£R. 920230 20 ﬂ

The Potential Harmonic Expansion Method

M. Fabre de 1a Ripelle

Division de Physique Théorique*, Institut de Physique Nucléair
F-91406 ORSAY Cedex

IPNO-TH B82-9 MARCH 1982

* Laboratoire associé au C.N.R.S.



Wt

Abstract

Vatious'properties of the hyperspherical potential basis
are investigated. The expansion of any two body function, in
particular the two body potential, is given. The matrix elements
with two and three potential harmonics needed for the construction
of the potential matrix are calculated. Useful recurrence formulae
are derived. The concept of potential basis is extended to systems
with any number of fermions. A method for improving‘the accuracy

in the expansiom of the wavefunction in taking more than the two

body correlations is suggested.
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Introduction

Among the various methods used for solving the Schrddinger
equation the Hyperspherical Harmonic (H.H.) expansion method seems
to be one of th; most efficient. But any method has its own diffi-
culties.Here the large degeneracy of the H.H. basis prevents to
take the complete basis into account in the expansion problems.
One must therefore select a restricted basis adapted to the inves-
tigated problem., It has been shown longtime ago that in chosing
the potential basis(i) for the expansion of the wave function ome
nearly exhaust the effect of the potential leaving only a weak

regsidual interaction.

It is the consequence of the property that, for a two hody
interaction the pgtential basis gives a complete description of the
two body correlations. Therefore to go beyond it is necessary to
introduce the many body correlations which give only emall contri-
butions, ai least in nuclear bound state problems, because the pro-
bability for three particles (or more) to interact at the same

time is small.

In this work a method for constfucting the potential basis
and calculate the related potential matrix is investigated. The
s0 called optimal subset, which is actually the ingredient from
which the wavefunction is comstructed, is constituted by linear
combinations of elements of the potential basis for various pairs
of particles adapted to the required symmetry in the exchange of
particles. Before going into the subject let us begin with a brief

history of the potential basis.
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In the first stage of the H.H. expansion method omnly the
three and four body nuclear bound state have been investigated(z’a).
The results was not encouraging because too many coupled equations
should have been integrated to obtain a converged solution even
4) (5)

with the most simple potentials Then Simonov constructed

a basis introducing the symmetry in the three particles system as

a quantum number. This basis is obviously a linear combination of .
the unsymmetrized complete basis, nevertheless in keeping only the
H.H. exhibiting the required symmetry one reduces again the number
of components occuring in the expansion of the wavefunction. But
even in using this reduced basis the degeneracy was still too large
to enables one to treat the three body problem with realistic
interactions(s), because a4 too large number of coupled equations
have again to be integrated in order to obtain a good accuracy.
Then the potential basis was introduced 1 in order to reduce to
the minimum the number of coupled equations in keeping only the

equations directly connected to the most important term in the

expansion of the wavefunction.

This potential basis is extracted from the product of the
potential and the predominant term occuring in the expansion of .
the wavefunctioa. The first'proof that this procedure leads to a
good solution was given in using the optimal subset for solving
the trinucleon bound state in the space completely symmetric S
state (7’8’9)_Erens et algs) expressed the potential basis as
(5)

suitable linear combinations of the Simonov basis and studied

the error made in using exclusively the optimal subset. The poten-
tial basis which was in a first step only constructed for central

two body potentials has been later on defined for any temsorial
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two body operator (10) and in particular for the nuclear temsor

force.

Nearly at the same time Efros(ll) also derived the equa~-

tions leading to the potential basis but he did not understand
the adequacy of the technic using the kinematic rotation vector(za)
as a tool(l) to derive the matrix elements with potential harmonics.
The first physical application of the potential basis has been the
calculation of the bound state of the trinucleon system and
436(8,9,12-19).

To this respect J. Bruinsma et al.(lz) who did mot use the
potential basis for the D state occuring in the triton wavefunction
had difficulties to obtain a'converged solution because too many
harmonics were included in the D component. Since its first intro-
duction all the good realistic calculations (13-19) have been
done in using the potential basis. The extension of the calculation.
to systems with a large number of fermions is difficult because
the basis must be defined individualy for each investigated state.
A method for treating this problem has been proposed by Gorbatov
et 81.(20) and applied to the calculation of either the ground
state or excited states of light nuclei with the semi realistic
GPDT potential (2%, ' '

In recent papers (21,22) we presented another method for
solving this problem in defining the weight function associated
with the harmonic polynomials comstituting the potential basis.

The concept of potentail basis is so important in the H.H. expansion
method that we thought that an extensive analysis of the properties

of this particular subset of the complete H.H. basis deserves a

publication.
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In this work we derive the potential basis from polynomials
associated with a weight function. Then one explains how to calcu-
late the H.H. expansior of a two body operator. In the H.H. expan-
sion method the Schrddinger equation is transformed into an infi-
nite set of coupled second order differential equations. In the
last part of this work one shows how to obtain the various matrix
elements needed for the calculation of the potential matrix ovecuring »

in the coupled equationms.

Finally, a few simple applications are given in order to

illustrate how the H.H. expansion method must be used.-
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1-The Hyperspherical Harmonics

Let (El,...,gn)bbe a set of linear coordinates. A homonogeneous
polynomial of degree L,H[L](El,...,gn),is harmonic when it fulfils

Laplace's equation

N
N v? H[L](El""’tﬂ) =0 . (1.1)

=1

e

Let us define the hyperradius

- 1/2
re= 5; (1.2)
=1

The function

-1, -
Y (@) = B () , (F is the set £,,..., &), (1.3)
{L] [ L] 1 N
is called hyperspherical harmonics (H.H.). Q is a set of 3N-1
angular coordinates describing the position of a point at the sur-
“ face of the unit hypersphere r = 1.

[L] is a2 set of 3N-1 numbers labelling the polynomial. It ecould

be for instance the degree n of each of the linear coordinates E
3N

occuring in the polynomial, subject to the condition I . = L.
i=l

YILI(Q) is the value of the harmonic polynomial .H[L](E) at the
surface of the unit hypersphere r = I. The complete hyperspherical
harmonic basis can be calculated by recurrence. For this purpose
one uses the property that the H.H.'s constitute a complete basis

for functions defined over the surface of the unit hypersphere.
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Therefore, ik the n[L](gl,...,gq) constitute: a complete set
of orchonormalﬁzed H.H. for the linear coordinates (El,...,Eq),
then the complete set for the coordinates (51""’5q'5q+1) is given

by the solution of the equations :

(L [L*
j{u,L]<5,,...,sq> PalEary) Por Egup) B pjEsesB) (1.4)

4@y = 811,011 %,n"

where the integral is taken over the surface of the unit hypersphere

in the q+! dimensional space and the p's are polynomials.

Using the hyperspherical coordinates

Eq+l =r cosd)q+1
'51 = r sin¢q+l e s:i.nd)i+l cosd)i (1.5)
El = r sin¢q+] e sip¢2 (2 =0)

the surface elements is given by

q-1 q-2

qu+l = (sin¢q+l) (sin¢q) e sin¢3 d¢q+1"' d¢2
(1.6)
and the condition (1.4 ) becomes
" 2L+q-1 1 L
(sinf ) Poleosd )P i (cost 1) db .y = $n,n' (1.7)

0

. L
The polynomials pn(x) associated with the weight function

|



L+§-1 L+5%l
(a - x?) are Gegenbauer polynomials C (x). The basis
n
obtained by recurrence, which is a product of Gegenbauer polyno-
mials is not adapted to the physical problems because it is not

covariante im a rotationm of any vector Ei in the 3 dimensional
space.

Instead one can define the harmonic polynomials independently
for each coordinate Ei' Let HL(ga’ES"") and hn(Ei,Ej,...) be
two harmonic polynomials of degree L and £ respectively of two
separate sets of coordinates (EG,EB;...) and (Ei,fj,.x.).

The product HL(Eu"")hE(Ei"") is also a harmonic polynomial of

degree L + %. This result is an obviour consenur :cc of the linear

structure of the Laplace operator

N
72 = Zv; (1.8) ~°
im}
Let H[L ](al....,E 1) be the complete set of harmonic polyno-
N-1
mials for the first coordinates (E ,...,E ), then H (E ’
1 N-1 (5 W g

2 oy
>
""EN l)E YE (wN), where wg are the spherical coordinates of

EN and Yl is aspher;cal harmomic, is again a harmonic polynomial.

Using the notation of the Ref.(l)

-1 /2
[?1 E':] = v sindy €y = T cosdy 0<¢N<% (1.9)
i=

Eq.(1.4) becomes :

/2
Ly + %y iy 2L, _ . +3N-4 2(8+1)
PnN v (cos¢N) 12 y -1 (cOS¢N)(sin¢N) N-1 (cosp) ¥ ddy .

0 -
Sp,n’ (1.10)
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Ly-1o%y
The polynomials P, are generated by the weight function
3N-5 1
Ly1*" 3 btz
(1 =~ x) (1 + x) s X = c052¢“,
in the range -lgxgl.
They are the Jacobi polynomials
v A +l
N-1""N2
_ . D-5"
Pn(x) with V-1 " LN-1+-§—

in the D = 3N dimensional space. To obtain our basis we now apply
a recurrence formula, starting from the 3 dimensional space which
provides the spherical harmonics ™1 @wp). The hyperspherical coor-

21
dinates that we use arézs)

Q(wl;wz,¢2: ...;wN,¢N) (1.,11)

s

where wi are the two angular coordinates of Ei and ¢i is given by

i-1

2a) &
tand, =( g;) £ (1.12)

=1

w

e
=
!

= r cos¢N

=r sin¢N e <:os¢:.L (1.13)
g =t sindy ... sin¢z (b =0)

(25)

Generating the normalized basis by recurrence one obtains
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N .
m - M (j) 2.,L.
- J R Bl
Y ) = 7, @) T_‘z"z.‘"’j) e ] 4 (1.14)
J ] J
where, following the notation of reference (1),.
L.,L 1/2
Gy “i°t5-1 2v,F(v.-n,)n,! 2. L.
P (6= i 3 (cosp,) I(sing )]
j P(v,-n.-2, == . )
i (vJ nJ 5 2)I'(nJ-bEJ 2)
1 .
vj_l,lj'l'-z- .
Pnj (cosZ?j) (1.15)
with
. 43wy a3y . 3 -
V5 Vj-lf2“j+2'j+2'1‘j+2! Lj_l+2nj+2,j+.21 1
a,b

P is a Jacobi polynomial.

The set [L].of the 3N-1 quantum numbers associated with the 3N-~1
degrees of freedom () is constituted by the 2N orbital andiaZimutal
quantum numbers lj, m; (] = 1,...,N) and the N-1 hyperspherical
quantum numbers Lj (3 = 2,...,8) iﬁcluding the grand orbital

quantum number L = LN'

Li is related to the gquantum numbers B, by

i
2 (2n.48) , (n) = 0) (1.16)

L, =
J i=1

The H.H. (1.14) fulfils the relations

b 3
f"[ p] (DI a8 = 8y 1y (1
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where the Kronecker symbol is one where the two sets [L] and [L']
are identical and zero otherwise, The surface element of the unit

kypersphere is

N 3i-4
d2 = dw, IT 4w, (sing,) cos“¢. do. (1.18)
j=2 ] 3 J J

In particular, we have

/2
i %.,L, (j) %.L._ 35-4
M- E Rl .
-[ PLj (¢j) PL_-'l’ (%)(SInd;j) . (1.19)

The Laplace operator written in hyperspherical cocrdinates in the

D dimensional space becomes

2 D-
+ =
2

-
—

_d__+ Lz(ﬂ) (‘-20)

vs
dr x?

2
2

™M=

V% -

|
d

1

ﬁn

e
L]

where L2(2) is the grand orbital operator.Noting that s y[ L R) is a
harmonic polynomial one obtains the eigenequation fulfilled by the

H.H,

{L2(Q) + L(L+D-2)} Y =0 (1.21)

where L, the degree of the polynomial, is called the grand orbital

quantum number.
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2-The Potential Basis

Let us assume that we intend to expand in H.H. a function V(;ij)
of the coordinates between the particles ;ij = ;i - ;j’ One defines

a set of Jacobi coordinates for which

[FA (2.1

L]
(]
]
X}
-
”~~
%4
e
1
bt
N
»
]
ELY
"H
Z
-
s
]
2z =
M
[

The H.H baeis which is complete for the expansion of V(;ij) does

not contain any function of the coordinates Ej with j <N and is

therefore given by

%,m @ o) 2,0

PorenByg) = Yolugy) SN 19<D-3) (2.2)

¢ h
where we have put costbN --13 , and

Yo (D-3) = E—— (2.3)
2

2%

is the H.H. of order zero in the D-3 dimensional space spanned by
the vectors (Eu-l""’gl)'
The subset Eﬁf’m(ﬂ..)} constituted by the H.H. of order
2g+8 *J

A 2K+ which are temsors of rank £ in the 3 dimensional space is

called the “Potential Basis". It enables one to expand in H.H.
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-»>
any function of 5. and in particular any kind of two body potential
V(%.)- It contains only three quantum numbers : the orbital and
azimutal quantum numbers £ andm , and the grand orbital 2K+%.

The Potential Harmomics fulfil the relation :

. .-

,/‘E}J 2%+ 2.7 9 2K’ +z’(n' 798 = O gv Sp. 00 Sy P

In terms of hypergeometric polynomials zﬁ the potential H.H.

become

£ 2
L,m m s r:
Prrer By = f 2(mij)(-t-‘}) F [—x,x+z+§-1;z+§;—:-zi-] (2.4)

21
3 D_ D_ 1/2
fz . L:J)K r¢p i)x(2x+z+z l)I‘(K+£+z 1)xr(K+£+2
K 3 = D=3 2
. T 2

For a definite pair of particles (i,j) and forifixed (2,m) there is a

single H.H for any grand orbital 2K+%.

3~ The potential multipoles
Let us write the two body potential

Ca n m
"(’ij‘) - !.,Zm Az(x,_]) Yz(mi.j) Vk(rij) (3.1)

»>
where A:(i,j) is an operator independent of the coordinate ij'
For instance it could be a spin or isospin operator as for the

nuclear potential.
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The H.H. expansion of the potential is given by

- - Z W,. = l,m (Dsl =
vt AP T @ v 3y (@ - 3M

K,L,m
’ (3.2)
where .
(Diz) zgm -l
- VK ('l.') bd <® 21C+£(3ij) Iv(rij)> - [Yo (D—3)]
w/2 .
(N)2,0 D=4
BZK+2(¢) v, (rcos¢) (sing) (cosd)?d4 (3.3)
0 .

is called a "potential multipole"”.

Using (2.4) the potential multipoles can also be written :

(D,2) =0k D-3(2K+#2+3- 1O (k+242-1)T (ks +d) ) /2
Vg (F) =2 =Hs- Tl 53 =3
T (R.'l'i) KIT (T)I' (K+-2—)
1 D-5
D....3. 2 7 L+2
Vg (ur) F (-K,K+R+§—l;z+2-;u Y(1-u?) u du (3.4)
21
0

Various formulae convenient fdr the calculation of the multipoles
are given in the Appendix. For instance, it is shown that they
can be obtained by a regurrence formula in starting from the mul-
tipoles calculated either for the D = 5 or the D = 6 dimensional

space according to whether D is odd or even.

. >
One shouldnote that the multipoles of a central potential V(rij)
are ZJFV(E’?%) to take into account the gspherical harmenic

'yg included in the definitiom (3.1).
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As an example we give the expansion of a central potential (rij)“:
L. J
¥ il
*
(r; % = 1° (0 ) Sied) ,
3 K=0 2K 27 T(5+1-R)T (R+—5=
D~-1 » 1/2 - (3.5)
n 2 2K+7~l (2K+D~-4)! .
D-5 _ '
2 F(D 3) (2K+1) !
2

When & = 0 the obvious m=0 is taken out.
Any analytic function of ryj canm be expanded by using (3.5). When

in the above n is an even positive integer the expansion contains ,
only %*l terms (K = 0,1,...,%). For instance an harmonic oscilla-

tor (n=2) has a two terms expansion (K=0,1).

The case n = -1 provides the expansion of the Coulomb potential,

L

For ng <2 it may be convenient to use the relation

Al T (n+2) ZP(E%E)r(%+1) R n+3 P(K-%)
S8 Tem - n = D IrEF)
2 P(E+I-K) P(7+1-K) . r(-f)

If'n is not an even integer, the multipoles of a potential which
behaves like (rij)n for short range are in r® near the origin. -
Apotential which is an analytical function of (rij)2 (as for a
Gaussian potential) has multipoles of order K, which behave like

2K

r when 7r +0, because the terms n<2K (n even integer) in the

expansion (3.5) wvanish.

Eq.(3.4) provides the assymptotic behaviour of the multipoles by

using ur = x and taking the limit for r + o @
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D-3 1/2
UALE 0 U ST DL SR B (2x+z+§-1)r<x+z+lz’--1)r(x+9.+.§.)l
¢ T r(ae3) p-3 D-3
KII'(—2 ) I‘(K*—-z )
~{L+3) L+2 (3.6)
r /Vz(x) x dx
0
which is valid when the integral
R .
2 D=5
lim./;z(x) xzx(l~5?) ? xz+2 dx
. r
0

is finite
This is true for any potential which cen be neglected for x‘>x0

(i.e. Vz(x) = 0 for x>x°).

4-The Coupled Equations

The ultimate purpose of the hyperspherical formalism is to pro-
vide a method for solving the Schrddinger equation. Let us assume
for the sake of simplicity that we have to deal with a system of
A identical particles, like nucleons in nuclei, and that we intend

to solve the Schrédinger equation

{-ﬁ_z ' Z g2 s ‘Z V(ij) - E ¥(x) =0 (4.1)
2m i=l X 2371

where (;) standa for the set of coordipates Ii of the particles
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and V(?i? is a two body interaction.

The center of mass can be eliminated by wusing the Jacobi coor-
dinates

2i (+ 1 N . > ) .
Z, = ... =+ D, %) i L., N = A=)
i i+l i+l i %17 .

leading to the Schrddinger equation in the center of mass
)

f,z e > Lt
-— VZ+ V(E) - E}\y(a) = 0 (4.2)

where the set of Jacobi coordinates {E} corresponds to the Laplace

operator (1.8). In the hyperspherical formalism, the wave function

is expanded on the H.H. basis

- _D-l
‘[’(E) =TT 7 {ZL] Y[L] Q) U[L] (r) (4.3)

Then (4.2) is transformed into an infinite set of second order coupled

n

differential equations

h? ‘1'2 L(L+1) :
“{T[;rz—'.—rz— *Equpgy (0 .
- (4.4)
-
+ Z' <Y[L] (Q)|V(E)IY[L.] (Q)>0[L'] {r) = 0
(L'} =0 L= L+2%§

which is subsequently truncated in order to be treated numeri-
cally. The degeneracy of the H.H. basis is so large that without

a guide enabling one to choose a suitablé subset one could not
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solve the Schrddinger equation with acecuracy. The guide is
provided by the procedure leading to the construction of the so
called optimal subset. The idez leading to the concept of the
optimal subset broceeds from the assumption that the first term
(independent of ) in the H.H. expansion of the potential V(E) is
largely predominant in such a way that the coupling between the

various H.H. components of the wave functicn, mediated by the po-

_tential harmonics, can be considered a perturbation.

The validity of this essumtion has been tested for the ground
4 (7-9,12-19)
He) . One finds that

state of few nucleon systems (trinucleon and
for various potentials the contribution of the first hyperspherical
term (K = 0) of the potential expansion to the binding energy
amounts to 80% or more of the total contribution of the potential.
One finds also that in the wave function the first lowest order )
H.H, (L = 0) is largely domimant. ‘This result lead us to retain

in the wav; function only those H.H. directly related by the
potential to the first predominant term. Th; H.H. selected accorL
ding to this procedure constitute the so called "optimal subset".
It is therefore the H.H. subset éenerated by the potential opera-

tor V(E) applied to the H.H. of minimal order contributing to the

expansion of the investigated state. Let us give an example.

The lowest order H.H. in the expansion of the ground state of
the trinucleon system or "He is YO(D) (all the nucleons in the

1S state). The optimal subset is therefore genmerated by

v(Dy,

-
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It is constituted by linear combinations of the potential
basis.We have shown in another work(ZI).that the weight function generating -the
optimal subset is obtained from the minimal order H,H. included
in the expansion of the state being investigated. For boson ground
ptates where all the particles may be in the 1S state the minimal

order is L = 0 and the optimal subset is again a combination of the
potential basis (2.2).

Let us explain the procedure to obtain the'coupled equations in
this simple case. It will be extended later to the more difficult
case of fermion systems. The wave function describing the ground
state of.a system of A = N;l bosons interacting through a two body

central potential is written in the scheme of the optimal subset

Dol 00
¥, (&) = 2 { :z: E;)zx(nij)} ug (r) (4.5)

g8 k=0 { i,j>i

The partial waves u, are solution of the coupled differential

K
equations (4.4), where the Y[L](Q) are the potential harmonics.
One needs bowever only to introdrce the potential H.H. for one
single pair (i,j), calculate the.solution for this pair in projec-
ting out the Schrddinger equation on the potential basis complete

for this pair (i,j), and then symmetrize the solution by summing

over all the pair (i,j). One can choose arbitrarily the pair (i,j),

let us take (2,1), equation (4.4) then becomes :

2 2 L (£ +1)
-{h?[_é_.__u ]-bE}ux(r)
dr? r?

2 9, °
Y& <Faxtay)) |v‘5)|(J>2x'(921)> ugr(r) = 0 (4.6)
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vhere £ = 2K+ -D—;-:i , D= 3N, N = A-1.

For the calculation of the potential matrix <§20K|V (E)] 'C)fx')
one uses the potential expansion (3.2) with 2= m = 0 and A%- |
Matrix elements with two and three potential H.H. occcur fdr various
pair (i,j) of particles. The calculation of these matrix elements
can be achieved either by taking into account the relationship
between H.H. and harmonic oscillator functioﬂs, or by using the

kinematic rotation vector as atool in connection with the H.H.

expancsion of th2 pliane wave.

This last method, which is more flexible, is used in this work.
The choice of the potential basis in the expansion (4.5) eliminates
from the full sef (4.4) the equations which are not coupled to the
first predominants equation (K = 0 in (4.6)). It reduces drastically
the number of coupled equations by including only two body correla-
tions gene;ated by the two body potential. For taking more than
two body correlations into account, the basis must be enlarged and

contains more elements than the potential basis.

5-The kinematic rotation vector

-
Let Z be any linear combination of the &

N
N ~ N
a.
Z . Z .aigi = C Z (—]—') Ei with c2 = _Ea? {5.1)
im} i=1 [} i=] 1

One defines the kinematic rotation vector.

N

> -+>
z(p) = Zl sin‘PNtinPN_l-o-sinWi,,,lcosi’iEi s ¥ =0 ; (5.2)
1-
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and writes (5.1) in terms of the angulax parameters (¢)

> - . 35
Z = Cz(¥) with cos¥; * Y oNI/2 (5.3)
z a.
j=1r 1
Fox isolated systems it is suitable to eliminate the center of
mass motion., For a system of A = N+] jdentical mass particles one

can use the Jacobi coordinates :

N " *2
i+l > * 2i - -
EN-i-H 257 Gegay = Kpap) ¥ IR (R 7 %)
(5.4)
El -y G0

» X is the center of mass.

izuz A"" 12 22:4» 1
T = E.] = [ZZ(?‘i'x)z] - ['E (xi-kj)z

i=1 * i

is a function invariante and - symmetric in any exchange of the par-

ticles. Let us denote by (le) the set of parameters for which

X - %, = 2t (5.6)
1 J

For two coordinates in sequence we have

%% -_‘/i_-l_ ‘/iu
*i417% 71 Gwazes PV Bner-i (5.7)
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which corresponds to the set

?5 ..‘21 >N + 2 - i '
@ =0 k<N + 2 - i ’ (5.8)
i+h,i =1 NRALTE SN FPS
cose - of— sing =¥
2i o
N+2-i N+2-1]

In table 1| are shown the values of the parameters used in this

work for the calculation of the matrix elements.

»J i,] i.j* i,j i,]
“N-] N-2 N-3  PN-4
i j|cos sin |cos sin |cos sin Jcos sin F[os '

21} 1
32-%—”2i 1 .
13-%-—'/5? 1

42-%’%3' 1

Lo
W
o
—
1
C:?l"' w|—

- - Om o

513 |
sa|l ol 1] o 3|Vs
65 1 -l
i | o olﬁ{f;

The indices (i,j) which refer to the pair —;..'-;.-;, are in the

. 313 i,j
first colummn. In the following columns are shown the values.of cos ¢k and
i,j
sin¢k for k = N,N-1,...etc. When cose¢=] in omecolumit conserves the same

valite in the other.columns situated at right.For any ';i-;jwhere i>j the parameters are

. . PR . ST . O -+ _* - T .
obtained in writting xi-xj- (xi xi-i)+<xi-l xi_z) +...+(xj+l xj) and in

using (5.7).
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6~The plane wave expansion

The calculation of the matrix elements with potential harmonics

. : . : . (1
is carried out in starting from the plane wave expans1on(%

ig E D L %
R - i-zl’%— Z 1Y ()Y (DI (kr) (6.1)
R R CT R - ML 5 R

N
2. T8, Lap+23,pa .

i=1 1 1 2

J is a Bessel function and (k.ﬂk) are hyperspherical coordinates
of k. The gum is taken over all the quantum numbers [L] for L
runing from zero to infinity. Defining by f.f =kr cosa the angle
between the directions of ¥ and Ein the D dimensional space, the

the plane wave can be expanded in terms of Gegenbauer polynomials

)
> D D
ik. ¢ 2 2-1
e - r3-n (il) 2 E i"(£+-;-)c2 (cosa)d | (kr) (6.2)
¥ L=0 L L3

leading to the relation between H.H. of the same order L

Z rg-n -
Y (ﬂ) Y (9 ) = —(£+—) ____7T C“(cosa) (6.3)
{Lll [ L

which generalizes the well known formula between spherical harmo~
1/2

nics and Legendre polynomials Cy in the 3 dimensional space.

Here the sum is taken over all the quantum numbers for the grand

orbital L fixed. For ﬂk-Q, i.e. a = 0, one obtains the addition

"

|
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theorem for surface harmonics

E Y*(Q)Y
||

(L] [L

D .
_2Lyy _FGTD) (LeD-3)

4ﬂD/2 LI (D - 3)

(6.4)

()
L]

Integrating (6.4) over the surface of the unit hypersphere provides

the number of independent H.H. of order L

N(L) = (2L+D~2) (L+D=-3)1 (6.5)
L1 (D=-2)1
in which we used
/2 -2
fdn - ‘“D - [Yo(n)] (6.6)
P(i)

.
where YU(D) is the H.H of order zero in the D dimensional space.
Let us oriente all the vectors Zi in the same direction and write
each yector Ki ©in hyperspherical coordinates :

> . . e
ki = singy ... ’1n¢i+l°°s¢ik (6.7)

-+ s =
where k is a 3 dimemsional vector with

M-
=
o

kZ=
i=1
iﬂ:raducing (6.7) in (6.1) gives
ik.z (o) (2V)D/2 L =%
e - = iy ()Y (@ J (k) (6.8)
(kl‘).z-l [ L] -0 [ L] [ L] £+7
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which provides the H.H. expansion of the 3 dimensional plane wave
in the D dimensional space. The angular set Qz is constituted by

the set {¢} and Wy the angular coordinates of i(k.wk). leading to

m, N oom (i) 2,,L.
Y[L](S'Zz) - Y'f:k’ igz Yzi_(‘“k) Pl‘i (vpi) (6.9)

In projecting out (6.8) on the spherical harmonic basis Y:(mk)

and defining the parametric functions‘lo)
= fm ) L8 (
I (o) = Y (w Y dw . 6.10)
e g Ry =k

the plane wave expansion becomes

D
it 2 (o) L DY 4 tom
e . L2m) - i y(mk){[ug ](-p) }!ﬂ(ﬁ)}Jt l(l':r)
L +:
z

(6.11)

The sum in braces is taken'over ail the quantum numbers for L
fixed. The expression in braces is a H.E. of order L and a tensor
of rank L in the 3 dimensional space. When we have to deal with a
function of E (Eq.(5.1) and (5.3)) instead of ;, the formula (6.11)
is still valid replacing k by Ck (or altermatively r by Cr) iyfide
the Bessel function and in the denominator. Chosing the set wlj
describing ;ij one obtains ;21 for ¢= 0 (see Table 1) and finds

%,
Y (0) =  F(o) v,

(4] : X

0
) (D-3) (6.12)

-
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There are only two quantum numbers L and £ in (6.12), Let us write

L = 2K+% then Eq.(6.11) becomes

- > 2 ‘
ik.r 2 K (N 2,0
ST, _om -1 & P (0¥ (n—s)y(wk>
(kr)'z-l Kidym 2Red
m (N) £,0
% Yéwzl) Pzétg) Yh(n-3) J£+l(kr) , (6.13)
2

- One recogﬁizes in the second 1ine the potential harmomic (2.2) for

the pair (2,1). Defining the H.H. of order 2K+% related to the

. -
coordinate r,
1]

. (N) £,0 -1
%,m
Q@) - [ P ()Y (n-a)] Z iy @
Joget i 2x+d O TR (6-14)

where L = 2K+{, and reminding that ;(¢1J) - b-, Eq.(6.11) can be

1]
written @

ik.% 2: K 2(M) 4,0 o*
e CHi . (2") D1 P (0) ¥, (D-3)Y,(u)

(kr)f_l K,8,m 2K+

i,m (6.15)
x J (kr)

2x+z ”) '

A comparison between (6.15) and (6.13) shows that (6.14) provides
an expression of the potential harmonics for the pair (i,j) in

1]
terms of the angular parameters {¥ }related by (5.6) to the Jacobi
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coordinates (5.4). This expressionm will 5e used in the calcula~

tion of the matrix elements with two and three potemtial H,H..

7-Matrix elements with potential harmonics

OQur purpose in this sectiom is to derive the matrix elements
with two and three potential H.H. In the first case we intend to

calculate

Epl,m
a..)>
2g+413

<@z'?n

)
2K+2k$'

where the braket means an integration over the surface of the
unit hyperephere in the D=3N dimensional space.

The other matrix elements disappear because the quantum numbers
L(= 2K+%),%,m are conserved in the rotation in hyperspace which
transforms the coordinates %j in :kl’ and which obviously preser~

ves the hyperyadius
172
[2 >, z.,]
re | r..
ij

There are three possibilities : either the two pairs (i,j) and
(k,2) are identical, or they .have omne common index or both are
diffetenﬁ. In the matrix element the choice of one pair is arbi-
trary, let us chose for the sake of simpliecity (k,&)=(2,1)

Using Eq.(2.2) for the pair'(2,l) and Eq.(6.14) for the pair

(i,j) one finds :
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(W 2,0 . Dy
L,n sz+éwﬂ ) ij ¢ P (cos Zp )
<9 (921)|€p - 5 2.0 (cosgy ) —-__3—1:1———
p_ (0 Py
2K+L K

(7.1)

Ju0 for (i,j)=(2,1), ¢;J- %-when i and j are larger than

% e

where ¢
2 (i.e. no common index) and cos v;j-t% for particles of equal
mass when one of the indices only is larger tham 2 {(one common
index). '

From (7.1) it comes out that for i and j>2 the matrix element

L,m r( )
QP )‘5§ @ S—i— QR T, (1.2)
2K+ 21 ! Ki P(K+—Eé) d

vanishes for % ¢ b when there are z=o common indices. O0f course,

the matrix element (7.1) is:ome when (i,j)= (2,1). For numerical purposes
when i or j£2 (one commom index) Eq.(7.1) car be calculated in
using the recurrence relation between Jaccbi polynomials with
cost;j = -% for equal mass particles. When f= 0 it is convenient
to rewrite (7.1) in terms of Gegenbauer polynomials leading to

the equivalent exprerssion

. 2 ij
) (coseo )
<€pp(ﬂ )IQ;f(n..)> - (2K+1)1(D-5)! Cag+1 ’.“
2g 21 2k 1J (2K+D-4)! cos”;]

2-2
One notices that x-l czx+fx) is independent of the sign of x

(-x) = -C (x). When cos¢ld = 1 it is convenient

Cakei 2R+1 N
to use the recurrence formula

N
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D_ D
7" 1 372 772
c (—) - ——— (n+—-2) Cn(_) - (n+D-5) C (E (7.4)
n+12 n+l 2 a-1
72,
. 2 D
with co-l, cl (-)- —-2. which for large D leads to the asymptotic

expression @

(7.5)
]

Eq(7.5) is exact for any D when n=0,1,2 and valid for D>>n.

The simplest matrix element with three potential H.H. refers to

identical pairs

A '
<€P ds 21)lﬁ ))> = ¥, (D=3)
2x+£ 2x+1 2K'+4 '
(N) 2,0 (N) A,0 (N) &',0
<tm[Ap;fm'>< P P | > (7.6)
2K+4 2%X+X 2K'+4" .
where
mt . n'
<fm|Ap;'m'> = Yo(w) Y,(w) Yp(w)de (7.7)
The matrix element
) wf2
(M) 2,0 (N) A,0 (N) £',0 D-4
< P | P | P > = (sind) cos’é
2K+2 2x+A 2K'+2!
(R) 2,0 (N) A,0 (N) 2°,0
P ($) P (¢) P (¢) a¢ (7.8)
2K+4 2x+2 2K 42!

is called "3 P coefficient".
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When on pair of particles only is different one obtains :

ko A u 2, m' A A
<72, )19 (9, (2,,)> =<D (2, )] 0. .)>
2k + 22! 2x+A*3 lﬁ)zx'u.' 21 2x+a2! @zxu”
»m }‘,u ')m'
. <§)>Q(sz )| (2 >|§§ (2,)> (7.9)
28+ 8 21 Spzxw‘“ 2x'+z'2‘)

where the first matrix element is given by (7.1) while the second

is (7.6). In the most general case the pairs of particles are

different and we have to calculate

2,m : A,u 2',m’
S) * 0 » 0 »
< (<«..) ®,.) (2 ,)>
2Kk+2td IJ 2x+12l IJZK'+2'k2 -

Let q be the valpe in the set {¢"J} such that

ij

¢m =0 for mg£q
1]

3 ] for n>gq (7.10)
n

The parametric fumction (6.10) is given by

L,m ..
’ Hy = <« 32 $eee}
Y[L](¢ ) = <Rymesfy me 1qmq|lm>
(§) 2,Le  (B=1) &y L1, o (q)gq,o
Pyh . P (gd) «ooi P (0) (3¢=3) - (7.11)
L Ly-1 Ly
with
N Dg Iz m
<£NmN;...;£qmql£m>- [er(‘m)... Yzém)] 1(w)dw (7.12)
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The complex conjugate of (7.12) is denoted by <1m|1NmN;...;Eqmq>

Let k be the largest of the q in the sets {¢t3} ana fwkz}

Using (7.11) the general formula giving the matrix element with
three potentiai H.BH, is :
2

L, m o' Y, (3k-3)
: <€P(szij)|®(szz,>|‘3 @ - [°
L

kz' (N »0 (N) »0
¥, (D-3) PL(O) PL. (0)

z; <";;'“Nl1“"‘ ny><L mN,!.N 1By-1} ...,!.kmkllm
N’" N

mN’m'N ' <2NmN,1N 1Oy~ I,... k klz m'
L.,,%.,m, ’
{ 3 17] (7.13)
j-N-l,....k
(N) IN’Ler (%) 2,0 (M) zﬁ’LN-l
< P Py P . >
L L
(N) ENaL -1 (N) leL -1 K-l (Q)z : -1 (q) zqoL -1
Fowih P@h @ P<¢ SRS R
L q=k Lq ‘L 1

The 3P coefficient is defined as in (7.8) but with LN-l $ 0. All
the possibilities for the pair'(i,j) and (k,%) occuring in Eq.(7.13)
can be deduced from the restricted cases reported in table 1.

let us treat the case k = N-1 which refers to one of the indices
i,jsk,2 equal to.l or 2 i.e., in which there is at least on common
index between the three couples of indices.

In Eq.(7.8) the sum must be taken over the seven quantum numbers

"‘N""ﬁ"‘h—l"’n"“ﬁ-'”u-l and LN-I'The * gum ~over m, the azimutal quantum




w

: |

numbers , can be performed leading to a matrix element including

a quadruple sum :

(-6)
@m >c‘-’3<s12,)|§’3(nk ) = -[—"——-]—

¥y (D-3) )
m+A /2 '
(-1) [(zhl)(zn'n)(zxm (2 A l)
™ £,0 (N 2, 3 w' ¥ -m
Pdy VP (0 (47
L L'
z !'N—l . e Xnnl NN—l’Dl'l 2
2’“’!'!; ’!'N-l ('l) (2 N+l)(2 l)(le 1"‘1) 00 8 u- l N
Lyoy .
(¥ 2o,Le , (N) A0 (W) £%,L.
< P N*™N |I P I P N |> f
L A L'
(§) 9-,,,1-,,_, (M “'LE g (N Ry 1,0 () A ;°
P (vlJ) P (eg) F (o> P (pg) (7.14)
Ly-1 Ly-1

we assumed that one of the indices (i,j) is either 1 or 2. When
A=W = 0, a case which happens - with central potentials,
the matrix element (7.14) contains only a triple sum and takes the

simpler form :

3

. 2 -3

) 2

sm ] @V- ) IY (D-G)l (4m)
’ 0
R, .)l@ (921)| @,.)> = ™ %,0 (M%,0
L B3y L' J ¥,(D=3) P Zo) P(('))
L L

T ) 2ol | () 0,0 (n)zN. -
E (20 41 2% vD\ g o o/ < Py | PA | L

Lg% goyolyoy
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(N)EN'LN"I (N)£ d‘- (N_‘)QN_IQO (N-l) QN 11
X P(qu'B P(‘Pk P (0) P(va_)l (7.15)
L Ly-1 Ly-1
For matrix elements with only central potential harmonics £= m =0,

the sum over zN-l vanishes and Eq.(7.15) contains a double sum :

- 2
9(0.. m )193 (O E"(D 6)]2 (4

YO(D-3) (N) 00 (N) OO

P (0) P(0)
2K 2K
(M2 ,L, . (N) 00 (N) £,.,L.
22 (22N+l)< PN’ N‘l| P | PN N ]>
N’“N-1 2K 2x 2K'

(W) gooLyg g N 2oL (N-1) 24,0 (N-1) £.,0

P (pti) P () P (0) P (ok) (7.16)
2K N 2K’ Ly Ly

where £.4L. < min nK—ﬁPZK'-LN].

Eqs(7.14), (7.15) and (7.16) can be used when one at least
of the indices (that we chose in the pair (i,j)) is 1 or 2 .
In the last case that we have to investigate there is no common
index between the three pairs (2,1), (i,j) and (k,%). One can
chose arbitrarily (i,j) = (4,3.) and (k,2) = (6,5). One finds that
the matrix element (7.13), which vanishes except when 2= %' =

A= 0, is given by
-3
2

2
0 Q 0 (»-9) (4m)
L @ 1D @, IP @65)> [Y° ]
2K 2x 2K’ YO(D-S) (§) 00 (N) OO
P() P(0)
2K 2K!
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(N)_O,L (N) 00 (N) O, (N) o,L (N) o,
x 2 < P N-ll P l P LN-I> P (H7£) )P I{#-

7%)
Ly-1tn-2 2K 2% 2K K w
(F-DOLy_p (%-1) 0Ly, (¥2) 0 (¥-2) 00
P(e”) P& P(0) P (n/2) (7.7
Lyt Ly-1 Ly-2 Ly-2

43

with cos g - L for equal mass particles. Eq.(7.17) applies
N-1

to any three potential harmonics where each particle occurs only

once.

8-3P coefficients

The matrix elements with two and three H,H. are needed for the
calculation of the potential matrix in (4.4). For two H.H. we deri-
ved the formula (7.1). For three H.H. if one uses a symmetrized
(or antisym‘etrized) H.H, basis in the expansion of ;he wave func-
tion, the two body potential occuring between the two H.H. in (4.4)
can be chosen for an arbitrary pair of particles (e.g. for the
pair (2,1)). Then using a H.H. expansion of the potential, as in
(3.2), in the calculation of :hg potential matrix ome finds that

the needed matrix elements are of the type (7.13).

But if one takes advantage of the closure of the potential basis
in an expansion of any two body functions, the Eq.(4.6) is used
and the matrix elements canm be calculated for only one definite pair
of particles (for instance (2,1)). Then the full potential V (¥)

must be sandwiched between two potential harmonics defined for the
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same pair (e.g.(2,1)) leading to an utilisationm of the matrix ele-

ments (7.9) when the potential is expanded in H.H..

In the first procedure the knowledge of the general matrix ele-
ments (7.14) and-(7.l7) are needed,but when we have to deal with
unsymmetrized H.H. only the knowledge of the simpler matrix elements
(7.9) is necessary. In any case we have to calculate 3P coefficients
but for the last procedure only those which refer to LN_l = 0 (see
Eq.(7.8)) are used. Moreover for central potentials only 3P coeffi-
cients wich both £ and LN-l = 0 are needed. A general formula, re-
produced in Appendix, giving.the 3P coefficients as a double sum
has been derived in ref.(27).

Here we intend to give simple recurrence formulae enabling one to

ecalculate the matrix elements (7.8) for central and tensor forces

R [ )
i.e. when &, X and %' are either O or 2.Referifg to (7.9) and (3.2) for

a central pctential, one must calculate the potential matrix

0 0
() -
<§;ész“)| V(rij)l,)ZKSSIZI)>

] 0 0 0 ] (D,0)
S @, | P, > <Pa, )P @ v, )
" 2K 21)|®2x 21 |J2K'21 JZ 21 IJZX ij X

(8.1)

where the last matrix element is givem by (7.3). The first matrix

element is (7.6) with & =X= &' = 0. In order to calculate the 3P
(N)

coefficients (7.8) one derives cwo different exgressions for P.

a,
First one uses the relation between Jacobi Pn 7(cos2¢) and

1
a+s
( ')to write :
2n+1
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(®) 0,Ly Do
P (9) =gvi £2An0) Ve (e.2)
2K+LN_| cosd 2K+1
where
1/2
v-i 2 (2K+v+1) (2K+1)!
gl{v,K) =2 T |5 -
. o L2rsv)]!
=L -2
) v N-l‘-i 29)
Then one utilizes the relation between Jacobi polynomials
v-1,1 v-1,1 v=i,~1
(n+v) P (x) + (n+v-1)P(x) = (2n+v) P_(x)
n a-1 n

to find the relation between two contiguous. (N)P functions :

172
(N) O,L,_ - (§) 0,L._
N-1 ) [2K+v+l 2K+2v-~-1 K ] P N l(¢

P2K+LN-I (J 2K+v=-1 K+V TE+1 2 ke l)+LN l
L
N-1 v
=2 g%%% 8(v,K) (sin¢) C g (cosd) (8.3)

Introducing twice (8.2) and once (8.3) into Eq.(7.8) for =L'=)s0

one obtains the recurrence formula

(N) 0,0 (N) 0,0 (N) 0,0

< P2K | . P2x i PZK'>
1/2 (N) 0,0 (N) 0,0 (N) 0,0
2%X+V+ 1 2X+2v-1 X
+ . . < P_| P | P>
[;x+v_1 v 2x+l] 2K 2(x-1) 2K
= 2X*Y (v,K) g(V.K') g(V,X) n{v,zx+1,zx'+1,zx5 (8.4)

23+1



i

38

(30)
where Dy» the integral calculated by Hsii ,isgiven in terms of

binomial coefficients by

(f-2x+v—x) (s-zx'+v—l)
n

1 B e—

DL(VJK+1,2K +1,2%) 291 v=1 v=-1

S=2X+V S+2v
v~1 V-1 (8.5)

where § = K+K'+X. D. vanishes whenX is out of the range

1

[K-K'| £ X g R+R"+1

On the other hand K, and K' in (7.8) must fulfil the triangle
inequalities for ,f = A=L' = 0 to provide a non vanishing 3P coef-
ficient.

For applying the recurrence formula (8.4) one can either start
from the m;nimal value X =|K-K'| and generate higher order matrix
elements or begin with the maximal value Xp ™ K+K'+] for which the
first term in (B.b) vanishes and generate lower order matrix ele~-
ments. In this last case the first matrix element is

(N) 0,0 (N) 0,0 (n) 0,0 T 2K+v 2K'+v
<P | P | P > = —Sv=1 \ V! v-1
2K 2(K+K') 2K' 2

. ' 172
(2(K+K +\J)+l) 2 (K+K ') +u+] EK""\H‘l 2(K+K')+3
V-1 2(K+K')+v+3 2 (R+K'+v)+1 R+K'+1

(8.6)

When we have to deal with a temsor force v @ij)s
T

ij
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where the tensor operator

=3

@EIG 5D ea (V@D @
B4y " - 5 S WYuyy)
rij

is the inner product of two tensor operators, we have to compute

the 3P coefficients (7.8) either for L=%'=2 and A=0 or for 2=2'=)

=2 in order to calculate the potential matrix. This can be achieved

(N)p2,0 (N) ;00
2K 2K
the properties of the Jacobi polynomials one writes both (“)P in
D=5 3
terms of the Jacobi polynomials Pnz *Z(cos2¢) :

in using a recurrence formula relating and . Using

172

(N) 00 .
P () = 2I' (K+v+1)K!

(2K+v+l)r(K+v+%)P(K+%)

1

3 -1 3
(Revel) B (Bo328) + (K+v-3) P (3 %2¢9) (8.7)
2K

1/2
(M _2,0 [ 2T (K+v+2) (R=1) ! ]
(2R+v+1)T (xw-;-) r (m%)

V=213 A9t "g' :
K P (cosz¢) + (K+—) P (§052¢) (8.8)
K—

When Bqs(8.7) and (8.8) are written for two consecutive Kand
R-1 one obtains four linear equations with only three independent

Polynomials. One eliminates Py between the first set and P2

between the second set of two eguatlona, then equating the two
“'%

expre:sions obtained for provides the following relation @
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/2 () 2,0
B2K+3)(K+v+l)(2K+v-l)] P)
2K
172 (N) 2,0
* [(K-l) (2R+V+1) (2x+2v—3)] P($)
. 2(K-1)
. 1/2 (N) 00
- [K(2K+2v-l)(2K+v-l)J P(¢)
2K
1/2 (N) 00
+[(2K+l)(2K+v+l)(K+v)] P($) (8.9)
2(K-1)

Eq.(8.9) is used to calculate the mneeded 3P coefficients :by recur~
rence in starting from the 3P coefficients for L=2'=A=0 previously

calculated with Eqs(B8.4) and (8.6). Firet the coefficients
(¥) 2,0 (8) 0,0 (N) 0,0

P2k Pax Pok?
coefficients and using again (8.9) one calculate the set

< > are computed. Then starting from these

(N) 2,0 (W) 0,0 (K) 2,0
< P P | P >
2K 2 2K!

and finally applying again the recurrence formula one obtains
the set
(N) 2,0 (N) 2,0 (N) 2,0

<P | 2 | P >
2K 2y 2K’

9~A Few Applicationmns

As extensive applications are not in the scope of this article
we intend to illustrate this work in giving only simple examples

which may provide a kind of instruction for use.
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The simplest one refers to the ground state of a system of
A = N+] identical interacting bosons. A two body central potential

is assumed. The wave function completelly symmetric in any exchange ,

of particles contains a sum over all pairs of particles :

_>-1 ZO
¥(r,2) = r 2 £ ZK(nij? uK(r) (9.1)

i,5>1

The partial waves ux(r) are eigenfunctions of the c&upled equa-
tions (4.6). One notices that in (9.1) the potential H.H. ZK(ﬂij)
are normalized but not the symmetrical combination, therefore

in order to expand ¥ in terms of normalized H.H. one introduces

the symmetrized basis :

(8) E Y (s) (8 o
By () = Gy ) @ .) <Byg(R) |Byg) (W>=6y 4o :
(9.2)

where

y . .
D
Cg = flmdi <k (8 5) I@kakﬂ.)>

k, 2>k

Then Eq.(9.1) becomes :

: D-1 <
ikt } (s) -1
¥(r,9) = r 2 z; By (D) ¢, (x) g = Cp up (9.3
k=

where ¥ is normalized when

ifwx(r))zdr - Z c;z f(ux(r))zdr =1 (9.4)
k=0 K=0 ]
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According to (7.3) the .normalization .comstante Cx is given by

0
Aca~1) g}
C < .,,) Q..)> 9.5
K " 2k (8] i;wi@“( ij (9-5)
where
%p D
& @ E (95> = 1+408- 1)—(3-‘5-‘5—’—’1—(22-5-’-' 1/2)
2K 21 i,j»i x (2K+D~4)! {
(9.6)
L 0 l) £ n-1) (x- 2)(2K+l)
2K+l P(K+2%2)

For A large the approximate value (7.5) can be used. Then perfor-

ming in (5.6) a reduction in the ratio of the T functions in

terns of powers of D leads to the approximate formula :

ol 2 B
‘ m (N+2) (N-1) 5
<€pzxm21” £ @3 5> > 2 Sx,0* % %x,2

2
w14 22t [ (D-28-4) ] 8ot (9.7
228571 L (par-3) (D+r-2)
where the Kromnecker symbol § - 0 for K<«I . The accuracy of
. K>1
) 1 for K>1!
(9.7) has been tested for N = 100, 200 and 400. The result is

" (s)
shown in table 2 (for K = 0 (9.7) is exact and for X « | BZ(Q)

does not exist).
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N K 2 3 4 5 6 7
100 (9.7)] 13.01 3.50) 1.536 I.jIO 1.021] 1.004
Exact| 12.96 3.45] 1.521) 1.104) 1.019} 1.003
(2.7)} 25.48 6.59} 2.296] 1.294] 1.065| 1.014
200 Exact]| 25.46 6.571 2.288] 1.290| 1.064} 1.0137
(9.7)] 50.47) 12.83] 3.847] 1.678] 1.160} 1.0374
400

Exact} 50.46( 12.82¢ 3.843| 1.676} 1.159} 1.0370

Table 2

The matrix element (9.7) goes quickly to one for increasing K
because for two different pairs (i,j) and (k,%) the potential har-
monics become orthogonal for rather small K values. Coming back

to Eqs(8,1), (7.9) and (7.6) the potentisl matrix occuring in (4.6)

is given by

<Pyl Z v(r; ) P L) -7_—Y0<D-3> (9.8

I,J i

(N) 00 (N) 00 (N) 00
<r | e | ><@(92|)| 2 Q(sz BE v<:>

X 2K 2x i,j»i

where the 3P coefficients are calculate with the recurrence for-
mula (8.4). The calculation of (9.8) can be simplified in computing

separately the matrix element for v(er)'

Then the matrix elements which refer to v(rij) for (1,j)#(2,1)
whose contribution vanishés rapidely for rather small X, can be
calculated only for the first few values of ¥(e.g. for %£7 in
the cases of Table 2). The matrix element for V(rZI) in (9.8) isa
calculated in using the relation between the spherical harmonics

. Te m o ime (n
YO, - —_— d th P £ i H
! @) 9;0) Vo and the L(¢) unctions
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Vr-1 Yi-1fesh e-vy_ 12 V-
o = [T e eest)
@€ !
. =5 (M 0,L._,
- 77(sin¢)_r—cos¢ P£¢)
D-3 D-5
£l 30 Vg = Lyt (0.9

m
whezre Pn(cos¢) is an associated Legendre function of the first

kind.

It can be used when v, , and £ are integers i.e. when D = 3N
is odd (A=N+l even).Then the potential V(rcos¢) is expanded in terms

of Legendre polynomials P$°°°¢) leading to the matrix element :

0 0 v
<@2(n2,>lvu2,>lﬁgmz,>> = DY (2ae)
K K'

n even

1/2 . 1
[(2£+l)(.2£'+1)]- (ﬁ : -;')(f : f ) f V(rx) P_(x) dx
Vg1 ¥ _

N-1 0
Nt 223
V-1 5 2K + 5=, (9.10)

where the parenthesis stand for 3j coefficients. The integral is
calculated cnce forever for a potential V, only the 3j coefficients

have to be changed according to the number of particles.

Eq.(9.10) can also be used to generate the potential multipoles

(3.3) in taking K' = 0 :

DZO [ ]-A»EPO | )l@o 2'2—5-
. V. (r) = |¥,(D)] <R, ) v(r > = (~1)
K 0 21 20097
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x [Yo (D)]_l [4x+(n-2)] v (D-2) 1/2

. p-3 p-3 p-3 3
> K=~ 0o ST\ [2K45S 0 =
o (2n+1) - -
n even Eié 0 -272 0 0 x
l.
fv(rx) P (x) dx ) (9.11)
0

An accurate numerical calculation of the potential multipoles

is time consuming therefore BF.(9.II) provides a very economic pro-
cedure for generating the potential multipoles when we have to deal
with various A, because only integrals with the Legendre polynomiale

are needed.

Now let us write explicitely as an example the coupled equations
describing the ground state of three identical bosons. Accor&ing-to

(8.4) and (8.5) with N = 2 and wv= I the 3P coefficients are

(2) 00 (2) 00 (2) 00

Pox sz Pog” = 7 for K+K'+Y even (9.12)

<

and zero otherwise.

The matrix element (7.3) for two different pairs (i,j) ¥ (2,1) is

oy 1
<OY ) C) (s‘.. == € (1/2) (i,§) # (2,1
2 2! 19,8 K+ gt ’
where l for K = 3n
1 .
) o Bin2(K+1)mw/3 _ -
C (1,2) sinT/3 I for K = 3n+l (9.13)

2K+1
0 for K = 3n+2

n integer
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(2) 00 2 1 1
Using szosze)- 75 szffosa)lcose and Y°(3) v~

the central potential multipoles become

2
(6,0) .
VK(r) = V4T V (1) = 8/1?/ V(rcos®) sin2(K+1)0 sinOcos0do
K 0 .
T
= VT _0[[0.051(4’ - cos(K+2)¢]V(rcos-¥) de (9.14)
The coupled equations (4.6) are ’ .
2 2 L (L +1) . K’
h d _ 7KK -
- Y [d_ri —_rz ] ux(l’) + T UK(I’) uxv(r) 0
3
.CK = 2K + E (9-15)
with the potential matrix
Qm 1
K' c (1/2)
U (r) "117 W(r) - W(r) + 2 Z _2K'+1 (W(x)-W(r) )
K [k-K'| R+K'+2 Q=0 g, CK" OR"+2 )

where

K" = R-K'{+2q, q, = -%-(Kﬂ{' -|k-&'])
T

WQ’(r) = f éaqu’V(rcos%) de
0

The hyperspherical expansion method is a variational method which

fulfils the Ritz principle because on ome hand only a limited num-

"ber of coupled equations can be computed numericallly and on the

other hand instead of the complete H.H. basis omly the optimal
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subset i3 retained in the expansion of the wave function.

The quality of this approximation has been previously inves-
tigated( 8). It has also been proved‘al'g) that the trend of the
convergence of the binding energy toward the exact value as a func-
tion of K , the number of integrated coupled equations, is deter-
mined only by the shape of the two body interaction. In order to
illustrate this theorem we chose to study the increase of binding
energy in the space completely symmetric S state of the trinucleon

system and "He in the ground state in term of Km for two kinds of inter-

actions :

i) For potentials constituted by a sum of Gauuliln(32-3s)

for which
the binding energy decreases as the inverse of an exponential

ii) For Yukawa potenti.ah(ae'“)for which thebinding energy decreases
as K;? We retained for Kn the values 3,6,9,12 in order to.
eliminate the fluctuations in the trend of convergence gene-

1
rated by sz+l(l/2) in (9.16) which takes in sequence the

values 1,~1 and 0.

In Fig.l, the increase of binding AEKm- Exn- E&;B is plotted
in terms of K ona semi-logarithmic scale. The numerical values are
are those of ref.(8,9).The points are alomg a straight line as it

should be. The norms of the partial waves in (9.3)

Ng - f(‘bx(r))zdr
)
-ak

decrease as e (see ref.(27,37)) vhere 0 is a constant specific

of the investigated potential.
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-1/4
In fig.2 is plotted (Eﬂm- Eﬁi3) versus K for Yukawa potentials

Once again the points obtained using the data of ref.(8) are
along straight lines as it should be.

The knowledge of the trend of the convergence enables one
to obtain a good extrapolated binding energy in starting from a
limited number of integrated coupled equations (9.15). Besides
the space symmetric 5 state there are still two other states com-
tributing in the ground state of the trinucleomn systems and He :
the mixed symmetry S' and D states. These states are generated by
the spin-isospin dependence of the nuclear interaction acting
on YO(D) A(s,t), the lowest order H.,H. in the expansion of the
wave function, where A(s,t) is the completely antisymmetric spin-
isospin combination.

Therefore the structure of the wave function is more compli=-
cated for fermions than for bosons systems. There is no room enough
in this article too fully develop the expansion method for fermion

systems, therefore only the case of the ground state with central

-—

potentials will be investigated.
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10-The Potential Basis for Fermioms

In section 1 we derived the potentialﬁasis in starting from
Yo(D) the lowest order H.H.. The lowest order H.H. occuring im the
expansion of the ;ave function of a fermion system cannot be of
order zero because the Pauli principleprevent fermions to be in the
same state and in particular no more than two fermions can be in
£ €38)

the 18 state. We have given in a pre{rious wor .a method for cons-

tructing low order H.H, for fermion systems. .

Let us assume that D'[Lmﬁzf""zﬂ) is a homogeneous polynomial
of minimal degree L, antisymmetric in any exchange of two fermions,
where the symbol D[igf has been chosen to recall that antisymmetric
polynomials can be written as a sum of determinants. It is obviously
a harmonic polynomial because the Laplace operator applied to a
homogeneous polynomial decreases by two the degree of this polynomial
witheut changing its symmetry, therefore it gives zero when aetiné

on a homogeeeous polynomial of minimal degree :

V2D Lﬂ,(f) -0

We assume for the sake of simplicity that D[LmF) is not degenerated.
i.e., that it does not exist another harmonic polynomial D[me)

of the same degree - L;_- Lm for which

x > >
fn & 2 v(r) @) an 4o (10.1)
[0 B PSS I N
. > .
Let us choose EN = r _and EN - rcos¢N as in (2.1). The central
1)
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potential V(EN) acting on %Lig) generates harmonic polynomials of
degree Lp+2K (paricy (-1) ®) :

Ly :
-'p (€y) D () (10.2)
x®n) O 0

-)

)
L]+

completely determined by the quantum numbers [LJ and K which spe~-

cifies the degree L 42K of the pc ynormial. These polynomials mvst

fulful the equation similar to [¢.7) :
-+ [Lm] [Lm]
fn 6 vy () pyr (8 pE) an = & (10.3)
(r-l [ ]

where the integral is taken over the surface of the unit hypersphere

r =1 in the D = 3N dimensional space.
I <> >
Let us separate the coordinate £, out of the set ({) and

1et us 1ntroduce the hyperspherical coordinates (p,ﬂ ) of the set
(E;,...,EN l) in such a way that the hyperspherical coordzna:es Q)
-

be given by (Qp;wN,¢N) vhere NN are the angular coordinates of EN

and
p = rsin¢N R 'EN = rcos¢N . (10.4)

Integrating |D (2)|® over the coordinates ﬂp generates the
Lm
homogeneous polynomial :

0
. /-%)L“(JE)I2 aq,= 54 L) [n,2> Y, (wy)
2n+8 pZLm—Zn-E (10.5)
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(38)
where % is even and <[Lm]|n.£>are geometrical coefficients .

When the associated H.H.
~-L

B - D(E)
(g

is normalized, the coefficients in (10.5) fulfil the relation :

Ip¢iy|? an -J{|n(n)|2 9, duy
[ [Lg
D-4

(sin¢N) (cos¢N)zd¢“

YT (10.6)

T (L,+3)

;4 Ll | n,2>l‘(n+-§-)l‘(bn+2§§-n) =]

Using (10.5) the condition (10.3), with x = cosZ¢N, becomes :

1

[1h] [Lml
P(x) P (x) W(x) dx = § (10.72)
- K K' fL] K,K'

where

D 1 D-5
=(Ly+o1) n+ Ly+—3—n
F(ﬁ - /A2 " z ;d Lm] |n,0>(1+x) z (1-x) ©
L

L)

is the weight function associated with the polynomials P(x).
K

Eq.(10.7) determines completely the polynomials gemerating

the potential basis
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D (9,

(L Hzx ) N

asgociated with the lowest order H.H. ?(9),where
L

q# . [L] A%A
- é ij)' PK (cos2¢y) with cos¢py = rjj/r. N

The basis (10.8) is complete for an expansion of any function of =

Ty and in particular for the central potential V(r.j).

Obviously for L o~n=0 the weight gunctions (10.7) is associated with’
D-5 1

the Jacobi polynomialg P (x? constituting (except for a nomﬁa-
lization comstant) the poten;ial basis €D2£nij) (see Eq.(2.2)j.
The procedure to calculate the coefficients <[L lIn,2> enabling
one to construct the weight function (10.7) generated by D(Qf

has been explained in ref.(22).

Assuming that th?L;fight function %ﬁ:f and the associated
normalized‘polynomiala Px(x) are known, we can apply the genefﬂf
theorems for expansion problems with orthogonal pclynomials.

In particular the expansion of the potential is given by

AL (1]

Virg) = K')K(nij) Vg (0 (10.9)

where the multipoles are !

] Ly
v (r) -/V(rx) P (x) W (x) dx (10.10)
K e K EJ

To calculate the matrix elements with potential harmonics for two

pairs (2,1) and (i,j) we use as in section 6 the kinematic rotatiomn

vector as a tool and find
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L] .-
] ij
P(cosz¢k )
<D(Qy,) | Dlag;) > = —X
[L,,J+2K‘ Lol 72K ] (10.11)
P(l)
K

which reproduces (7.1) when Lp=Z=0.

The expansion of the wavefunction in terms of potential

harmonics becomes

D-1 C;L ]
- - ]
¥(r,R) = ¢ Dﬁﬂ)_Z{ Zf’ (nij)} uK(r) (10.12)
n g li,j>i K

The partial waves uK(r) are golution of the system of coupled equations

£ +2K) (£_+2R+1 z K!
- n.f[__dz L Lt Cyr2ke )]+g u, () + &ed U (x) u(r) = 0 (10.13)
ol 4.2 22 K k' K K

where

‘ 2.
U (r) = <D(%3p)] Virg ) [D(Ry) > (10.14)
K' [Lgl2E i,j>i {Lg +2K

1]
The potential matrix Ui is calculated in using (10.9) and (10.11) :

- i} Z Ll .. ] k)
K’ [Lm] m y-1 i i] n (10.15)
UK(r) = ? <I[Lm] +2K|Px II‘Lm] w2k I_Px(l)] e P)écouzlp“ ) Vx(r) '
where the matrix elements
. L, / Lol [Ld [L]
<p P D > = P(x) P(x) P(x) W(x) dx
[Lgl +2k| X Lyl "2 K K X [Lmi (10.16)

-1

generalize the 3P coefficients (7.8) when Ly #°0.



Comments and conclusion

The concept of optimal subset proceeds from the basic idea
that the wavefunction is well described when the two body correla-
tions are included and that the probability for more than two par- .

ticles to interact at the same time is small.

If these assurtions are fulfilled the wavefunction can be

written :

\I’(;) - Z F(f]_].f) D (9)4’(:) (ll.l)

1)]>’-

F(rij,r) is calculated through a H.H. expansion using the potential

basis complete for any two bady function :

28
F(r;.,r) = 3’(915) £4r) b (11.2)
J .K 2K
The numerical calculations(7—9) have shown that this approximation
is good. We may wonder why such a drastic simplification leads to
a 80 accurate result. Let us assume that the term nLﬁn) p(r)
_b-1
solution of (10:13) for K=K'=0 and ¥= r 2 uo(r) is already a
rather good approximation of the wavefunction, in such a way fo be

in a situation favorable to apply a perturbation calculation. Here

the perturbation is the angular dependent part of the potential:
20| 2P| v
sV = ij)] v(r)
K#0 i,j>1 K

According to previous analysis (38-40) a harmonic oscillator (H.O0.)
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basis is convenient for the expansion of the radial functions.

Let us denote by |K,n> the H.O. state .
. Z H,0 .
|K,n> = D(R35) ( ¥(r)
1,01 Ly 32k} L _+2k,n

constructed with the potential H.H. and the H.0. radial wave

1} ::gt) (38)where n is the number of nodes of the radial wave. In
starting from the unperturbed state |0> the contribution brought

by the third-order perturbation which contains the pro&uct of matrix

elements .

<O|6V|K;n1><x1n1 |6V|K2nz>< Kznz|6V|o>

can be exactly calculated with the exclusive use of the poteﬂtial
basis, because any H.H. orthogonal to the potential basis cancel
this product. The error made in taking only the optimal subset into
account in the expansion of the wavefunction is therefore of the
fourth-order when the angular part of the potential is treated
perturbatively. This fourth-order correction seems very small for

the investigated problems.
i

For solving the expansion problem a large number of coupled
equations (10.13) have to be integrated. This procedure, which is
generally difficult, can be simplified in wusing the Adiabatic

d(41’42). Instead of a4 H.H. expansion one uses

Approximation metho
an angular basis Bl defined as eigenfunction of the angular diffe-~

rential equation:
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2 2
{_ %; £:?)+ v(r,ﬂ)} B, (r,2) = u, (r) B, (r,Q)

£2(Q) = 1L2(Q) - (p-1)(D-3)/4 (11.3)

where r is a parameter.

For solving this equation one expands BA in potential har-
monics converting (11.3) in a2 matrix equation which can be solved
easily with standard computational programs . The basis Ei decouple
the ﬁquations (10.13) when the_variation with r of BA is neglected
Then we have to integrate either omne equation or three coupled
equations according as we use the Uncoupled(aj) or the Coupled

Adiabatic Approximation(44) which takes the variation of BA with

r into account. *

In this paper we have shown how: to introduce the two-body
correlations in the wavefunction. Let us now explain briefly how
to improve our solution by including more than the two~body corre-
lations. According to the previous discussion our solution is
limited to a third-order perturbation accuracy because the poten-
tial basis is mot sufficient to describe completely the product
8y S?(Qi_) of a two body potential and a potential harmonic, which
contains the product for different pairs of two potential harmonics.
In order to emlarge our basis one proceeds like in section 2 for

introducing the three-body correlatiomns : ome constructs a basis

complete for the two Jacobi coordinates :
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1+ =+ > .
where iijk i(xi+xj+xk) is the center of mass of the three par-

ticles system. It is obtained in writting that this basis does not

depend on the Jacobi coordinates Ei for i<N-1

L,m

i 2
P (R:1)= Y,(D-6) Z < L. .0 sm ,m|,m> Y(wss:) Yiw )
LA O mem, 3 RTTE 37 Rk

(M) &;.,A (N=-1) &

P£$J Xgﬂ D (11.4)

where mij(mk) is the spherical coordinates of ; (rk) and

- < . . 3

cosd, = /r » cosdy_, /I w1 22- 211/2 . g'ij yim,m 12 m> is
a Clebsh-Gordan coefficient. When A= 0 one finds again the poten-
tial basis (2.2). In ovder to describe only the three- body cor-
relations one must take out the two-body correlations leading to

the basis :

L,n
g){ﬂj‘il,g) = C(LaAs Ly 0 y)

ijotk
L,m
P (% 1) E@g(n )Ir(n- > (9 )}
{ Lnil}fu,zk a,85¢ 1 ©oB -'h..,gk L™ aB (11.5)

where C is a normalizatiom constante.

This basis, orthogonal to the potential basis, describes only -
three-body correlations. It is not our purpose in this paper to
study how the coupled equations must be completed in order to im-
prove the solution obtained with the potential harmonics therefore
the properties of the three-body basis (11.5) will not be further

investigated, but we must keep in mind that the next improvement
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of our solution is obtained in taking the three~body correlations

into account,
In this wqu we have shown how to extend the method used
in our early paper(l) to any many~-body problem by constructing the
potential basis enabling one to describe the two-body correlations.
We have seen that contrary to the allegations of Efros(ll)
the use of the kinematic rotation vector as a tool is mot "too
artifical” but is very well adapted to the calculation of the ma-
trix elements with potential harmonics. We must notice to this
respect that in our early worke(l’7) on trinucleon and 4Ee bound
states the mixed symmetry S state was already included as a suita-
ble linear combination of potential harmonics and that the method

(10)

to expand any two body operator sketched in ref. has been

applied with realistic potentiala(ls). Our results are of course

(

in agreement with those of Efros 1) for the cases considered by
him. The matrix elements with two and three potential harmonics
have been explicitely calculated when the lowest order H.H. occu-
ring in the expansion of the wavefunction is of order zero (i.e.
YO(D)). Recurrence relations leadihg to an easy numerical calcu-
lation of the needed matrix elements have been given.

But for fermion systems we have seen that in each case the
potential bgsis must be constructed from the weight function
generated by the lowest order H.H. occuring in the expansion of
the investiga:ed'state. The potential harmonic expansion method
which has been applied successfully to the calculation of few

(13-18)

*nucleon bound states with realistic interactions and in

a simplified version to light nuclei(zo) seems to open one of the
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most accurate and promising possvibilities of solving the Schrddinger
equation by introducing comsiscteutly che two-body correlations

generated by the .interaction.
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- Appendix -

-1 Expression of the grand orbital operator L®() for the choice
of hyperspherical cocordinates (1.11). '
The operator is obtained from the recurrence formula M, N
2
2 L P L, @ ) .
12 (ni) -, [3(5.-2) cotan¢i+2(cotan¢.—tan¢.)]-a—- + ,'—(EQ + = = ;
: T 1 T3 ap: cos? sin®¢,
i 1 i i
2 B
2 % ws L1 ®5-9)
-40-24) =+ 6 z-imzi)]-?- . 208 | sl il
9Z; 9z l+z5 1-2¢
zj= cos2b; Ry, ,$5...54,05)
(r.1)

Li@)= (), =2, LAAY=L(w),[2Xw) +-2(ks1)) Y';cn) -0

=-II Potential multipoles

Other expressions equivalent to (3.3) can be obtained
a,b

a) in terms of the Jacobi polynomials PK

D-3
z D D 1/2

D,% T (2K+2+—2--1)]'(K+!.4-2-1)K!

Vg (r)= D+I-2 ’

D-3 D-3 3
2 T (=5=)T (R+=7)T (K+243)
l D=5 ,1 D5 2+
- [v( l;—x) PKZ(:':) 2 (l-x)T (l+x)T dx (11.1)

-1

b) in terms of the Fourier transform. Let

e 2 en man
B ™

be the Fourier transform of (3.1) where
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. . 2
vz(k) po .[ Jz(kl‘ij) v!,('ij) 5 drij

The potential multipoles occuring in (3.2) are given by

D+3 172 o
' D,% K 'n‘T(ZKHl-'T -Dr (K+£+2—l )y (K_,Bz‘i ) .
V(O=(-1) f W® I ) K dkl
K RIF 2P eeed) 2R+l =

(11.2)

-I1II Recurrence formula for the potential multipoles.
The relation between Jacobi polynomials

(lu»MB Z2841) (1-x) P (x) - (K"G"I)P (") = (R+1) p (x)
K+l

applied to the expression (II.]) provides the recurrence formule

1/2 D -3 172 3 1/2
D+2,2 o5 (K+Jt,+-2-—l) (K+—2-) D,2 (K+1) (K+R.+§) D,%
VK(r) = D 5 VK(r)- —_— (r)
(2K+2.45) (D-3) 2K+!.+i- -1 2K+!.-|-2- +]1 B+l ]

. =-IV Formula for the 3P coefficients :
! | 1 1 i
[+ L +-2- o, 2+7 [« 31 ,21"’7 Q.Ez +-2—
. (1-x) (1+x) P(x) P (x)° P(x) dx .
K Ky K,
-1
’ a+ !,+—3- -
2 3 Tk, +K +1)T (a4KR2+1)
- 2 P (R+2 "5
R ' K,!l(,' T'(x, +K#hy )I‘ (a,rx,»fz,r-)
K 4K, min(X, ,q)
S 94K fq . Z T (opEpia-p )I‘Guluz +p+-)
D (K) r(d.'l-gfl)J (q'PX ) oK 3
q-K r (C+K+E‘|'q+f) pmax (u’q_xz ) T (GI"'q'P"'l YN (az‘_p‘_ 1
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Figure Captions
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J

Increasgses of ﬁinding enetgy in MeV vs. K, the number of
integrated coupled equations for a)the Tritom, b) 4He.
The potentials are sum of Gaussians.

.EKm is the binding emergy obtained by integrating the K,
. first coupled equations using the potentials Vgl[91,

ePDT [24], B [32), v [33], A-T or S3 [34], E~-H or s4[35).

Increase of binding energy V8. Km for the Yukawa potentials
Y (Bell-Delves) and MVI (Malfliet-Tjon) [36). One uses
the numbers of ref.[8]and [19].

Percentage of the partial waves pg(r) in Eq.(9.3) for the
ground state of 4He obtained by integrating fourteen cou-~
pled equations (Kp = 14) with the Gaussian potentials [19].
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