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ABSTRACT

Bounds on the 7 and K meson decsy amplitudes are obtained to &
good accuracy from QCD sum rules of the Laplace transform type. A relation

between fvr and the p meson coupling to the Photon is given. Ueing the

heavy quarks q2 =0 sum rule to two loops we find our best bounds:
e {101 % 25) MeV and A3 (1% 7 = L1.6) MeV to be compared to

fﬂ_ a2 93.3 MeV. We also derive a relation between the D and ¥ meson
masses and the charm quark mass . Our results are extended to the

beautiful B mesons.
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4. LU RVLUIUL LN

There has been recent progress in extending the applicability domain
of quantum chromodynamics (QCD) to obtain predictions on low-emergy parameters
(redron masses and ¢Oupling constants). The approach is based on sum rules
obeyed by the spectral functions of & spetific two-point function of current
operators, as & consequence of general analytical properties. There exists a
variety of QCD sum rules in the literature (1-3] depending on how these
analyticity and positivity properties are exploited. Of particular interest
for low-energy phenomenology are the sum rules of the Laplace transform type:

ad of the Q = 0 type (Q > 0):

™) _/)
frey = r [,‘,4) ///0‘)/_0 (2)

P

proposed by SVI and collmborstors [1], respectively, for the light and heavy
quark system. Here %— ImTr(t) denotes & specific spectral function (e.g. the
hadronic vacuum polarization measured im the ete” o hadrons}; (Mz) and
’Vén)(Q2) are quantities which in prineciple can be computed asymptoticaily in
QCD. It is clesr that the sum rules (1) and {2) are much more selective on the
low-energy behaviour of the spectral function (small t) than the right-hand

side of the usual dispersion relation

’/77@!) = ;/;/_‘f_ L ﬁ/f) + "subtraction” . (3)
T Erer

The purpose of this letter is to report on some results obtained by applying the
sum rules (1} and (2) to the two-point function 'i',fuv(q_) associated to the axial
vector current A s q']-_‘(u’fsﬂij (lbi denotes quark field with a flavour i)

S h
Tty = < fol?= 7 o) T Aup(A ) 10>
= _@#*’7 z_ fﬂfﬂf)gffy‘) " f"‘y /75/--@/)
(%)

and to the two-point functions

}j{/,c) = ‘/./&z e[f (0171 /)’ff) poﬁfd))/ﬂ)

{s)



associated to.the divergence SuAu(x) = (mi + mj) aiYslbj of tie sxial vector
2

current. In faect, ws{q ) ana 'n'(i?)(qa) are related by the current algebra

. coon L .

identity - ° via

a)
(7"}"/7;;{@‘/ = Ky~ K, (63

where

};/u) = ../h,_';—)?' /(O/ a‘;“’l- g‘g-/o) -

{7)

In the Nambu-Goldstone reali-:-ition of chiral symmetry, the aquantity
<0|$iwi|0> is not zero, so care must be taken in using sum rules of the
types{l) anad (2).

II. BOUNDS ON fP (P = n,K,D,F) FROM THE LAFLACE TRANSFORM SUM RULES

Formally, the Leplace transform sum rule is obtained by applying to
both sides of Eg.(3) the operator

Z e - 27 /an
£ e 2 -0/ 2 - (8)
P X
-y . =

The derivationo‘fsuch a sum rule of SVZ [ib] has been discussed in Ref.5. In
the phenomenological applications, the p meson coupling to the photon [1%,5},
the light quark masses [5], the light gquark vacuum condensate [6], the gluon
component of the U(1) meson mass [7] have been bounded with a good accuracy,
within the range of the sum rule scale M X MD in the ud channel {M %=

in the us channel [6]} and with the value of A in the /M8 renormalization

2] taken to be A % 70~ 210 MeV from the sum rule analysis of the

scheme
. + - .

isovector part of the e e - hadrons data [9]. In the following we extend
the applications of the Laplace transform sum rule in order to get information

cn the decay amplitude f’P of pseudoscalar mesons defined as

<of Alte) 1p> = 7}{»’57’“

T TR

where IP) is the pseudoscalar state and qu its momentum. For the light
quark systems, an appropriate sum rule Uhich a1 lows us to extract f,, is the
Laplaece transform of Im7(1+0 (t) = Im (n (t + Im(T (t)

Tt reads:

{ KZ}D) —
/dfe 7} (%) = _’fz Zz r 4_'{/’"”,._
VY & »
L4
actwy) [ 5 . P /31/ M/ 852 [omicF Y
() [ 5 % 4 L
-“-ﬁf-)j,c_r;' 'GP 5&74;

# 8/“}) 0/}7’34—*‘,”?4) ﬂ /_/, (10)

3
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Ve

where Yg = 0.5772 is the Euler constant , aslw =l/—ﬁ log M/A 1s the running
"~

- m. 8,
QCD coupling; m, = Em 1y /-8 [ )’l {33 log POM:"/J\Z > — (r‘l_ El.g )(_egﬂ/f\}

is the running quark mass to two loops (m is the invariant mass), For

BU(3), » SU(n) Fyo= 1. 986 - 0.115 n, is the three-loop calculstion of

’[l’l+°(q2) [20] 3),31-2 6, =-2 + g -2 1,y 2002,

2 3 2 Y T 32 Upr

The leading non-perturbative effects are parametrized by the vacuum expectation

values <$itpi> end ((xs G2> , where G2 B G”“Guv is the square of the
gluon field tensor. The renormelization group invarient (RGI) quantity
<mi ) can be determined using PCAC and the recent result in Ref.6,while
we take a <G > 0hh+g_géh) Gev" from recent results on charmonium deta
analysis [12]. In the wud channel the spectral function Im'rrg..]-jo)(t) can
be saturated by the ¥ and Al . We estimate the Al contributio?l to the
spectral function from the 1t + v_ Ay data [13] and using = narrow width

approximation

F _Z F .
Im(/z’:(f) x> W_M"'z f/f- Mﬁ_:) x (1222040 & J//"%i)_(u)
(]

zq;‘_

The continuum coatribution to the sum rule is estimated using the QCD model
from the threshold F 1 GeV. This is controlled by the weight factor
_2t'°/m in Eq.{10) [6] . We use as well a recent result of Ref.lh based on
the Laplace transform of the third Weinberg sum rules in order to estlmate

2 ()
3 That we take to be of the order of ¥y -

Using the positivity of some eventual higher resenances, we get the bound

the product mu m

4o

et -~ vy’ Gl 10 5 (g d- o
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P

O



(128)

For Mo Mg , the Tf contributicon is optimized, the Al contribution is about

18% of the ‘TF one and the QCD correction is about 18%. BSo

7 <(94 15 )V (129

which reproduces well the securate date from 1 > wv decay 9 T\' ~ 93,28 MeV.

Tt is also more insbtrTuctive to give the chiral limit (mT\' = 0) of Eq.(12).

5)
Then, we get
’ %

(fff 1+3‘:,I—/9<q;éb A 97 ~JooMmV
) T4
ZFVZ

for A o T0 ~ 210 MeV. We can also identify the sum rule in Eq.(10} with the

(13)

B 2
f sum rule discussed in Refs.l and 5 a‘b the same M,
Far M M2 the M and f meson dominance

to each sum rule is fully justified. So, we get toc leading order of chiral

symmetTy bresking ,’02
3

p z- % 2
{:.—”f’e'/ez-e ’1’51"’2_‘_? :-_-/.9229’//‘1'7:
T Z? ‘ -
(1)

? 2 1)
_where we have used the data ’_’_’5’ a {0.129 & 0.02} GeV".

Z.}“z

In the case of the ¥ meson, we have cbserved in Ref.6, that the

patural seele of optimization of the Laplace transform sum tule is around

M¢ in order to minimize the gquark mass corrections., In this us channel,

Eq.(10) is now saturated by the K meson. Then, we deduce for M =M¢ :
£ LT+ 22 IMev (15)

to be compered to the data £, = 1.16 fTI" Egs.(12) and {18} are a further

confirmation of the ability O‘I" the Laplace transform sum rules to predict the
properties of a single resopance.

- Wé-.extend i:—t;e above analysis to the D snd F mesons which saturate
respectively the sum rule in the c¢d and os chamels. In Eq.{10) quark mass
effect enters as & product of the light and the heavy ones, so we can choose
the sum rule scale M around M.D in the dec channel where the mass effect

is les?_'ﬁgau_MQf the leadinz Q€D omes. In that case, we get to leading order

\iﬂ -{ o V— = 346.6 Mev 3 (16)
vhile in the cs channel, we have to choose M™X 2M.F in order to satisfy this
20% criterion. Clearly, we lose the optimization of the F contribution to

the spectral ﬁmctior_: end the bound is expected to be bad. It will alac be
interesting to use aum rule involving on]_.x the pseudoscalar states. We can

work with ’T’(U) (q ) (Eq.{L}} or y (q } {(Eq.(5)). However, as discussed in
Ref.3b, the T‘[ ){q ) sum rule 1nvolves leading non-perturbative effects (asee
Fqs.{6) and (T)) which tend to cancel the pole contritubtion to the sum rule [6].
Working with the Laplace transform of q, (q }s we escape this difficulty [5].

In the od channel, we saturate the q.u (q_ ) sum rule of Ref.5 by the D meson.
Using the QCD model for the continuum a.nd the positivity of higher resonance

states, we get

zl‘c/m) %

M.nz/z\,.‘z
b Bt gyin B -
.i+() +2@+—ﬁ( 4k ) Dii?a[oaﬂ M}M]
"-"_Ez._‘lﬁ":d 'Me.C‘ﬂ\u>+ WS<G‘>J] (17)
vhere we have re;lected (?? Y and & /x . The contimum threshold is

E: o MD + Qm,h_ . We optimize the above inequality by demanding that the
continuum contribution is around 10 ~~ 36% of the leading QCD order and the
guark meas correction iz less than 50 ~ 20% in order to trust the series
expansion im :—nnge - Buch conditions are satisfied for M X 2 ~ 3 GeV to

which correaponds the optimal bound b)

—f-



cfp § (Ry4s~ 45e) * fo MeV , (18)

where we have taken Ec‘: (2.08 £ 0.36) Gev [16] . We have zlso used PCAC and
th t ; .5 i ; i ¥ .
e recent result in Ref.5 in order to estimate the gquantity m, <lbfd>

In the € channel case we get

>up A
fecdy (10 %a.-. >( %i)z* 1a ¥ (29)

-

for m_ = 500 MeV and ac & 2 GeV, where fgup is the upper bound in Eq.{18}.

Notice that the above bounds (Egs.{18) and (19)) are insemsitive to the value
of A % 70~ 210 MeV.

2

I171. THE q~ = 0 SUM RULE FOR THE HEAVY PSEUDOSCALAR MESONS
An alternative way to get bounds on e fF" .. is to work with the
quantity 8) e
1
179 ‘Ps 1 -
= — = d_’t _],m.%(l’) .

&y "2 (9_0“;)3 ) v | £3 (20)
=0
It _relies on the fact that the perturbative expression of (1) in terms of the
heavy quark mass is expected to exist provided that the heavy quark mass
2 . -
mi 15 bigger than the QCD scale A To lowest order of QCD

. 2 z
doo b (3) b (70005
 ~ I % M z t ot

Ltil ’m" >>QJ"‘J=° .

which shows that 1) is & pure number, sc it is blind of the external
renormalization. Such an cbservation is helpful for the extraction of the
;S/TF contribution. This can be done working with the general result of ¢5{q2)
in the space-like region [17] or of Im \P5(t) in the time-like region [18].
We find it convenient using the last result. Taking only into account terms
which are independent of the external renarmelization 9) , we find to two loops

and including the leading non—perturbative effects {18]

2

(-'P(i) =

m;»m&‘

14+

| FD

-~

1
fnt
L ",, a Col6?led + 8((, 24 e

3

=z 1

“S Y = .¢ )})
m

vhere mJ is the invariant quark mass and M. is the running mass evaluated
2

at Q i . In the following we shall neglect <O]UJ Vb |O ) for the heavy

quarks (ngner—Weyl realization of chiral symmetry) and we shall take @ks G ]%ﬁ

0.0L4 GeV [12]. As we cen learn from Eq.(22), the guantity ?(1) is finite

(22)

up to twe loops and to the l/ﬁf terms, when m.‘].‘ =?0. Such a result is
encouraging and we expect f(l) to be finite to higher crders, as required
by the Kinoshita theorem [9]. We saturate the right-hand side of Fq.{20) by
the D meson in the &d channel. Using the positivity of the continuum
contribution %o the spectral function, we get

{5f ] M—" {1.,,(00(-951)} ~ 445 MV (23)

whaTe we have used M.DQ 1.87 Gev, mda{mc;g 0 o <O|1Pcll-'c|0 > . The first
correction in Bq.(23) ocomes from the ots term and the second one from the
<0| (&) |O> operstor. In the Cs cha.nnel we get

l"ﬂ } —‘FH.D\WP( MT:) (i Y )/2 | r(z_u)

where (1'!))5"up is the upper bound in Eq.({5). TFor ﬁsg {300 ~ 500) MeV,
Eq.(2h) gives

(e'rp\ £ (1695 ~ 4'46-4) Mev . (25)

The results in Egqs.(23) and (25) are stronger thsn in Eqs.(18) and {19), due
to the fact .th&t the Laplace sum rule scale M has to be chesen big enough
80 as to minimize the quark mass corrections. We can again improve the result
in Eqs.{23) and (25) working with higher n'® derivatives of 415(q_2] due to
the increasing contribution of resonances with n. The QCD expression of the
moments in the case Ei »7 mj is sigen in Ref.18 and appears to dépend
eruciglly on the quark mass value m. &s well =s on the way how it is
renormalized 9) . Using directly thelresult in Ref.18, the QCD correctiona to

the maments sre individually important. For large n, the momenta behave as:

-8-

-~ _
)'(11') ,5{2“1 27[3) igq me Lo Y, e e
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" +i AL

IR MR

4 a
2 nt = fd+m ;fi +
75?" me

= Lmd (“") mé

lgreo

.‘? 4?} " 1— +1: z%avl -dn {17 - = ﬂfﬂ—-))<ﬁola315 4}9 fo>
*;”‘[g-’_)(a/m;?‘:'k-/o) + 9{;{)])

{26)

SO eare must be taken when working with higher moments. Already ic the case of
‘f}o)eac‘ﬂ 4CD . correction 10 the moments is of the order of 60% but
fortuna.tely they tend to cancel out

3 3
9"(:) s('-’) 2 )}‘;fpz)/z =1 /,._w O.5F - 0.6¢
@

3Nt (m" 722 o (2T

where the first correction comes from the & term, the second one from the

S
(O'ﬁ G2|O> term. The- ?{2) sum rule will give the bound in the ed

b

Clearly, we get stronger bound than in Eq.(23) but, unfortunately, the

channel 4

N

My 14 f"__b_ {14. fed cm:h’m 2«_—_(40!125)”!(5-5)

v 2 m,

uncertainty in the derivatioa of the bound has also increased, and s0, it
becomes useless to go to moments with higher n. In the &z channel the
strange qQuark- correction to ‘f(z) is of the order of 50%. In that case,

we get, using a similar analysis as for the D meson
(f; £ [A47.52 42.6)MeV o (29)

A further use of the higher moments ¢an be obtained from the ratio

D,
?R = = {30)
"(,?awi) ?

where the QCD corrections te B become moderate, as well as the leading quark
mass dependence. For large n, the nL /T correction goes like "constant™ 4
6(-—) and the (ljm } contributicn behaves like n3. Using, for example,

the low mome?;s R, and the fact thet the continmum contribution to Rl

, we get in the &d channel

..9_

is positive

/’({

M, € 2m, (9= Ecl)/i- 0.5+ a.;_;/ X /.2.,7:9.:) Ge'lc

> (31)

where the corrections in { } come respectively from the D-ZS term and from

the glucon condensete term. In the ©s channel, we deduce

Me c(2.220.5) GeV | (32)

where the quark mass corrections to Rl tends to decrease the upper value of
the bound.

For completeness, we extend our analysis to the beautiful B mesons.
Using MBQ! 5.2 GeV [20] apnd the invariant b-quark mass mb % 6.5 ~8.2 Gev 4]
i.e. mb(mb) o 3.7~ b.5 GeV, we get from the ?(2) sum rule in the bu or

-Es channel

o $/3466~ 24h3) MV

{33)
while in the be channel
cﬂ; s (345~ 306) MV . (34)
The R 1 sun rule in Eq.(30) gives in the bu or T;s channel the constraint
Mg <(6 ~7.4) 2 0.5 6V (35)
while in the e chemnel we get *1)
My (4~ 4.9) £ 0.8 6V (36)

Iv. CONCLUSIONS
We have used QCD sum rules for the understanding of the fundamental
decay amplitudes ¢f pseudoscalar mesons which control the bresking of the

chiral flavour symmetry. An experimental messurement of the decay
amplitudes of the heavy pseudoscalar mesons 1s needed.

=10-
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gluon exchange to all orders of perturbation theory [11].

4) Qur error is the gquadratic sum of the error due to other sources
(experiment) and of the estimated QCD error. We estimate the error
due to QCD as the guadratic sum of the square ¢f each individual QCD

correction.

5} Notice that our f  is L fimes the f_ of SVZ. We consider this
result as an improvement 2 of the result given by SVZ [1vb]

8) Analogous result can also be obtained using the Laplace transform of
the first Weinberg sum rule discussed in Ref.ll. In the chirsl limit,
and using the positivity of the scalar contribution to the sum rule,

the estimate in Eq.(14) could be replaced by a lower bound on f‘1r

T) Recall that G —7e+e— ~ % utz'rr MY/QB'; (o being the QED fine structure
constant).

8} Note that the quantity used by NRY [3s] depends” crucislly on the
non~perturbative effects due to the Werd identity in Eq.(6).

9) One must notice that the moments of ¢5 has lass-power of i? than

that of Ref.18, BSo, care must be taken for the corrections due to the

mass repcrmalization.
10) We expect that the continuum contributicn to CQ(M is bigger than to

EP(!»&) because the latter iz more weighted by low eneréy (t = n_%).
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mass and coupling has alsc been done in Ref.[21] . Our bounds agree
with their result coming from higher moments analysis. However, working
with higher moments could be useless in the strange channel if the 4 =
quark mass i=s higher than 156 MeV due to the important quark mass

correction.
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