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SELECTIVE POPULATION COF HIGH-j STATES VIA
HEAVY-ION-INDUCED TRANSFER REACTIONS
P. D. BCND
Brookhaven National Laboratory, Upton, New York 11973, USA

One of the early hopes of heavy-ion-induced transfer reactions was to
populate states not seen easily or at all by other means. To date, however,
I believe it is fair to say that spectroscopic studies of previously unknown
states have had, at best, limited success. Despite the early demonstration
of selectivity with cluster transfer to high-lying states in light nucleil),
the study of heavy-ion-induced transfer reactions has emphasized the
reaction mechanism. In this paper the value of using two of these reactions
for spectroscopy of high spin states 1is demonstrated. The transfers
discussed are not exotic; they are single neutron transfer, but the results
are new, and the use of heavy-ion-induced transfer for spectroscopic
purposes shows great promise for the future. The examples are chosen from
the region of nuclei for which the neutron number is 82 < N < 105, where the
active neutron shell model states are 2fg,p, 1143/2. 3p3/2, @nd 1hg/p, and
the nuclei range from near sphericzl to deformed. The focus here is on the
location of ui13/2 strength in these nuclei.

We begin with nuclel near N = 82 where there has been a recent flurry
of (HI,xn) activity because the nucleus 1:3Gd82 has characteristics of =
closed shell nucleus2), Both the proton and neutron shell model states
include scme of high spin, so the structure of many high spin states should
have simple configurations, and yet earlier studies with the (d,p) reaction
to both 144Nd 3) and ¥8am Y¥) found little or no i13/2 strength in these
nuclei. The msjor reason for these negative results is that the (d,p)

reaction favors small values of the angular mcmentum transfer.



Since heavy-ion-induced reactions are generally performed with poorer
energy resolution than those with 1light ions and for the nuclei in this
region have predamninantly bell-shaped angular distributions, one might
wonder, why use heavy 1ions? One reason is that heavy-ion-induced single
neutron transfer can be chosen to have a selectivity for high j states not
possible with 1light ion reactions. Shown in fig. 1 are single neutron
transfer spectra, taken at the peak of the cross section, to states in 1495n
for three reactions: (13¢,12¢), (12¢,11¢c), end (160,150). The (13¢,'20)
reaction 1is well matched (incoming and ocutgoing grazing angular mcmenta are

nearly equal) and tends to populate low spin states, much as the (d,p)
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reaction. In contrast, the (12¢,11C) reaction has a very large negative Q
value and strongly emphasizes the higher spin single particle states. This
spectrum is similar to that one might obtain with (G.3He) 5y. An added
selectivity is obtained, however, with the (160,150) reaction which also has
a very large negative Q value, Note that there is a very strong suppression
of the hg/p state and, in general, jg = lf - 1/2 states are strongly
suppressed with this reaction. Thus a comparison of the (160,150) and
(12¢,11¢) reactions can be used to distinguish between high spin
if = % + 1/2 and jgr = % - 1/2 final states and to provide complementary
information to light ion reactions.

The observed selectivity in fig. 1 is reproduced very well by DWBA
calculations and is similar to, but more pronounced than, that observed for
proton transferf). This selectivity has a simple semiclassical explanation
which results from the large angular momentum mismatch, the observation that
the intrinsic spin of the transferred neutron does not flip and the fact
that the transferred neutron starts as py/p in 160 and p3/p in '2¢.

The strong selectivity for high spin states observed in fig. 1 is
obtained at the price of a reduced cross section, thus high quality beams of
high bombarding energy and a large solid angle spectrometer are crucial to
these studies, The data in this paper have been taken at the Brookhaven
National Laboratory IDouble Tandem Van de Graaff Facility, using the QDDD
spectrcmeter,

Before discussing even-even nuclei, the location of the v13/2 level in
odd mass nuclei should be addressed. The structure of the v13/2* states in
the region of 146Gd is thought to be complicated by mixing with the
"low-lying" 3~ octupole vibration coupled to the f7/2 neutron?) ., In fact,
in several nuclei it has been proposed that this 1is the predominant

configuration for the lowest lying 13/2+ state8). Until about 1974 the



low-lying 13/2* states were unknown in this mass region, having been
incorrectly identified as 9/2~ states. However, a 19-MeV (d,p) experiment9)
discovered two 13/2* states in several N = 83 nuclei with most of the
strength 1lying in the lower state, which implies that the lower state has a
larger component of Viyz/2.

The spectra for the N = 83 nucleus '*3Nd from the 142Nd(160,150) and

(12¢,11¢) reactions are shown in fig. 2. The enormous difference in
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population of 13/2* and 9/2- states with these heavy-ion reactions make it
clear which states are 9/2~ and confirms that the 1.22- and 2.81-MeV states
are 13/2%, The p3/2 state at 0.74 MeV, strongly populated in the (d,p)
spectrum, is nearly invisible here.

We now turn to the even-even nucleus '44Nd where previous single

neutron transfer from 1”3Nd(Jw = 7/2=) identified only the low-lying 3~



state as containing any 113,2 strength3). This nucleus has also been
studied by (a,2n) 10+11)  and (180,4n) 12) reactions where spins up to 17~
have been assigned12). It has been common in (HI,xn) work to assign the
lowest 3=, 5-, f‘, 9— states to a configuration of 3— * (f7/2)2 because the
energy sSpacings are nearly the same as the "f$/2" multiplet, However, a
nearly identical spectrum for these "natural parity" states is obtained by
coupling f7,, * 113/p with a deltz function interaction. This latter
configuration will also have "nen-natural" parity states of 4=, 6~, 8=, 10~
at an energy higher than the 9~ state. These even =spin negative parity
states would not be easily seen in the (HI,xn) experiments as they are
non-yrast states. Thus configuration assigmnents from observed level
spacings alone are not reliable.

We see in fig. 2 that with the (160,750) reaction only f7/2 and 143/2
neutrons should be transferred with appreciable cross section so the final
states populated in 18Uy4 with this reaction should have configurations f$/2
(o*, 2%, 4* and 6*) or f7,2 * 113,52 (3~....107). The relative pcpulation of
states within these configurations will be modified from the pure shell
model expectation of (2Jf + 1) by the reaction mechanism Q value dependence
and nuclear structure effects, States with other configurations, such as
3= * (f7/2)2, will not be populated strongly. The 10~ state should be
particularly strong in transfer since there will be no mixing with the
3~ * (f7,5)2 configuration (its maximum spin is 9-).

The spectrum for 143Nd(160,150)744Nd is shown in fig. 3. The first
point to notice is the few number of levels which are strongly populated up
to 4 MeV in excitation energy. Note in particular the very strong stace in
the spectrum at 3.8 ‘HeV which does not correspond to a known state. The

positions of the known lowest 0+, 2+, u+, 6+, 3=, 5= 17—, and 9~ states in

Uy are indicated on the figure, and it is tempting to make state
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results!0) did see a weak gamma ray of L = 1 multipolarity of this energy

and tentatively assigned a state at 3.806 MeV.

An M1 decay of states within
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the Vfq,5 % Vig3/p multiplet is expected, and because this state is so

strengly populated in transfer, the assigmment is most likely to be the

(f7/2 * 113/2) J = 10~ state. If this state had spin less than 9=, it would

be expected to decay via a high-energy gamma ray to the 7- or lower spin

state,

Coincidence measurements with lower-lying states indicate the 3= and 5-

states are populated very weakly, which indicate they are states of more

compliczted configuration than f7,, * i13/2- The 77, 9=, and 10~ states,

however, have very nearly the same spectroscopic factor as the lowest i13/2

state has in Tusz.



The question arises as to why there is no hard evidence for the 4=, 6~
and 8- states. Several factors can hamper the observation of these states,
The lower spin states will not be populated as strongly in transfer, but
more importantly, there are numerous configurations (vp3/2 * viq3/o,
Tds /2 * ﬂh11/2,...) which can form negative parity states of these spins at
approximately the same energy as the even spin vfg,p * viq3/o states. This
configuration mixing does not readily cccur for the 10~ state which should
be nearly pure.

The coincidence results for with the states 1labeled with positive
parity in fig. 3 confirm that they are the lowest 0%, 2%, U4+, and 6+ states.
An analysis of their cross sectons indicate that 2ll have very nearly the
same spectroscopic factor. The relative population of these states 1is the
same with the (12¢,11C) reaction, which has strong hg/p transfer (fig. 2).
Thus both reactions are consistent with a predeminantly { f7/2)2
configuration for these states. Note that because of the extreme
selectivity of the (160,150) reaction, single components of both the
positive and negative parity state wave functions are being determined in
contrast, for example, to (d,p) studies.

Let me briefly turn to the U4-neutron nucleus 1ggSmss. The (160,150)
spectrum is shown in fig. 5 and is seen to be very selective. The spectrum
demonstrates that the lowest 0+, 2*, U*, and 6% are not populated as one
would expeet for an (fT/z)u configuration., Added emphasis is given to this
when one compares the (12¢C,11C) spectrum to these same states (fig. 5). In
18UNd  the relative population of these states did not change with inclusion
of hg/o transfer, However, in 148sm the relative population of these states
changes so dramatically, it is clear that there is h9/2 strength in several
of them. The state at 3.534 MeV, however, has the same characteristics as

the 3.806-MeV state in 1%Y4Nd in that it is strongly populated in (160,150)
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transfer and decays to the 9= state. Thus it is most likely to be the 10~
state. It should be pointed out that in (@,2n) and (3He,3n) experiments!H)
a 10 state was assigned at 3.253 MeV. We see no evidence for that state.
Cne other remarkable state to notice is the 8% state at 2.544 MeV which 1is
absent in the (160,750) reaction but is the strongest state in the spectrum
for (12¢,M¢). This spectrum determines that it is nearly a pure
(g0 * vhg/z) configuration.

These heavy-ion-induced transfer reactions have been shown to be very
useful in identifying high spin states in spherical nuclei, but one might

wonder about their effectiveness in deformed nuclei where the level spacing



is mueh closer and the transfer strength weaker. It has been shown'®) that
strong selectivity is alsc present in transfer to odd mass deformed Er
nuclei, and several previously unknown high-spin orbitals have been
jdentified (fig. 6). A particularly intriguing case to study was in T1gr
where the previously unknown 13/2% level belonging to the 9/2+[624] band and
the 13/2+ member of the 7/2*+[633] band were shown to be nearly degenerate

(fig. 6). As a result they are highiy mixed by tue tor.olis inveraction.
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reaction!d) and assigned as a member of the 9/2*[624] band because the
7/2+(633] baud should be nearly filled, and, indeed, the lower 13/2% state
is more strongly populated. The systematics shown in fig. 6 make it
possible to perform a quasiparticle plus rctor calculation which indicates
that the states are strongly rixed, but the lower one has a large: amplitude
of T/2+(633]. Using the calculated amplitudes and emptiness factors, the
expected ratio of 13/21//H3/22 is caleculated to be 1.2, very close to the
experimenta: ratio of 1.4. Despite the fact that the 7/2*[633] 4is nearly
filled, the lower state 1s more strongly populated because of the strong
Coriolis mixing. Withcut Coriolis mixing the ratio of the transfer strength
would be Q.14 or 7.0 depending upon which of the two levels were lower. A
clear signature of the relative position of the 7/2[633] and 9/2[624]
quasiparticles is the position of the 7/2% state which is unique to the
7/2{633]1 band, but is not determined by the particle experiment.

In an effort to better determine the structure of these levels,
gama-ray coineidence measurements have been made18), The gamma-ray spectra

in coincidence with the two 13/2* states are shown in fig. 8.
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The resulting level scheme, based upon the assumption that this is a
good rotational nucleus, is shown in fig. 9. Not only is spacing of the two
13/2* levels determined more precisely, but the lower band members are
determined. There is only weak evidence for the dashed transitions in fig.
9. Both the 11/2 =+ 9/2 and 9/2 =+ 7/2 transitions are expected to be highly
converted, but the 11/2 + T7/2 transition should be observed if it were
strong. The presence of the low=lying 7/2% state unequivocally demonstrates
that the 7/2*[633] quasiparticle level is lower lying than the 9/2+[624]
level. The same quasiparticle plus rotor calculations described above also
reproduce the decay scheme rather well and in particular, ¢the observation
that the wupper 13/2% state decays primarily to the lower 11/2%* state. It
also reproduces the observed lack of a 11/2 = 7/2 transition, The one
remaining major discrepancy 1is the observed intensity of the 466-keV line
out of the 971-keV lzvel which appears to be only abcut 35% of the decay

instead of the calculated intensity of about T4<%.
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In conclusion, the use of heavy-ion-induced transfer reactions can be
extremely useful for spectroscopic studies of high spin states in both
near-spherical and deformed nuclei., While the present work has concentrated
on single neutron transfer, the field 1is certainly not limited to that
reaction. In the next few years the variety of reactions which are used
should expand greatly with the increased energy of accelerators.
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