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ABSTRACT

It is shown that the unon-linear Rg  gauge condition already
introduced for the standard SU(2) x U(l) model can be generalized
for any gauge model with the same type of simplification, namely
the suppréssion of any coupling of the form: (massless gauge boson).

(massive gauge boson).{unphysical Higgs).
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A variant of tha RE gauge condi:ionl) has first been proposed by Fujigawa

2)
in the 0(3) wmodel. An explicit scudys) of this non linear RE gauge in the
atandard SU(2) x U(l) wodel of weak and electromagnetic interactions has allowed
to show out virtues of such a gauge condi:iou. simpler Feynman rulas and in par-
ticular the vanishing of couplings AY H‘ la' where ¢"‘ are the components of
the unphysical Higgs swallowed up by :he W bosons. The compucational interest
of such a gauge condition has been illustrated in the transition Higgs ~ vy

in Ref.(4) whers seven of the nine dominant diagrams containing W's ia the loop
and prasant in the usual linear qauge discppear in this new gauge, while in the
Paddeev-Popov ghost sactor, only one new diagram appears. This new gauge ondi-
tion was simply obtained by replacing in the usual RE gaugs term °gG

derivative 3u by the covariant derivative with respect to the unbroken Eul)e a
group i.e. @ au - Bu - ieA:.Q : one notices immadiately that the presence ¢

this new term in the gauge functions will make the gauge condition nom lineax

Computational simplificatinne are of course even more importane when large
groups and representations are considered, which is the case in grand unified
theories. Thareiore, it seems that this class of non linear gauge conditioms c.a
be convenient for calculating in any gauge model. Indeed let G be the gauge
group under consideration which is spontamecusly broken down ta its subgroup §
via the Biggs representation ¥, then one can show that using the S-covariant
derivacive instead of the usual LN in the gauge condicion for the massive gauge
bosons will insure the vanishing of all tri-limear couplings of the form :
(masslass gange boson).(massive gauge bosons).(unpnysical Higgs). The Faddeev-
Popov ghost rector due to this new gauge condition is worked out inm detail which
allows in the case of a particular gauge model and for a definite physical process,
to choose, between the usual limesr RE gauge condition and the non linear one,

the more adequate one.

The proof of such a property is very simple and is based om limear algebra.
To gimplify the notations, we will assume the gauge group G to be simple, and
therefore the presecce of only ome coupling comstant (the generalisation to a
semi-simple group is straightforward and will be rapidly discussed at che end of
this lecter). In the following G is supposed to be compact. Let % be the
Lie algebra of G, A the Lie algebra of the unbroken subgroup S, it is always
possible ta choose a basis for g made by 2 set of generators Eg (s = 1,2,...,
g = din.b) of A completed by elements g (B=d+ ..., din § - din.d «
= Y - 0) associated with the "broken part” of % The elements of this basis
will be suitably normalized with the help of the Killing form on §. The covariant
derivative with respect to G acting on the rapresencatiow space of 9(G) is

defined as:



\'H

P G - - E] B,
Du du g Au TG 3“ g(AM.‘J.'s + Au‘['.a) (1

wvhere the TG's are the representatives of the generators t for the comsidered
representation 9(G) and the gauge fields AG(x) s»a functions of x € M*. If

¥ is the represeutation space of D(6) thers exists in # a scalar product

<g,8'> ¥ R,E'e & (€3]

making thia representacion 9(G) unitary, since G is compact. Then tha
matrices T will satisfy che conditioum:

<1‘GH,H'> + <E,TGH'> -0 . N¢))
Now, let us cousider the Higgs kinetic term:
_):Ei“’ = <0 E,D B 4)

B being the most general elemant of the chosev (reducible or irreducihle) Higgs

representation . The quantity < is real, as is any part in the Lagran-

Riggs
gian density. Therefora even in the case when the Higgs repreaentation 'Ee- ia

complex, we will use 3 real acalar product om H defined as follows:

(8,9') = Re <B,H'> = (B',H) (5)

for any couple of vectors B and H' in %,
Lat us call Eo the direction along which E pgets a uou zero vacuum expec-
tation value v :
<> =v 8 with (8 ,B) = [[B []? =1 63
o [« 2N -] o
Then:
T’(EO)-O a=1,...,0 (€]
while the TB(EO) Bwag+l,,..Y span a linear subspace in ¥ of dimension
Yy - a.

Now, without loss of gemeraliry, we can choose a basis for:

g-450% (8

such thar the following two conditions are satisfied ¢

(a) irs Rilling form is a multiple of the identity

(b} ths generators Ty verify:

(Tg(B),Tpi (B)) = uldyy, = ®

gg’ *

The gauge boson masses are given by gzvzug .
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Let us rapidly show that this is always possibla. We cam in 2 first atep choose
a basis of & such that the Rilling form appears as a multiple of the ideaticy.
Then comsidering :l;g marrix Wdefined by : Qﬂﬂzs, - (TBCEQ), T, .(HQ)) which is
real and symmetric, we can diagomalize it with the kelp of an orthogonal matrix
0 'M;B. - (0 TB<HQ)' [¢] TB.(HQ)) = Dgyr+ Such an orthogonal transformarion on
the broken generators ‘I.‘B will not affect the diagopal Killing form.

Moreover, since the subgroup S leaves invarianc the scalar product:

(sTpS™1(H,), ST, STHE)) = (T3(R), Ty, (B)) (10)

the matrix D will appear as a multipla of the identity on each subspace %i of

‘B irreducible uuder S, i.s.:
k .
B-S)l%i, ES,&.:J;%i an

ry 3 . - 2 ’
and can be written as 2 direct sum : D =@y f /ﬂdimﬁi .

So we make a shift on the vector H
H=8'+v g 12)

and va also separate H' into two pieces, orthogonal with respect to the real

scalar product above defined
B o= b E) s e (13)
B o
the bB being real functions, and

@, ;@) =0 Be=og+ iy . (14)

The bB are therefore the "unphysical” Higgs f£ield components which are "ealen
up” by the correspouding ghost gauge bosons BUAE. One remark imporcant for our
problem is that the action of the unbroken subgroup § on the unphysical Higgs
subspace i3 identical to its action on the (soon) massive gauge bosons: indeed,

infinitesimally, one has

def
B ef B
Tgla . Ty) 4 [rs, rn:l as)

and also: def
B ef 8 ¢
T ) = b [T, T5) @) (16)

sinca TS(HD) = 0 or using the property Eg,':i] c B where ™ is such chas
1

S -4 ©B s vector space and cgp are the structure constants !
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B B' .8

1.'S(Au TB) = °sy Au T3 an
B B .B

Ts(h TB(BO)) * Cop k TB'(KO) . (18)

So, let us develop the expression of 'éliiggs :

@8, 0, = (3,6,2,9) + 388 a 6% (1 @)1,
» g2e? A2 (1), Ty @)
«2 Eu:auhs'u.rura. @)= A% v P (1 @)1 Ty )
- 45601 - A:hB'(Bu@,TB’LB,HQ)]
X A ROR MEIRE FWASTINOR N NURY a9
o A28 WP rorym) 1T, .(an))]
« 2t 422 [a0.15, 000 + LSRR R
+ 2% AT (14T, B T,

B, .B' )
-2z v Auauh (Ta (B0, T (B))

The last term (“unwancted” tarm) can be cancelled if we work in a 't Hooft gauge:

& 1 B B 21 S. (2
LGauge - T H(auau *fgvh )TB(Ha)“ 2n (auAuTS) @
1 S (2, 1 PR
where =~ Ty (au.xurs) is, up co the factor - il the square of the Killing
Zorm on &he uobroken parz @ AS.T s and can be rewritteu as: - Ty ¢} As)2 .
[To "] ing [T

We will not be interested by this parc in the followinog.

The first term in the r.h.s. of eq.(20) can be rewritten as:

-l AP vh“)r(a)'{z--'— 2GY mym )1, @) @
€ ' & 3R] E%LL 5o 1 5
using eq.(9), with the q: being the Gauge functions defined as:

B B B
ql_ 3, Esvbt. (22)
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A patural extension of this gauge to a non-linear ome is

2
_l o a8 B B . . 5,2
Brsangs =~ H(au g 45 1A} 1@ + £ g v A @) l AW
(23)
which will then allow to makes disappear not only the last term, but also the last

but one in eq.(19). Rewritting f

NLGauge as :
8 S
";N'l.caugl = 6N'l’.(;av.lg!: * '&Gauge (20
with
L]
Browgn -+ BB Gy o
and ‘ B )

B B 5 ,B .
gm Tg() = (3, A + € v h)T () - g &) A, Tg Tp(E)
which can be rewrittea using (16)

B B B B s ,B"
G T = Eu A +Egvh - gcgma Au] Ty(H,) (26)

one obtains the relation

B _ B B s ,B"
G = Qo - F s A4 @n
and tharefore
21, 3 B s' B" ,B" _
‘l’l.Gauge ‘GLGauge H E Csp" CS ): A AL Au
B s ,B" B'
- 28 cgpu A A (auAu )J (Tg (), Tg. (H))) (28)

B s ,B"  B'
+ 2 vegy, A A B (Ty(B), Ty (B)).
Looking at the last term in eq.(28), we recognize that it is exactly the opposite
of tha last but one term in eq.(19): indeed, because of the antihermiticity of

the T operators:

L}
2g% &5 & B (T Ty (E)), Ty(R)) =
- -2gtv A% A% & W1, @), T Ty,
= -2g2v cE A5 4B ” (r (8,), Tye(B)) @
sB Tar 8o+ Tpr

a"

B S
a -2g2y cogn Ay A, B (rn.(aa), Ty(E))

and therefore the terms (massless gauge boson).(massive gauge boson).(umphysical

Higgs) are not present in 'GE'iggs + 'a;ﬂ.ﬁauge .



He have now to counsider the Faddeev-Popov ghost pieces, and to atudy how this part is
Lec us recall thac

affected by this non~livear gauge as compared with the linear ome.

the Faddeev-Popov part can be written
- g2 ¥

AF.P. “-€ ag Ms n G0 v

is the matrix defined by :
8

W84

Y § W'

an

where M
-
= exp g w.T), and

W' being the infinitesimal paramaters of the gauge group G (U
Y the (anticommurting, scalar) Faddesv-Popov fialds. Finally L is
the matrix tensor, diagonal according to somditions (a) and (b) which diagonalize

£ and n

the Higgs kinetic term and tha gauga box.n l\;l physical mass matrix.
From eqs (27, 30, 3!) it is enap to analysa tha newv terms appearing inm Jgp P

Actually :
- - s ¢
Lirrr ™ Lore. " G om PR G2
with
B B s ,8° '
L ==z cspr Ay L (33) :
Under the action of U = exp g .7 the gauge bosons traunsforam a:c :
LIT+EFelcor«nifo! (38)
U u’ g u
or infinitesimally:
) G G G G' ,G"
ﬁAu-aum +scG,G..m A“| . (35)
It follows that the new term appearing im -gr P is simply
.
PN 7 IV il (18
B'"B"B S B
§u §w
with
B
58 L, B 4B a2 W5 s* 3"
5.5 T F s Ay %y T8 e Corpr Ay A
_.2.8" B st 8"
- 8" Coan Csrpe Ay Ay
J:B e S0
: : R : I .28 E 5" B
5 o8 8 Sgpr Ay au B cprgn S Ay Ay
_ .2 .8 B G S
8% cgig Sspr A, A

The first relation can be rewricten as follows after use of the Jacabi

idencity :



B B! rS' B'
o -~ acgg & 3 - 82 K (T, [T, (87 1., &7 T D)/ R(Ty,Tp)  (38)
where the use of the Killing scalar product K(TB,XJ expresses that ome has to
pick up only che coefficient of Ty in X. The second relation is more compli-

cated to writa in an analogous way.

Let us summarize the situation. Following the kind of physical process
one has to calculate, the non~linear or the limear R_ gauge may prove more
convenient. One can choose aither to suppress all diagrams of the type (massless
gauge boson).(massive gauge bosons).(non physical Higgs) and then enlarge the
Faddeev-Popov ghost sector (eq.37) with a gauge condition of the type (eq.23),
or to keep the usual linear gauge condirionm (eq.21) without perturbing the F.P.
gsector but keeping the above mentioned tri-linear couplings. Owing te the simple
forms of eq.(37) which necessitates only to calculate double commutators in the

Lie algebra of % one can easily decide the most econowical way.

Another question is whether a non-linesr gauge condition can be defined by
replacing in ag,_'c. au by the covariant derivative Du with respect to 2 sub-
group bigger than the unbroken ome 5. Ona sees immediately that by choosing
Du in the whole algebra % does not help more than limiting ourselves to % .

Indeed, in o, one will have :

¥.L.G.’
s B B, _ |, 5. 1.8
iau -5 g+ 4 'IB)}(A 1y = [au ~g A Ls}(A 1) (39
. s B, 1,3y o ;S 3, B
since {A ‘l‘s + A TB}(A 'IB) E ‘l‘s + A TB’ A .TBJ

However, it could be sometimes interesting to defime in %G the covariant
derivative with respect to a subgroup S' bigger than S but smaller tham C
itself, i.e. ¢ 2S'2 S, and in particular with respect to subgroups S' of
the form: S' = § x U(1). In the case of the electro-weak SU(2Z) x U(l) gauge
group, the choices in 'gNLG of Du with respect to U(I)e.m. or H(I)TJ wlI(l)Y

induced more or less simple contributions for other diagrams

Finally, let us mention that the non~linear gauge conditioms can be used in
the case of semi-simple gauge group G = .‘5 Gi' One has then simply to take care
of the differemt coupling comstants 2 é;sucia:ed with the simpleucumpuuents Gi'
If the unbroken subgroup S 1is a direct product of subgroups § uil'_llsi, S; ¢ G
then the non-linear gauge conditiom will be defined by introducing

Bu =3, -t g Asi.‘rs, ., If S is pot of this form, but contains for example a
s §

Pt

"diagonal" subgroup built from several isomorphic subgroups of different Gy, then
one has to redefine the physically relevaac coupling constants ome wanty to keep

this is again the case of the electro-weak SU(2) x U(1) group ian vhich the



'l

unbroken part U(Um is generated by the combipation T3 + Y wich T3 amd Y

being respectively generators of the SU(2) and U(l) part.

A detailed study of this non-linear gauge condition in the grand unified model

SU(5) will be found in Ref. 5.
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