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PREAMBLF

This short article is intended to be a very brief review of the basic
ideas behind catastrephe thecry and to discuss how it might be applied to the
family system. However,it is written by & theoretical physicists who has
had no previous experience either with catastrophe theory as such or, what is
more pertinent, with family therapy or the anslysis of the family system. One
might therefore ask why has he written this article. The answer lies in an
idea of John Byng-Hall in utilizing interdisciplinary communicstion in order
to try out successful concepts and models in other fields, in particular,
through the. use of mathemetical models. The catastrophe theory of René Thom,
as demonstrated by his many works [1] and those of E.C. Zeeman [2] and
others {3], is an excellent example. In physics, a subject divided into many
branches or even sub-branches (cosmology, astrophysics, plasms, solid state,
atomlic, nuclear, subnuclear and elementary particle physics, to mention a
fev), one frequently finds that ideas and concepts from different branches can
be tsken over in & completely new context. In my own field, elementary particle
physica, there are many examples of this, in which models based on analogy
with the atom are constructed or techniques and concepts arising in solid stete
physics, such as the high temperature expansion or super-conductivity, are
used. In all these cases the basic physical entities are in no way related
however, the laws, which govern them, can be modelled with (or described in

terms of) the same mathematics.

Catastrophe theory has been applied to & very wide range of phenomenon
gpanning the instabilities in mechanical systems to brainactivity. Some
applications mey be speculative in the extreme, however where no well organized
mathematical structures exist, a model based on catastrophe theory is always
something one can try if certein prerequisites or patterns are apparent. The
latter become evident when we note what in fact catastrophe theory is about,

which 1s the subject of the next paregraph.

I. RUDIMENTS OF CATASTROPHE THEORY

To state catastrophe theory in its entirety is a Job for a mathematician
and would require a considereble volume. However in simple terms one can follow
E.C. Zeeman [4] and conslder the following mathematical system, consisting
of & function f in seme muiti-dimensional space (X,¥,%,...) which depends on
a set of parameters a,b,c¢,... {later to be identified with the control

variables of a system). An example of f would be f = a 12 + b y2 + e 22,
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the level surfacesof which (i.e. £ = constant) are the conics (sphere,
ellipsoid and hyperboloid). The partieular type of conic is determined by the
values of a, b and ¢ or the relationship between them. (For example, a
sphére corresponds to all the parameters being positive and equal e.g. a = 1,
Bo that f = Ra = 12 + y2 + za.) If one views the situation with the conics in
the parameter space (a,b,c) then there will be special values or lines, which
mark the transition polnt from one type of conic to another. This division of
the function f into its dependence on the space of variasbles (x,¥,z,-..) and

the parameter space {m,b,¢,...) Is an essential ingredient in catastrophe theory.

Let us now'cénsider the set of stationary points in the space {x,¥,Z,...)
defined by the vanishing derivatives of f i.e. 8f/3x = 3f/3y = 3f/3z = +» = 0.®)
If we denote this set of stationary values of f by S, then 8§ is a smooth
surface in the space (X,¥,Z,...,8,b,2,...} with the only singularities (i.e.
points of abrupt change or multi-valuedness) of the projection of the aurface
S onto the parameter space {a,b,c,...) (e.g. plane (a,b) in the case of only
two parsmeters) being certain kinds of folded curves, cusps and the like, These
are called the elementary catastrophes as classiried by René€ Thom. This is
provided the function f 1tself is a smooth generic function, which for our
purposes means f is essentially a smooth continuous function of its variables
{x,y,%,...) over the domain, in which it is defined. We shall refer to the
work of Thom and Zeeman for a more precise and complete definitlion. We shall
also leave to the excellent literature on %he subject [1]-[3] a complete
discussion of Thom's monumental theorem, only briefly summarizing the main gist

here, which we shall 1llustrate with some simple and stendard exemples.

The kind of catastrophes that can cccur (i.e. sudden jumps in S as a
function of a,b,c,...) does not depend om the dimensions of the space (X,¥,z,...),
which we shsll for now think of ss the responge space of variables corresponding
to the control varisbles a,b,c,... In fact the catastrophecan be described
and classified in 8 general way in terms of only the variation and number of
control parameters. It is in this latter property that the utility of the
theory, as & mathematical model of complex (meny variable) gsystems, lies.

This is provided that the complexity lies in the dimension of the response space
and not in the control space. An example of such a system, which hes been
discussed in terms of catastrophe theory for example by Zeeman, is the human
brain. The lstter is thought of as & very large number of coupled biochemical

subsystems (cells} responding to a relatively few external stimuli.

®) If f was the emergy function of a mechanical system, then this condition
defines the stable points sbout which the system csn oscillate. Hence the
terminology structural stability in Thom's work.
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Let us complete this brief discussion by a few simple mathematical
examples, which can be thought of as standard reference models of Thom's

elementary catastrophes. Consider the following (one-dimensional) function:

£ = x0/6 - ax - /2 - ex¥/3 - e/
This is an example of a Smoogg?gﬁiition of the variable x, depending on four
control parameters a, b, ¢ and d, which is used as the reference of the
so-called butterfly catastrophe. The latter embodies the lower arder
catastrophes such as the cusp and swallow-tail, when thought of as functions
of only the parameters {a,b) and (a,b,c) respectively. ({These neames arise

from their graphical shape.)

The stationary surface 8 defined by df/dx = 0 has the form

x - 8- bx - ex® - ax3 =0 . (1)

The projection of this surface onto the space {a,b,c,d) will not be single=-
velued and to 1llustrate how one can picture this projection, we stert with

a single parsmeter & and the quadratic form x2 - & =(. As a function of
the parsmeter & this has the folded graph shown in Fig.1l{a), the upper and lower
branches of which correspond respectively to x = + J:; and x = - Ja. If we look at
the situation with the cuble form x3 - a-bx =0 and draw the surface S
above the (2,b) plane, we find & folded sheet like that indicated in Fig.l(b).
The projection of the fold onto the {a,b) plane is a cusp with two branches
Bl and 52’ respectively, which mark the boundaries of the region of multi-
viluedness of x &5 a function of & and b. In the case where only the
upper and lower sheets of 8 are accessible, one calls the region between
Bl and B2 the bifurcation set asnd its size depends on the parameter b,
which 1s accordingly called the splitting parameter. The butterfly catastrophe
has the two additional pesrameters c¢ and d, the possible role of which in
a specific model will be discussed later. Returning to the standard example
(1), one finds that the variation of the parameter ¢ has the effect of
moving the surface 8 up or down and the cuap left or right im the (a,b)
plane as illustrated in Fig.l(c). For this reason it 1s thought of as the
blas factor. Finally, the parameter 4 (called the butterfly factor) creates
a new structure when it becomes positive. The projection of this latter
gtructure on the {a,b) plane is shown in Fig.1(d). The situation as regards
the surface S 1s shown in Fig.2, in whiech we see the new structure corresponds

to o pocket in the upper surfece leading to a response level between the two

in the bifurcation set of the cusp case.
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The whole situation dlscussed sbove iz referred to as the butterfly
catastrophe snd although we have described it in terms of a one-dimensional
response space (corresponding to the varisble x), the copsiderations go through
independently of the dimension of the latter space. Thls means if we consider
the response of a complex multi-~dimensional system like the human brain, to
two or three external stimuli, we could monitor simply the behaviour of the
whole system through the level of a certain chemiecal or the behaviour of the

person involved, as regards determining the regions of sudden change.

One could go oh to describe in & similar way other kinds of catestrophe
in Thom's general classification theorem [5]. However this I feel i3 better
left to the literature provided by the mein propenents af catagtrophe theory,
some of which are mentioned in the biblicgraphy. I will instead consider a
toy model describing ome of the most obvious family syndromes, namely its
response to work and sleep, in order to provide an illustration of how one

might make use of catastrophe theory in the context of the family system.

11. A TOY MODEL FOR THE FAMILY SYSTEM

We end this glimpse of catastrophe theory by considering a toy model of
the disorders we suppose can oceur to the family, when viewed as a system
responding to control factors such as work and sleep. By the word toy we
simply mean that the model we describe is in no way supposed to be teken
seriously in its own right, but instead used to illustrate the type of
strategy or thought that might go into using the theory tec model family
disorders. For a far more serious exemple of & somewhat parallel nature and
involving apparently considershle research, we refer to the discussion of the

anorexia disorder by J. Hevesi and E.C. Zeeman [6].

Consider a family, consisting of say, a fether, mother and a child and
further consider its daily routine of work and sleep. In & crude way we cculd
monitor the family relationships in response to the average number of hours
of work and sleep, by the amount and nature cf contact among the members of
the family {with some suitable weighting). We could give the set of beheaviours
§ middle values for non-aggressive contacts (talk, play, etc.); lower values
for aggressive contacts [arguments, tantrums, ete.) and very high values for
little or not contact {i.e. separation). We note that the precise wvalues
assigned to the set of behavicurs § {s, by the basic theorem of Thom,
immaterial. The disorders we have in mind in the family system are at the
one extreme fights and tantrums, while at the other, some kind of separation or

running away.
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The control variables a and b of the catastrophe model would be
respectively the average number of hours of sleep (or rest) per member of
the family each day and the corresponding average number of hours work (or
other tiring activity). An important factor in defiping such varisbles will
be the weight given to each member of the family, which could vary from femlly
to family and depend on things like the age of the child. The varisble =a
will therefore be expected to be of the form:

a4 = Uf af

tw e tvoa with Ve + v + LA 1,

where the welghts corresponding tc each member of the family (wf,wm,vc) will
take into account their individual effect relstive to the other members. (Here
the subscripted a's are defined for the individusl members of the family.)

Az 8 Tunction of the control verisbles a and b the normal rhythm of the
family might look like the cycle Cl on the response surface depicted in
Fig.3(a). However in our model we shall think of work as a splitting factor,
because 1t can cause stress, resulting in aggression and the breakdown of the
normel order. For example, an over-worked family may well have regular
argumente and serious upsets, this would be depicted in the model by the cycle
02_ in Fig.3(a). 1In this latter cycle the family never gets sdequate sleep,
wvhich is further aggraveted by the upsets. However the situstion is still

stable, the family copes and self-control is never completely lost.

In our model there wes another path an over-worked family could have gone

along, namely the amount of contact stesdily decresses, until the family is
effectively separated. This situation corresponds to the upper portlion of the
folded surface in Fig.3(a). The whole picture of the family reponse to thesge
control variables is being represented by Thom's cusp catastrophe. If we go
further and add to the model the posaibility that under the stress cycle {or
spiral) of behaviour C,, one (or more) member of the family looses self
control, then we can represent this by a shift of the cusp to the left as
shown in Fig.3(b). This can be represented by a change in & new variable,
namely the blas factor ¢ discussed in Sec.I. In our model this variable
would bezquantitativevux of describing the ability of the family to cope with
the stress situation discussed above. It would depend on the history and

nature of the family (i.e. a psychologicel factor). When cycle crosses

2
the cusp boundary BE’ then a catastrophe occurs, that is there is & sudden
change in the behaviour of the family, for example,it bresaks up. This might
take the form of the husbend and wife separating for a time or even the child

running away. The advantage of a model based on catestrophetheory is that
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one does not have to worry about the precise definition ¢f the response
variables, provided the family system can be described in terms of the model,

the same causes (i.e. changes in a,b,c) can be attributed to both the

catastrophic response mentioned above.

This toy model can be pushed one stage further in analogy to the
anorexia example of Zeeman and Hevesi mentioned earlier, by supposing there
exists a fourth control variasble d, to which the family can respond. If this
variable is of the form of the butterfly factor described above, then its
variation can cause s pocket to form in the upper surface, giving rise to
three reponse levels and the three-surface situation depicted in Fig.2. 1In
the anorexia example the factor & corresponds to reassurance given to the
patient during hypnosis, the latter state itself corresponds to being on the
middle surface crested by the pocket. 1In our toy,example d could be linked
to an outside influence such as some kind of family therspy. The idea one
might persue is that 1f the sudden Jumps between the lower surface SL in
Fig.2 and the upper response level in the model (surface 8y 1im Fig.2) can
be transformed into Jumps to the middle surface SP in Fig.2, crested by the
therapy iself, then one could model Progress In the therapy by a new route
cpened up by the structure of the butterfly catastrophe. Such & route is
depicted by the arrowed path in Fig.2.

At this point I feel I hawve pushed the toy example far enough.
However I hope it has illustrated, in relation to catastrophe thecry, how
one might go about orgenizing ones thoughts with a view to modelling disorders
of the family system, if they are of a sudden or abrupt nature and can be
linked to recognizable control factora. Whether or not such models say any-
thing about reality will in general bhe an exceedingly difficult {probably
impossible) task to prove on theoreticel grounds (i.e. from the laws of chemistry
and biology). Just as in the anorexia example, it would rather have to be
established on empirical grounds. Even the problem of identifying and
guantifying the control variables of the system will be a matter of ouch

experimentation and experience.

Let me end this article with the following cbservation. It often
happens that the use of a medel provides no deep truth in itself. However the
method in applying it opens up new doors, which lead to the deeper understanding

we are seeking.

T ——
1*§{ R

(1]

{2]

(3]

(k]
{51
[6]
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Fig.l

FIGURE CAPTICNS

a) One-dimensional example of a double-valued function;

b) Two-dimensional example of the folded curve represented by
Thom's cusp catastrophe;

¢) Effect of comtrel parameter c on the cusp projecticn
represented by branches Bl and Bz;

d) Pro)ection of butterfly catastrophe on the a-b plane, showing
four branches or boundaries of sbrupt change.

Depicts the response surface correspending to the butterfly
catastrophe. The surface is folded like Fig.1l(b), moreover it
has an additlonal pocket starting from the upper surface and
extending beneath it to a peint ahove the lower surface.

&) A model for the family system based on the cusp catastrophe;
b) Shift of the respense cycle into & region of ebrupt change.
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