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Nonlinear Saturation of Non-Resonant Internal
Ingtabilities in a Straight Spheromak
W. Park and S. C. Jardin
Plasma Physics Laboratory
Princeton University

Princeton, N.J. 08544

Abstract
An initial value numerical solution of the time uependent nonlinear ideal
magnetohydrodynamic equat*ons demonstrates that spheromak equilibria which are
linearly unstable to nonresonant helical internal perturbations saturate at
low amplitude without developing singularities. These "instabilities” thus
represent the transition from an axisymmetric to a non-axisymmetric

equilibrium state, caused by a peaking of the current density.
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If the toroidal current becomes too concentrated at the magnetic axis of
an axisymmetric spheromak, the configuration will become unstable to an ideal
magnetohydrodynamic 1instability, even at zero plasma pressure. Since the
temperature dependence of the plasma condnctivity causes this current peaking
in ohmically heated spheromaks, the nonlinear behavior of these instabilities
is of considerable interest.

Recently, a study has appeared} in which the linear stability boundaries
of the spheromak configuration ha?e been wapped out. One of the results of
this study is that the internal mode stability of a toroidal spheromak can be
well approximated by considering the circular cylindrical spheromak, an
idealized configuration in which the torus has been straightened out while
maintaining 1its periodic boundary conditions. This study also found
nonresonant (nq - m # 0 anywhere in the pilasma) m = 1 internal modes to be the
dowinant internal ideal instabilities in a spheromak, where n is the toroidal
mode number and m {3 the poloidal mode number. 1In the present paper, we study

the nonlinear evolution of thcse nonresonant modes in a circular cylindrical

spheromak. This is compared to the results of Ref. 2 where the resonant

m = 1 internal kink mode in the tokamak was found to develop nonlinearly into
a saturated helical state with a singularity in the current density.

Using standard (r,6,z) cylindrical coordinates, we deiine a periodicity
length in the z~direction of L = 27k, where k 13 the analog of the reciprocal
major radius in a toroidal device, k = 1l/R. The equilibrium safety factor

profile is taken to be of the form
2
- = - - 1
q(r) = rk nz(r)/ne(r) qo(l rc) 1)

Force free equilibrium flelds for this systec are obtained by performing



the integral

T 2r + (d/dr)(q2/2k?) ar

By(r) = tB, exp (- J (2)
0 6o ( o (qz/kz N tz)

~—
.

In addition to the overall scale Tactor Beo’ the equilibrium profil:=s are seen
to depend only on the pitch parameter q,/k.

The 1linear stability properties of this class of coafigurations are
illustrated in Fig. 1 (taken from Ref. 1) where we plot the unstable region in
(nk, nqo) space. A given equilibrium with a fixed value of q, and k is
unstable if the 1line passing through the origin with slope (qo/k)-1 intersects
the shaded (unstable) region and a point corresponding to a discrete mode with
n an integer lies within the shaded region.

We have studied the nonlinear evolution of unstable equilibria of the
form given by Eqs. (1) and (2). This can be treated as a two-dimensional
problem since helical symmetry is preserved in the present system. The plasma
is trested as 1incompressible for convenience 1in the numerical ecalculation.
The final saturated equilibrium obtained assuming incompressibility will also
be an equilibrium state for a compressible plasma with finite pressure. The
dynamic equations used are the exact equations of incompressible magneto-
hydrodynamics with fixed helicity, first used in Ref. 2. The velocity and

magnetic fields are represented by a stream function U and the helical flux A:
T=gWwxe+ve , (3)

BegWA xe+Be. )
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Here, g = {1 + az(r/a)zl-llz, ¢= 6+ az 15 a thelical coordinate with
helicity a = nk, aad ; = ; X a is -he unit vector in the symmetry direction.
All the scalar components on the valt basis vectors (f-,&,é) are functions of r
and ¢ only. The fixed helicity incompressible magnetohydrodynamic equations
are {(in ratlonalized emu units with minor radius a = 1 and homogeneous

density po = 1)

dAfut = 0 (5)
(4/de)(gB,) = Be(av ) + 2ag*Teva 6)
@/dey(arn) = -Bowed ) + d*g?[o(v2 - B )/00] - 208-9(g%,) Q)
(d/ae)(v /g) = E-V(ne/g) . (8)

Here, VE = (Of/0r)r + (1/rg)(dE/06)4, A*E = V(g VE)
= (/o) (aroryre2or/any] + (1/e2)(aRe/ b,
I, = -(b*alg + ZGgZBe), Tove = (96 x gW) e, BeVE = (VE x gVA)we
and d/dt = d/d3t + V+V. (Note that the usual reduced tokamak equation53 can
be readily obtained from the above equations by taking only the lowest order
terms 1in a.2 In this lowest order, however, the modes we study are not
present.)

An axisymmetric equilibrium is given an iInitial perturbation of the given
helicity and the time advancement is followed numerically. A damping term is
added in the nonlinear phage to provide a mechanism for energy dissipation,

allowing the plasma to settle into a neighboring lower energy equilibrium if

one should exist. The numerical scheme used is similar to the one used in
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Ref. 2.

In Flg. 2 we plot the linear growth rates and the nonlinear saturation
amplitude of the unstable modes for various (nk)2 values with the equilibrium
denoted by the dashed line q,/k = 0.3 in Fig. 1. The saturation amplitude is
characterized by E’a’ the displacement of the magnetic axis from the
equilibrium state.

In Flg. 3 we show the flux contours A iIn the 1initial wunperturbed
(unstable) axisymmetric state (3a) and in the nonlinearly saturated (stable)
helical state for the mode with nk = 2. Similarly, ia Fig. 4 we show the
contours of constant current density in the symmetry directiorn, J,, for the
axisymmetric and helically saturated states.

From Figs. 3 and 4 we see that the saturated helical states for these
modes do not possess singular current densities. This is in marked contrast
to the singular saturated states for the internal kink mode 1in tokamaks
studied in Ref. 2. The critical difference 1is that the spheromak unstable
internal modes of the present study do not have singular surfaces In the
plasma. Tne absence of singular current densities in the saturated state
implies that resistive reconnection does not play a role as it does in the
nonlinear evolution of the internal kink mode in the tokamak.

Figures 1 and 2 enable us to put together a picture of the evolution of a
spheromak discharge. If the spheromak is fnitially formed with a relatively
broad current distribution it will have q,/k > 2/3 and will thus be stable to
all the current driven internal modes in Fig. 1. As the center of the plasma
ohmically heats and the temperature peaks, the current will concentrate on
axis causing q,/k to decrease below qy/% € 2/3 and thus cause the spheromak to
become unstable to one or more internal modes. These modes will grow to a

finite but small amplitude, resulting Iin a smooth transition to a sgtable




non-axisymmetric new equilibrium configuratfon, without causing the phenomenon
of "smatoot:hing"6 agsoclated with the nonlinear development of internal modes
in tokamaks. It should be remembered, however, that the present study assumes
helical symmetry, and thus an extension to three dimensions may still reveal a
different character such as the development of current singularities due to

the coupling to modes of different helicities.
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Figure Captions
Fig. 1 Stability boundaries for internal modes 1in the pressureless
cylindrical spheromak with parabolic q-profile. A glven equilibrium

corresponds to a line emanating from the origin with slope [qo/k]'l.

Fig. 2 Linear growth rate (y) and shift of the magnetic axis in the saturated
state (ga) for equilibrium with qolk = 0.3. Note that in a physical device

with k = 1/R, nk can onlv take on discrete values.

Fig. 3 Helical flux contours, A, for an unstable axisymmetric equilibrium
with qo/k = 0.3, nk = 2 (a), and for the nonlinearly saturated state of the

same equilibrium (b).

Fig. 4 Helical current contours, Je, for the axisymmetric (a) and helical

saturated state (b) of Fig. 3. Note that the current density rewains smooth

in the saturated state.
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