the average number of hours of sleep (or rest) per member of

the family each day and the corresponding average number of hours work (or

other tiring activity). An important factor in defining such variables will

be the weight given to each member of the family, which could vary from family

to family and depend on things like the age of the child. The variable a

will therefore be expected to be of the form:

+ w a + w
m m c

with w + w + V
f m c

= 1

where the weights corresponding to each member of the family (w_,v ,w ) vill

r m c
take into account their, individual effect relative to the other members. (Here
the subscripted a 's ore defined for the individual members of the family.)
As a function of the control variables a and b the normal rhythm of the
family might look l ike the cycle Ĉ  on the response surface depicted in
Fig.3(a). However in our model we shall think of work as a sp l i t t ing factor,
because I t can cause s t ress , resulting in aggression and the breakdown of the
normal order. For example, an over-worked family say well have regular
arguments and serious upsets, this vould be depicted in the model by the cycle
C2 in Fig.3(a). In this l a t t e r cycle the family never gets adequate sleep,
which is further aggravated by the upsets. However the situation Is s t i l l
stable, the family copes and self-control is never completely l o s t .

In our model there was another path an over-worked family could have gone

along, namely the amount of contact steadily decreases, unti l the family Is

effectively separated. This situation corresponds to the upper portion of the

folded surface in Fig-3(a). The whole picture of the family reponse to these

control variables i s being represented by Thorn's cusp catastrophe. If we go

further and add to the model the possibili ty that under the stress cycle (or

spiral) of behaviour C,,, one (or more) member of the family looses self

control, then we can represent this by a shift of the cusp to the left as

shown in Fig.3(b). This can be represented by a change in a new variable,

namely the bias factor c discussed in Sec.I. In our model this variable

would be ^quantitative vay of describing the abi l i ty of the family to cope with

the stress situation discussed above. I t would depend on the history and

nature of the family ( i . e . a psychological factor). When cycle Cp crosses

the cusp boundary B^, then a catastrophe occurs, that is there is a sudden

change in the behaviour of the family, for example,it breaks up, Thia' might

take the form of the husband and wife separating for a time or even the child

running away. The advantage of a. model based on cntantrophetheory is that
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one does not have to worry about the precise definition of the response

variables, provided the family system can tie described in terms of the model,

the same causes (i.e. changes in a,ti,c) can be attributed to both the

catastrophic response mentioned above.

This toy model can he pushed one stage further in analogy to the

anorexia example of Zeeman and Hevesi mentioned earlier, by supposing there

exists a fourth control variable d, to which the family can respond. If this

variable is of the form of the butterfly factor described above, then its

variation can cause a pocket to form in the upper surface, giving rise to

three reponse levels and the three-surface situation depicted in Fig.2. In

the anorexia example the factor d corresponds to reassurance given to the

patient during hypnosis, the latter state itself corresponds to being on the

middle surface created by the pocket. In our toy,example d could he linked

to an outside influence such as some kind of family therapy. The idea one

might persue is that if the sudden Jumps betveen the lower surface S^ in

Fig.2 and the upper response level in the model (surface S in Fig.2) can

be transformed into Jumps to the middle surface S in Fig.2, created by the

therapy iself, then one could model progress In the therapy by a new route

opened up by the structure of the butterfly catastrophe. Such a route is

depicted by the arrowed path in Fig.2.

At this point I feel I have pushed the toy example far enough.

However I hope it has illustrated, in relation to catastrophe theory, how

one might go about organizing ones thoughts with a view to modelling disorders

of the family system, if they are of a sudden or abrupt nature and can be

linked to recognizable control factors. Whether or not such models say any-

thing about reality vill in general he an exceedingly difficult (probably

impossible) task to prove on theoretical grounds (i.e. from the laws of chemistry

and biology). Just as in the anorexia example, it would rather have to be

established on empirical grounds. Even the problem of identifying and

quantifying the control variables of the system will be a matter of much

experimentation and experience.

Let me end this article with the following observation. It often

happens that the use of a model provides no deep truth in itself. However the

method in applying it opens up new doors, which lead to the deeper understanding

we are seeking.
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FIGURE CAPTIOUS

Fig.l

Fig.3

a) One-dimensional example of a double-valued function;

b) Two-dimensional example of the folded curve represented by

Thorn's cusp catastrophe;

Effect of control parameter c on the cusp projectionc)

d)

represented by branches B- and B ;

Projection of butterfly catastrophe on the a-b plane, shoving

four branches or boundaries of abrupt change.

Depicts the response surface corresponding to the butterfly-

catastrophe. The surface is folded like Fig.l(b), moreover it

has an additional pocket starting from the upper surface and

extending beneath i t to a point above the lover surface.

a) A model for the family system based on the cusp catastrophe;

b) Shift of the response cycle into a region of abrupt change.
•+-0

o>
IIx o

II

x

(D

-#••0

-9- -10 -



Fig 2

circle of
overtiredness
and aggression

(a)
Cb)

Fig 3



INT .HEP. "

JUT. HEP.*

IC/79/101

IC/79/102

INT.HEP."

IC/79/103

IC/79/1O4

INT.HEP.*

IC/79/105

IC/79/1C6

IC/79/107

INT.HEP."
IC/79/108
INT.REP.*
IC/79/109
INT.REP.*

IC/79/llO
IC/79/l l l
INT.REP.*

IC/79/112
INT.REP.*
IC/79/U3
INT.REP.*

:c /75/ i i4
INT.REP.*
IC/79/115
INT.REP."

IC/79/117
INT.REP.*

IC/79/118
INT.REP.*

IC/79/119
1ST.REP."

IC/79/120
I!TT.REP,#

IC/79/121

V.£. GODWIN and &. Tfl.iA.TTl: Local field corrections to the bindinf
enercias of core excitons an.i shallow iuiniirition in semiconductors,

I4.F. KOHT-'iFA, H.A. iiEMAilY and M.A. AIMED; gMdp-netic suscept ib i l i ty
investigation of some antiferromarnetic F̂  comnlexea.

I.A. AHIN: The axchanpe property of modules,

Fl. MAHDAVI-TOSAVEHi Remarks concerning the running coupling constants and
the unifying mass scale of grand unified gauge theories.

IEMATL A. AKtN: On a conjecture of Erdos.

11. YUSSOUFF and k. MOOKERJEE: Phonon frequency spectrum in random binary
al] oys.

5, GOETTIGi Aniaotropic plaamon-phonon modes in defl-enerate semi-
conductors,

T.K. SHERHlfr SuDersymnietric extension of the SU(5) model.

N.3. BAAKLIN1: An 3'J(3) theory of eleotrowealc interact ions.

M.Y.H. HA.SSAIJ and H.M.H. HAH30UH: Helativist ic calculation of polarized
nuclear inatter,

H.Y.M. H:155AN and 5.5. MOHTASSER: On the thermal properties of nuclear
matter with neutron excess.

J . 3 . NKOHAi Theory of absorption by exciton colaritona in a spatially,
dispersive media.

A. OSMAIf: If-icleon-nucleon interaction in the throe-nuolaon system,
3, FEMAEiA: Suiserspaoe asriecta of supersymmetry and superpravity.

M. STESLICKA and K. KEMPA: Variatlonai calculation of surface states for a
three-dimensional array of 6-function potentials.
K.3. SINGUI and M.P. TOSIi Relation between bulk compressibility and
surface energy of electron-hole liquidB.

A.R. HASSABi Two-photon t ransi t ions to exeiton polari tons.

G. AKDENIZ and A.O. BARUT: Oauge-invariant formulation of dyonium
Hamiltonian on the 3phere S*.

J .S . NKOMA: Linear photon and two photon absorption by surface
polaritons,

A, VISINEoCU and A. CORC]OVEIt Bechannelinr in tho '/KB anproximation.

Ii. APO:5TOI,: Finite size effacta on the plasma frequency in 1 ayarerf
electron ra3 .

F. D£5TEF,\!?0 and K. TAHin 3HAHj Quasi-cataatroohea as a non-etandard
model and changes of t

A, 03MAU: iffect of Coulomb forces in the three-body problem with
application to direct nuclear react ions .

IC/79/122
1ST,HEP,'

IC/79/123
INT.REP.•

IC/79/124
I1JT.HEP.*

IC/79/125
INT,REP.*

IC/79/126
INT.HEP.*

.IC/79/127

Ic/79/128
INT.REP.*

IC/79/129
INT.REP.*

IC/79/130
INT.REP.*

IC/73/131

IC/79/132

IC/79/133
IHT.SEP."

IC/79/134
INT.REP.1*

IC/79/135

IC/79/136

IC/79/137
IKT.REP.*

IC/79/138
INT.REP.*

IC/79/139
IHT.HEP,*

IC/79/l'tO

K. TAHin SHAHi A note on the violation of
oonBervation.

A.A, El, GUAZLY, F.A. GAN1 and M.K. EL MOUDLYj Determinntion of optical
absorption ed/re in amorphous thin films of selenium and selenium
doppad with sulphur,

M.M. PAHTj Variationally optioiaed tnuffin-tin potentials for band
calculations.

If, MDIA and L. BALLOOMAL: On the . transformation of positive definite
hermitian form to unit form.

G.S..KJBEY and D.K. CHATUSVEDI: Dynamical study of liquid aluminium.

A. NDUKA: Spherically symmetric cosmological solutions of the Lyttleton-
Bondi Universe.
M.M. BAKRI and H.H.H. MANSOUR: The r e l a t i v i e t i c two-farmion
equations {!)•

N,5, TONGHEV and J.G. BRAUKOV; On the s-d model for coexistanca
of ferromapnetism and superconductivity.

B.D. KATTDILAROV, M.T. PRIHATAROWA and V. EETCHEVAi Interface atates in
a class of heterojunctions between diatomio semiconductors,

V, MECKLENBURGi Geometrical unification of fraupe and Kipfte f ie lds ,

LUNG CHI-WSI, SUN 3HIAMH-KAI and 3HYURNO LIAaNa-YUEHt The surface
thormal vibrations of dislocation lines and the c r i t i c a l cracV.

H.Y.H, HA33AN, 3 .5 . MONTASSEE1 and S. RAMADAWi On tha thermal properties
of polarized nuclear matter,

A. OSKANi Two-, three- and four-body correlationa in nuclear matter.

T. BARNES and G.I. GHAHDOUR: On quantizing gauge theories without
constraints.

J , NIEDERLEi Super^ravity.

T.N. SHERRYs Higga potential in the SU(5) model.

«.H. BAKRI and H.H.M. MANSOUR» The r e l a t i v i s t i c two-fermion
equations ( I I ) .

R.R. BASILY: The effect of the rate electrode on the C-V character is t ics
of the structure M-TmF,-3iO -Si .

J. NIFDERLE: Quantization as mapping and as deformation.

Ic/79/142 ABDUS SALAHi A rau/'e appreciation of developments in part icle
physics - 1979.

IC/79/l43 B. BIlTIi Ion-acoustic holes in a two-electron temperature plasma.

• I n t e rna l fiecorts: Limited d i s t r i b u t i o n
THESE PREPRINTS A HE AVAILABLE FROM THE PUBLICATION OFFICE, ICTP, P.O. BOX

I-J41OO TKIE'TIL, ITALY.
-ii-



IC/79/144
INT.REP."

IC/79/145
IHT.RE11.*

IC/79/146
INT.RSP."

IC/79/ll»7

13/79/148
INT.REP.•

IC/79/149
INT.REP.»

IC/79/154
INT.REP.•

IC/79/158
INT .REP.*

IC/79/159
INT.RSP.*

VT. KROLIKOtfSKIi Recurrence formulae for lepton and quark generat ions .

C. SENATOHE, M. ROVERE, M, PARRINELLO and H.P. TOSI: S t r u c t u r e and
thermodynamics of two-«omponont c l a s s i c a l plaaroaa in t he mean
spherical approximation.

C. TOivlE: Change of e last ic constants induced by point defects in
hep crystals ,

P. §TOVl'£EK and J. TOLAR: Quantum mechanics in a discrete space-time.

M.T, TEI.I: Quaternionic form of unified Lorentz transformations.

if. KROLIKOWSKIi Primordial quantum ehromodynamies; QCD of a Fjrmi-
Bose nounle of coloured preons.

RIAZIIDDIN and FAYVAZUDDINs A model for alectroweak interactions based on
the laft-rirtit symmetric pauire croup U, (2) © T u ( 2 ) .

B. JULIA and J.P. LIICIAKIs Mon-linear real isat ions of compact and non-
compact ^aure croups.

IC/WV5
IHT.REP.*

IC/80/6
INT.REP.•

:c/ao/7
INT.REP,*

IC/80/8 '
INT.REP.•

RIAZUDDIN: Two-tody D-meson decays in n o n - r e l a t i v i s t l e quark model.

G. ALBERI, M. BLESZYNSKI, T. JAFOSZEWICZ and S. SANTOS: Deuteron
D-wave and the non-eikonal e f f e c t s in tensor asymmetries in e l a s t i c
proton-deuteron scat ter ing .

A.M. Kurtatov and D.P. Sankovich: On the one variat ional principle in
quantum s t a t i s t i c a l mechanics.

G. Stratan: On the alpha decay branching rat ios of nuclei around A « 110.

J . BOHACIK, P. LICHAHD, A. NOGOVA and J . PISUTJ Monte Carlo quark-
parton model and deep i n e l a s t i o e leotroproduntion.

IC/79/162 P. BUDINI: Reflections and internal symmetry.

IC/79A61* Pi BUDINI: On conforraal covarlance of spinor f i e l d equations.

IC/80/12 M.V. MIHAILOVIC and M.A. NAGARAJAH: A proposal for calculat ing the
INT.REP.* Importance of exchange e f f ec t s in rearrangement c o l l i s i o n s .

IC/79/167 T.D. PAIiEV: Para-Bose and para-Fermi operators as generators of
IHT.REP.* orthosymplectic Lie superalgebrae.

IC/8O/I1* W. KROLIKOWSKI: Lepton and quark famil ies as quantum-dynamical systems.
INT.REP.•

IC/80/17 NAMIK K. PAK: Introduction t o instantons in Yang-Mllla theory. (Part I ) .
INT.REP.*

-iii-

- i v


