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Nonlinear Saturation of Non-Resonant Internal 

Instabilities in a Straight Spheromak 

W. Park anrl S. C. Jardin 

Plasma Physics Laboratory 

Princeton University 

Princeton, N.J. 08544 

Abstract 

An initial value numerical solution of the time dependent nonlinear ideal 

magnetohydrodynamic equations demonstrates that spheromak equilibria which are 

linearly unstable to nonresonant helical internal perturbations saturate at 

low amplitude without developing singularities. These "instabilities" thus 

represent the transition from an axlsymmetric to a non-axisymmetric 

equilibrium state, caused by a peaking of the current density. 
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IE the toroidal current becoaes too concentrated at the magnetic axis of 

an axisymmetric spheromak, the configuration will become unstable to an ideal 

magnetohydrodynamic Instability, even at zero plasma pressure. Since the 

temperature dependence of the plasma conductivity causes this current peaking 

in ohmically heated spheromaks, the nonlinear behavior of these Instabilities 

is of considerable interest. 

Recently, a study has appeared1 in which the linear stability boundaries 

of the spheromak configuration have been mapped out. One of the results of 

this study is that the internal mode stability of a toroidal spheromak can be 

well approximated by considering the circular cylindrical spheroraak, an 

idealized configuration in which the torus has been straightened out while 

maintaining its periodic boundary conditions. This study also found 

nonresonant (nq - m ^ 0 anywhere in the plasma) m • 1 Internal modes to be the 

dominant internal ideal instabilities in a spheromak, where n is the toroidal 

mode number and m Is the poloidal mode number. In the present paper, we study 

the nonlinear evolution of thuse nonresonant modes in a circular cylindrical 

spheromak. This is compared to the results of Ref. 2 where the resonant 

m 3 1 internal kink mode in the tokamak was found to de/elop nonllnearly into 

a saturated helical state with a singularity In the current density. 

Using standard (r,6,z) cylindrical coordinates, we define a periodicity 

length In the z-direction of L « 2itk, where k is the analog of the reciprocal 

major radius in a toroidal device, k « 1/R. The equilibrium safety factor 

profile is taken to be of the for* 

q(r) - rk B (r)/B„(r) - q (1 - r 2) . (1) 
z w o 

Force free equilibrium fields for this systec are obtained by performing 
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the integral 

v o - <**, -, <- f " ; %r**,f' -> • 
o (q /k + r ) 

In addition to the overall scale iactor B , the equilibrium profiles are seen 
vo 

to depend only on the pitch parameter q0/k. 

The linear stability properties of this class of configurations are 

illustrated in Fig. 1 (taken from Ref. 1) where we plot the unstable region in 

(nk, nq 0) space. A given equilibrium with a fixed value of q Q and k Is 

unstable If the line passing through the origin with slope (q0/k) intersects 

the shaded (unstable) region and a point corresponding to a discrete mode with 

n an Integer lies within the shaded region. 

We have studied the nonlinear evolution of unstable equilibria of the 

form given by Eqs. (1) and (2). This can be treated as a two-dimensional 

problem since helical symmetry is preserved in the present system. The plasma 

is treated as incompressible for convenience In the numerical calculation. 

The final saturated equilibrium obtained assuming incompressibllity will also 

be an equilibrium state for a compressible plasma with finite pressure. The 

dynamic equations used are the exact equations of Incompressible magneto-

hydrodynamics with fixed helicity, first used In Ref. 2. The velocity and 

magnetic fields are represented by a stream function U and the helical flux A: 

tf - gW x e + V a (3) 

t ' gVA x e + B e . (4) e 
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2 2 — 1 / 2 
Here, g = [1 + a (r/a) ] ' , $ • e + az Is a helical coordinate with 

A A A 

hellclty a • nk, and e • r x $ is "he unit vector in the symmetry direction. 

All the scalar components on the unit basis vectors (r,<|>,e) are functions of r 

and $ only. The fixed hellcity incompressible magnetohydrodynamic equations 

are (in rationalized emu units with minor radius a " 1 and homogeneous 

density p = 1 ) 

dA/ut = 0 (5) 

(d/dt)(gB ) = B"»V(gV ) + 2ag4tf-VA , (6) 
e e 

(d/dt)(A*U) = -i'HgJ ) + a 2g 2[>(V 2 - B?)/o<|>] - 2atf«V(g3Ve) , (7) 

(d/dt)(Ve/g) = S'V(Be/g) . (8) 

Here, Vf - (of/Br)r + (l/rg)(of/o*)i, A*f = V-(g2Vf) 

= (l/r)[(o/ar)(rg2of/3r)] + (l/r2)(o2f/o*2), 

J e - -(A*A/g + 2og2B ), tf«vr = (Vf x gV0)»e, S'Vf - (Vf x gVA)«e 

and d/dt » S/St + V»V. (Note that the usual reduced tokamak equations can 

be readily obtained from the above equations by taking only the lowest order 
2 terms in a. In this lowest order, however, the modes WP study are not 

present.) 

An axlsymmetric equilibrium is given an Initial perturbation of the given 

hellcity and the time advancement is followed numerically. A damping term is 

added in the nonlinear phase to provide a mechanism for energy dissipation, 

allowing the plasma to settle into a neighboring lower energy equilibrium if 

one should exist. The numerical scheme used is similar to the one used In 
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Ref. 2. 

In fig. 2 we plot the linear growth rates and the nonlinear saturation 

amplitude of the unstable nodes for varloue (nk) values with the equilibrium 

denoted by the dashed line qQ/k - 0.3 in fig. 1. The saturation amplitude Is 

characterized by £ , the displacement of the magnetic axis from the a 
equilibrium state. 

In Fig. 3 we show the flux contours A in the Initial unperturbed 

(unstable) axisymmetric state (3a) and in the nonlinearly saturated (stable) 

helical state for the mode with nk » 2. Similarly, in Fig. 4 we show the 

contours of constant current density In the symmetry direction, Je, for the 

axisymmetric and helically saturated states. 

From Figs. 3 and 4 we see that the saturated helical states for these 

modes do not possess singular current densities. This is in marked contrast 

to the singular saturated states for the Internal kink mode in tokamaks 

studied in Ref. 2. The critical difference Is that the spheromak unstable 

Internal modes of the present study do not have singular surfaces In the 

plasma. Tne absence of singular current densities in the saturated state 

Implies that resistive reconnectlon does not play a role as it does In the 

nonlinear evolution of the internal kink mode in the tokamak. 

Figures 1 and 2 enable us to put together a picture of the evolution of a 

spheromak discharge. If the spheroraak is initially formed with a relatively 

broad current distribution It will have q0/k > 2/3 and will thus be stable to 

all the current driven internal modes In Fig. 1. As the center of the plasma 

ohmically heats and the temperature peaks, the current will concentrate on 

axis causing qQ/k to decrease below qQ/k < 2/3 and thus cause the spheromak to 

become unstable to one or more internal modes. These modes will grow to a 

finite but small amplitude, resulting In a smooth transition to a stable 
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non-axisyrametric new equilibrium configuration, without causing the phenomenon 

of "sawtoothing associated with the nonlinear development of internal modes 

in tokaraaks. It should be remembered, however, that the present study assumes 

helical symmetry, and thus an extension to three dimensions may still reveal a 

different character such as the development of current singularities due to 

the coupling to modes of different helicities. 
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Figure Captions 

Fig. 1 Stability boundaries for internal modes in the pressureless 

cylindrical spheromak with parabolic q-profile. A given equilibrium 

corresponds to a line emanating from the origin with slope [q./k]~*. 

Fig. 2 Linear growth rate (y) and shift of the magnetic axis in the saturated 

state (£ ) for equilibrium with qQ/k = 0.3. Note that in a physical device 

with k = 1/R, nk can onlv take on discrete values. 

Fig. 3 Helical flux contours, A, for an unstable axisymmetric equilibrium 

with qQ/k = 0.3, nk = 2 (a), and for the nonlinearly saturated state of the 

same equilibrium (b). 

Fig. 4 Helical current contours, Je, for the axisymmetric (a) and helical 

saturated state (b) of Fig. 3. Note that the current density retrains smooth 

in the saturated state. 
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