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Abstract . ;.- '.: ..iu( ,.Z 

We take the phenomenologlcal point of view that the anomalous elect on 

thermal conductivity produced by the nonlinear trapped electron mode should 

also Influence the stability properties of the mode itself. Using a model 

equation, we show that this effect makes the mode self-stabilizing. A simple 

expression for the anomalous thermal conductivity is derived and Its scaling 

properties discussed. 



It is well-known that electrons in a tokamak plasma lose heat at an 

anomalously rapid rate. This loss Is usually interpreted in terms of an 

anomalous perpendicular electron thermal conductivity coefficient x • An 
e 1 

explanation of the magnitude of ^ . and its scaling with various physical 

parameters is still an unsolved problem of tokamak physics. 

In this note we wish to explore consequences of the following ansatz: The 

anomalous thermal conductivity x is felt, not only by the gross thermal 
el 

dynamics of the discharge, but also by the microscopic fluctuations associated 
with microinstabilltles. We shall assume that x Is independent of scale-

e 1 
size and is isotropic in the two dimensions I to the B 0 field. In particular 

we shall examine the influence of y_ on the drift instability driven by 
el 

2 trapped electron dissipation. This instability is of special interest 

because most tokamak discharges have a substantial part of the plasma in the 

"banana" regime (v < u) ) , where this instability should be operative. We erf be 
demonstrate below (using a model equation) that a sufficiently large x , can 

el 

lead to stabilization of the trapped electron instability. The following 

scenario may now be pur. forward: Typically, most tokamak discharges are in 

the parameter space where a substantial part of the plasma is unstable to 

linear trapped electron Instability. As the fluctuation level comes up, it 
leads to an anomalous perpendicular thermal conductivity Y of electrons. 

el 
X , not only produces the observed anomalous electron heat transport, but it el 

also shuts off the instability. We thus have a self-consistent mechanism 

determining the instability saturation and the anomalous electron heat 

transport. 

Let us make some qualitative estimates to orient our thinking. The time 

scale for diffusing a T e perturbation associated with the microscopic mode is 
2 — 1 2 (y , V ) . Taking x , ~ a / T _ (a is the plasma radius and T_ , the electron Ae 1 el Ee Ee 



energy confinement time) and ] \7{ ~ k ~ p (p is t*-1 ion Larmor radius), we 

find 

X e iV 2 = ( a 2 ^ ) - ^ . / = 10 6 - 10 7 sec"1 

Thus we find that I M 1 > ly ,V2I > v „, us . Thus if the observed x is 'be' '*ei ' eff el 
also operative on raicroscales (~ p ) , it produces a nonlinear dissipativj 

mechanism which can replace the linear dissipative mechanism (v ) associated 
err 

with detrapping of trapped electrons. Since | x i V | ? u ~ u # = (cTe/eB) 

(din n /dr), the mode is nonlinearly driven into the dissipative regime. Note e 
Chat % primarily operates on trapped electrons since they have an associated 

temperature fluctuation; the untrapped electrons basically follow a Boltzraann 

distribution and have T = 0. e 
Our starting equations are the quasl-neutrality condition 

"eu + "ct " *i ' ( 1 ) 

the Boltzraann response for untrapped electrons (we neglect resonant tlectron 

effects since their contribution to growth rate is typically smaller) 

n /n e*/T , (2) 
eu ou e 

the usual fluid response for cold ions 

. w. k.c 

e u 

(cs =• A /m is the ion-acoustic Bpeed), and a model equation for the trapped-
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electron distribution function, averaged over the "bounce" motion viz. 

— f + v • Vf - Y V 2 (f - /E f ) = 0. (4) 
3t T E*B oT *el 1 V T u 

In writing Eqs. (1) - (3) we have used the usual local WKB approximation. The 

second moment of Eq. (4) shows that the temperature fluctuation in trapped 

electron fluid diffuses at a rate lv V I as desired. Tha density moment of 
1 A e l 1' 

(4) indicates that the model term relaxes the trapped electron density 

perturbation n towards the equilibrium Boltzraann value 

/en = /c(e$/T )n . Proceeding in the standard manner with (4) , we get eu e ou 

e urf-Ikj*^ 

where 

d J l n T e 3 -2 
U * T = "•t 1 ' ai?Hr ( T ~ v ^ 

It is well-known that if v is Independent of velocity and f T is a 
Ae 1 ol 

Maxwellian, the temperature gradient term drops out of (5). We believe that 

the temperature gradient destabilization Is Important and therefore assume an 

appropriate velocity dependence; the result will h written in terms of an 

unknown coefficient a ~ 0(1), We may now write a new dispersion relation for 

the trapped electron mode, viz. OJ = UJ + iy, where 

• ufc/[l + fcJPg] < 6 a ) 

2 2 2 
, /T ID. . . -2 , din T k.p 

k i X e i e l + K ^ 
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Note that the above "dissipative" trapped electron regime Is relevant, because 

k y > Uj. is expected. Note also that the anomalous Y , replaces v as X el el. err 
the basic dissipative mechanism responsible for instability. However, since 

X is large, the growth rate Is reduced (below the linear value due to 
el 

v ) and becomes smaller aa x Increases. It Is also interesting to point 

out that In this "dissipative" regime, the effects due to curvature-drift 

resonances, etc., are not too critical. 

We now assume that we can use the slab model for sheared magnetic 

fields. One could argue with some justification that, in the presence of 

substantial fluctuations, the toroidal nature of the linear problem is 

irrelevant. The mode instability now requires that the local growth rate y 

given by (6b) exceed a shear damping rate (for n = 0 radial eigenmode) 

Y. = ai (L /L ) , (6c) 

where i^1 = (Vn/n), iT 1 = (r/R)(q' /q 2), q' = (dq/dr) and q = 5^/3 ( r ) R 

is the well-known safety factor. Typically, y,/ui. = 0.1. An additional 
d * 

damping mechanism could be the nonlinear Landau damping with broadened ion 
resonances. The magnitude of this effect is 

* 10 * q R iii 

and appears to be weaker than the linear shear damping. The mode is thus 

self-stabilized when x becomes large enough to make w = y . Equating (6b,c) 

we find 

g/e "- d t a Te q 
X e i " k 2 [ i + k 2

P

2 ] 2 W t a * e ( 7 ) 

1 L ra' 



-6-

where e = r/R, and we have assumed that the temperature gradient term 

dominates In (6b), as usual, and the (3/2) has been absorbed In a. The basic 

ansatz of this paper Is that the x , [given by (7)] which shuts off the 
— — ~ — el 

trapped electron mode is identical to the x . measured by the gross thermal 

dynamics of the discharge. We now explore further consequences of this 

Identification. 

Unfortunately, Eq. (7) has the undesirable feature that x , depends on 
el k,. For k.p < 1, the dependence is kT . We now postulate that y , has to l l's ~ 1 el 

be large enough to shut off the most unstable mode, which typically occurs in 

linear theory when k p = 1 . Using this equation to eliminate fc., we find 
I s 1 

Equation (8) is the desired expression for the anomalous electron thermal 

conductivity associated with the nonlinearly saturated trapped electron 

instability. 

Equation (8) has some very interesting features: 

(1) For a typical Ohmlc heated discharge, we may take E = r/R - 1/6, 

q = 1.5, T = 1 kev, B = 25 K Gauss, (din T ">(<i£n n)/(dAnq) ~ r 

(20 c m ) - 1 . This gives 

-1 

I . » a (1.4) 10 cm sec 

which is close to the measured experimental values for a ~ 0(1). Thus the 

X , In Eq. (8) has the right order of magnitude. 

(2) Equation (8) predicts no direct density scaling in contradiction to 

Alcator scaling x ~ 5.10 /n _, . However, there is some experimental 
cm 
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evidence that the density profiles are fls er at higher densities. Thus a 

density scaling could enter through (Vn/n). Equation (8) has a direct scaling 

with q. Higher currents (lower q) give stronger shear and hence reduced x ,-
4 This is consistent with recent experiments on neutral beam heated discharges. 

(3) The temperature scaling of Eq. (8) is quite complicated. There Is a 
1/2 direct (7T )T dependence. Furthermore, there is an Implicit dependence e e 

through q(r). If the plaBma resistivity is classical and Jz(r)/Jz(0) = 

[T (r)/Te(0)]' , 'Je have the simple relationship 

r dinq „ f _ (!il!l)3/2 Si!)] . (9) 
dr KT (o) ' q(o) J 

(A) The most interesting feature of Eq. (8) is the dependence of i on 

the magnetic shear and the temperature gradient. Equation l'8) suggests that 

the plasma is trying to maximize heat transport across magnetic surfaces by 

weakening the shear. However, to keep the anomalous transport going, the 

Instability must be present, ant. a minimum temperature gradient is needed. 

Thus the temperature profile and the shear yrofils are locked in to a 

"nonlinear marginally stable" form. This argument is reminiscent of the 

"marginal stability" theory of trapped electron mode put forward by Manheimer 

et al. There is an important distinction, however. Our "marginally stable" 

state is nonlinear in that the linear shear damping is being balanced by a 

nonlinearly reduced growth term. The basic objection agaiist the Manhelmer 

theory that experimentally observed temperature profiles are linearly unstable 

and not linearly marginally stable, is thus inapplicable to our arguments. 

Recent arguments by Coppi and Coppi and Mazzucato in favor of a "principle 

of profile consistency" for electron temperature profiles in tokamaks is also 

consistent with our point of view, viz. that the electron temperature profile 
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is held close to a critical form by the nonllnearly saturated state of a 

temperature gradient driven Instability. 

(5) Our model Eq. (4) is basically a model for renormalizatlon of the 

trapped electron fluid response. (Sin e resonant electron effects have been 

assumed small, the usual shear-induced resonance broadening for untrapped 

particles did not enter our theory.) A detailed nonlinear theory should 

provide an expression for x i n terms of the fluctuation amplitudes. If 

electrostatic theories are used, one may estimate 

,/JL _ fcEj2 1 fkcEl2 !^ 
'-el <-B ' uv ^BOJJ , 2 * * k 

Typical saturation amplitudes n/n ~ 10 give kcE/Bou ~ 1 and k x , ~ U). . 
o * el * NL Thus x I is too small to account for the measured v.. Alternatively, a 

fluctuating b model may be invoked to estimate x • Magnetic field 
el 

fj'ctuations associated with the trapped electron mode may be significant. 

However, their effect on renormalization of the trapped electron fluid is 

complicated and may depend on the explicit time dependence of b. We 

emphasize once again our point of view, viz. that x will manage to get large 
ei 

enough -.o saturate the instability nonlinearly. 
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