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A B S T R A C T 

It is shown that the nan-linear Re gauge condition already 

introduced for the standard SU(2) x 0(1) model can be generalized 

for any gauga model with the same type of simplification, namely 

the suppression of any coupling of the form: (massless gauge boson). 

(massive gauge boson).(unphysical Higgs). 

I. .1. ?. ?. C„!M::. .-- .•..:..:•,'. 



I) T) 
A variant of the R gauge condition has first been proposed by Fujigawa 

3) 
in the 0(3) model. An explicit study of this non linear R_ gauge in the 
standard SU(2) x 0(1) model of weak and electromagnetic interactions has allowed 
to show out virtues of such a gauge condition: simpler Feynman rules and la par
ticular the vanishing of couplings A Y W~ $+ where <j>+ are the components of 
the unphysical Higgs swallowed up by the W bosons. The computational interest 
of such a gauge condition has been illustrated in the transition Eigga - yy 

in Ref.(4) where seven of the nine dominant diagrams containing tf's in the loop 
and present in the usual linear fauge disappear in this new gauge, while in the 
Faddeev-Popov ghost sector» only one new diagram appears. This new gauge ondi-
tion was simply obtained by replacing in the usual R» gauge term oeL th 
derivative 3 by the coveriant derivative with respect to the unbroken D u ) 
group i.e. : 3 •+• 3 - ieA .Q : one notices immediately that the presence e 

this new term in the gauge functions will make Che gauge condition non linear 
Computational simplifications are of course even more important when large 

groups and representations are considered, which is the case in grand unified 
theories. Therefore, it seems that this class of non linear gauge conditions C.JZ 

be convenient for calculating in any gauge model. Indeed let G be the gauge 
group under consideration which is spontaneously broken down to its subgroup S 
via. the Higgs representation 3C, then one can show that using the S-covariant 
derivative instead of the usual 3 in toe gauge condition for the massive gauge 
bosons will insure the vanishing of all cri-linear couplings of the form : 
(massless gauge boson).(massive gauge bosons).(unphysical Higgs). The Faddeev-
Popov ghost sector due to this new gauge condition is worked out in detail which 
allows in the case of a particular gauge model and for a definite physical process, 
to choose, between the usual linear R gauge condition and the non linear one, 
the more adequate one. 

The proof of such a property is very simple and is based on linear algebra. 
To simplify the notations, we «ill assume the gauge group G to be simple, and 
therefore the presence of only one coupling constant (the generalisation to a 
semi-simple group is straightforward and will be rapidly discussed at the end of 
this letter). In the following G is supposed to be compact. Let ^ be the 
Lie algebra of G, •& the Lie algebra of the unbroken subgroup S, it is always 
possible to choose a basis for & made by a set of generators t (a • 1,2,..., 
ff - dim.-S ) of -& completed by elements t_ (B - a •*• 1,. -., dim £ - dim -X • 
- Y - a) associated with the "broken part" of <5 . The elements of this basis 
will be suitably normalized with the help of the Killing form on <J . The covariant 
derivative with respect to G acting on the representation space of S(G) is 
defined as: 



D - S - g A G T - 3 - g(A3.T * A BT_) (1) 

where the ? G'
S are the representatives of the generators t for the considered 

representation 5?(G) and the gauge fields A (x) *r- functions of x e M*. If 

J£ is the representation space of 5)(G) there exists in 3d a scalar product 

<H,H*> V H,H* € H (2) 

making this representation ^{0} unitary» sine* G is compact. Then the 

matrices T will satisfy the condition: 

<T£*R*> + <H»T5H'> - 0 . (3) 

Now, let us consider the Higgs kinetic term: 

jL. - <D H,D H> (A) 

H being the most general element of the chosen (reducible or irreducible) Higgs 

representation St. The quantity *^ai is real, as is any part in the Lagran-

gian density. Therefore even in. th* case when the Higgs representation #* is 

campiez» we will use a real scalar product on it defined as follows: 

(H,Hf) - He <S,H'> - (B\E) (5) 

for any couple of vectors H and H' in & . 

Let us call H the direction along which H gets a aon zero vacuum expec
tation value v ; 

<H> - v H with <H ,S } " I|H I J* - 1 (6) 

T sCE Q) - 0 s - I,.,.,a (7) 

while the T

3 ( H Q ) B - a * 1,,.. Y span a linear subspace in ~^t of dimension 

Y - a. 

Mow, without loss of generality, we can choose a basis for: 

§ - 4 © % (8) 

such that the following two conditions are satisfied : 

(a) its Killing form is a multiple of the identity 

The gauge boson sxsses are given by g 2v îu| . 



Let us rap id ly show tha t t h i s i s always p o s s i b l e . We can in a f i r s t s t ep choose 

a bas i s of Ç such t h a t the K i l l i n g form appears as a mul t ip le of the i d e n t i t y . 

Then consider ing the mat r ix ttt? defined by : H i a i " &•*&„)> T B ' ^ H O ^ «hich i s 

rea l and symmetric, we can d iagona l i ze i t with the help of an orthogonal matrix 

0 : %aB» •*• CO TB(H ) , 0 T_,(H )) - D__,. Such an orthogonal t ransformat ion on 

the broken genera tors T_ w i l l not a f f e c t the diagonal K i l l i ng form. 

Moreover, s ince the subgroup S leaves i n v a r i a n t the s ca l a r product : 

(ST.S-1(H.) , ST_,S- l (H ) ) - (T_(H ) , T_,(H J ) (10) 
B o a o D O D O 

the matrix D vill appear as a multiple o£ the identity on each subspace Q. of 

^ irreducible uuder S, i.e*: 

&-®\, p . ^ ' s S t (in 

and can be written as a direct sum : D -©u 2, *H.- flu -

So we make a shift on the vector H 

H - H' + v H (12) 

and we also separate E' into two pieces, orthogonal with respect to the real 

scalar product above defined 

(13) 

{#, X B C H O ) ) - 0 H - a + I,...Y • (H) 

The b are therefore the "unphysical" Higgs field components which are "eacen 

up" by the corresponding ghost gauge bosons 3 A . One recark important for our 

problem is that the action of the unbroken subgroup S on the unphysical Higgg 

subspace is identical to its action on the (soon) massive gauge bosons: indeed, 

infinitesimally, one has 

V A ° - V diJ *! [ v TB] < I 5> 

and a l s o : d e £ 

V h VV> * h [ V T B ] <V < 1 6 ) 

s ince T g(H ) - 0 or using the proper ty \&*M c -S where « i s such chac 

as vec to r space and c__ are the s t r u c t u r e constants : 



SB B ' v o' 

(17) 

(18) 

So, let ua develop Che expression of *£„. 

<V' D u H ) " < V ' 3

U

4 ) * V V < V ( V > I B t H o > ) 

• g 2 ^ A V ' ( T B ( H 0 ) , I r ( H 0 ) ) 

* 2« [ ^ / ' « . V B - ^ O » - # / "B,«B«o>>Te W > 

' A X'» , h ' 'W, ) ' , C' I B' ( B . » ] 

* 2 ^ 4 X ' QvM.lg.C.» «•liB,'(IBTB,,(Hj),TB,(Ho)fj 

• J 8 2 ' A * A y , « S T B ' ( a

0

) ' T B C H o ) > 

The last term ("unwanted" term) can be cancelled if we work in a 't Hooft gauge: 

^ u 8 e - - ? | | « A • « « • »B> W I T - ir « „ • / «°> 
1 S 2 ! 

where ~ -r~ (3 A T e) is, up to the factor - •=— , the square of the Killing 
zn u ii a - in i s 2 

îorm on the unbroken part 3 A .T-, and can be rewritten as: - -r- Z (3 A ) 
M M S 2n g u u 

We will not be interested by this part in the following. 
The first term in the r.h.s. ot eq.(20) can be rewritten as: 

- i ||<v; • « • » ̂ w i f --rît iï < w - w «•> 
using eq.(9), with the 5 . being the Gauge functions defined as: 

(22) 



A natural extension of this gauge to a non-linear one is 

-W* - - Ï 11 (\ -* Au TsK w + f>** w I f - k i % & 
(23) 

which will Chen allow Co make disappear aoc only che lasC Cenn, buc also Che lasc 

buc one in eq.(19). Sevritting « J ^ ^ - J «» : 

"*WTrt«..™« " MT/îatirt^ ^ (24) 
NLGauge NLGauge Gauge 

with 

L̂Gauge'-T 1 L S S L < W ' V « . » ( 2 S ) 

£ . W - <»w »! * C • * "
8> W - g *» AB Ig TB(Ho) 

which can be rewritten using (16) 

SL W - [»„ Au + Ç * » "B - * 4." A„ A!] V V <"> 
one obtains the relation. 

§L • SÎ - * 4 ' 4u < C 2 7 > 
and therefore 

. ^ " . 1 r 2 . . a 

SB S B u li u u 

B B' ,S , S ' ,B" AB' 
^NLGauge * "^LGauge ~ 5 [f 

" 2 8 4 " Au AS" "u^'O W ' TB'<V> < 2 8 ) 

+ 2g 2 v4 B „A=Aj"h B ' (T B (H Q ) ,I B , (H o )) . 

Looking at the last term in eq.(28), we recognize Chat i t is exactly che opposite 
of the last but one term in eq.(19): indeed* because of the antihermiticity of 
the T operators : 

2 g ^ A = A j h B ' ( T s T B . ( a o ) , I B (H o )) -

. - 2 g ^ A = A B h B ' ( T B , ( H o ) , I s I B ( H o ) ) ^ 

- - z 8 2 " = S B A S A S h B , ( T B ' < H < . > ' V < H o » 

--ÏI I»4B-*î 1î" , , ï , t tB'^- TB<H .» 

and therefore the terms (massless gauge boson).(massive gauge boson).(unphysical 

Higgs) are not present in ^ . g g 3 + ^ILGauge ' 



6 

We have now to consider the Faddeev-Popov ghost pieces, and to atudy how this part is 

affected by this non-linear gauge as compared with the linear one. Let us recall thac 

the Faddeev-Popov part can he written 

^F.P 

where M is the matrix defined by : 

- " *° °*a «? "Y 

T S J 

(30) 

(3!) 

w Y being the infinitesimal parameters of the gauge group G CO - exp g w.T), and 

5° and n T the (antticammucing, scalar) Faddeev-Popov fields. Finally p . is 

the matrix tensor, diagonal according to conditions (a) and (b) which diagonalize 

Che Higgs kinetic term and the gauge bo?-.n A, physical mass matrix. 

Prom eqs (27, 30, 31) it is easy to analyse tha new terms appearing in •<!?„ - . 

Actually : 

S 
•H.L.P.Ï. T..F.P. " H DBS' , G 

(32) 

JPS - - « 4- *î < • 
Under the action of 0 " exp g u.T the gauge bosons transform at 

. ?* Î .1 - - (3 tOU"1 + n . i . T ( T 1 

(33) 

(34) 

or infinitesimally: 

\ »G * * 4< 
It follows that the new term appearing in *£_, _ is simply : 

J1* sj> 

SJC" 
' " S <=««• *,. 

2 B' 

=SB' k l \ - »2 4'B" CSB'" k l k l 
1 B" B ,S .S 

- « «B'G °SB" Au An 

(35) 

(36) 

(37) 

The first relation can be rewritten as follows after use of the Jaeobi 

identity : 



. s • 8 l K <VCTS'I> V ' A T B']] ' ' K < W <38> 

where the use of the Ki l l ing sca lar product K(T a,X) expresses that one has to 

pick up only the coe f f i c i ent of T_ in X. The second re lat ion i s more compli

cated to write in an analogous way. 

Let us summarize the s i tua t ion . Following the kind of physical process 

one has to ca l cu la te , the non-linear or the l inear R_ gauge may prove more 

convenient. One can choose e i ther to suppress a l l diagrams of the type (massless 

gauge boson).(massive gauge bosons).(non physical Higgs) and then enlarge the 

Faddeev-Popov ghost sector (eq.37) with a gauge condition of the type ( eq .23 ) , 

or to keep the usual l inear gauge condition (eq.2 l ) without perturbing the F.P. 

sector but keeping the above mentioned t r i - l i n e a r couplings. Owing to the simple 

forms of eq.(37) which necess i ta te only to ca lculate double commutators in the 

Lie algebra of S one can e a s i l y decide the most economical way. 

Another question i s whether a non-linear gauge condition can be defined by 

replacing in o&. _ 3 by the covariant derivat ive D with respect to a sub

group bigger than the unbroken one 8. One sees immediately that by choosing 

D in the whole algebra <S does not help more than l imit ing ourselves to --5 . 

Indeed, in »6 _ c , one w i l l have : 

K - « ̂ \ \A*VICA°V ; h - * *%)<AB.y as) 

'B 
[ ? T S • A B T B , A B . T B ] 

However, it could be sometimes interesting to define in <A- N r the covariant 

derivative with respect to a subgroup S' bigger than S but smaller than G 

itself, i.e. G J S ' J S, and in particular with respect to subgroupa S' of 

the form: S' - S * H(l). In the case of the electro-weak SU(2) * U(l) gauge 

group, the choices in *£._„ of D„ with respect to U(I) or ÏÏ(I)„ * U(l)_ 
«Lu u e,m. T-, T3 i 

induced more or less simple contributions for other diagrams 

Finally, let us mention that the non-linear gauge conditions can be used in 
n 

the case of semi-simple gauge group G • n G.. One has then simply to take care 

of the different coupling constants g. associated with the simple components G.. 
i n L 

If the unbroken subgroup S is a direct product c-f subgroups S ",I S;, S^ c G^ 

then the non-linear gauge condition will be defined by introducing 

D • 3 U - ? g. A ^-Ts. . If S is not of this farm, but contains for example a 

diagonal" subgroup built from several isomorphic subgroups of different G., then 

one has to redefine the physically relevant coupling constants one wants to keep : 

this is again the case of the electro-weak SU(2) x u(l) group in which the 



unbroken pare tj(l) is generated by Che combination T 3 + Y with T 3 and Y 
being respectively generators of the SU(2) and U(I) part. 

A detailed scudy of this non-linear gauge condition in the grand unified model 
SU(5) »ill be found in Ref. 5. 
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