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I. INTRODUCTION AND BACKGROUND

A. Motivation and Basic Concepts of the IBA

As Talmi (1979) and others (e.g., Bohr and Mottelson, 1975) have repeatedly empha-—
sized, the Shell Model, though in principle the preferred description of nuclear
structure, is impractical in heavy nuclei for all but those few nuclei close to

© major closed shells. Much of the history of nuclear structure physics, therefore,

has consisted of varilous attempts at simplification. By definition each of these
simplification schemes will produce only a small subset of the possible excita-
tions: the hope ~of each is that it selects out an “important” subset, generally
those which constitute low lying, collective excitations which have been found
empirically to characterize the first MeV or two of excitation in the majority of
nuclei. These attempts have, in the main, followed two general paths. In one, an
explicitly macroscopic approach, a nuclear shape is assumed, and low lying collec-—
tive excitations emerge as geometric motions (rotations and vibrations) of that
shape. The model of Bohr and Mottelson (1975 and refs. therein) for deformed
nuclei, with I1ts offshoots and extensions, 1s the most successful of these. 1In
the other, somewhat more microscopic, approach, one truncates the Shell Model
fermion space. The IBA, particularly its neutron—proton version, called IBA-2,
has come to be viewed in this light. The IBA-1 does not distinguish proton and
neutron bosons and is treated phenomenologically; nevertheless to the exteat to
which its parameters can be obtained 4y projection from IBA-2, it can be thought
of as effectively partaking of this same class. The s and @ bosons taken as
building blocks for the IBA are generally considered as comprising a boson space
arisinz by a mapping from a mini-fermion space which incorporates only those
states consisting of correlated pairs of particles coupled to spin O and 2. Thus
the assumption is that it -is only this subset of the total fermion space which is
important in the description of the low lying collective degrees of freedom.

It is important to recognize the enormity of the truncation involved here so as to
appreciate the a Ei’iori expected limitations of the approach and to emphasize the
wonder that It works at all., Figure 1 illustrates the truncation with Talmi's
example of g3 “Smgz which has a total of 22 valence neutrons and protons. From
the 1%vailable orbits for these fermions one can construct (Talmi, 197%9) over
3x10-* 2* stares. The IBA-1 is effectively then a filter which selects just 26 of
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Fig. 1. Schematic illustration of the truncation included
in the IBA (after Talmi, 1979).

these, The point here concerning the intractability of the Shell Model is two-—
fold: first, the full calculation (diagonalzation) of 3x10'"* states is impossible
and second, were it computationally feasible, the results would be effectively
meaningless. How, for example, could the origin of regularities arising frem wave
functions with this many compoments be understood? Yet there is abundant empiri-
cal evidence that regularities and therefore simplicities do exist and therefore

that this complexity may not be needed.

The formulation of the IBA has been treated many times (Arima and Iachello, 1975,
1976, 1978a, 1978b; Iachello, 1979, 198la, 1981b; Scholten, Iachello and Arima
1978; and Scholten, 1980) and will not be repeated here except as needed for our
particular discussion. The treatment below centers almost solely on the IBA-1.
Although this phenomenological version of the IBA neglects a seemingly crucial
distinction between proton and neutron bosons, it has been highly successful and,
it turns out, particularly transparent physically. While the IBA-2 (Otsuka, Arima
and Iachello, 1978; and Otsuka and co~workers, 1978) tends to look for its physi—
cal interpretation to the microscopic shell model, the IBA-1, largely because it
naturally contains three limiting symmetries, which can each be associated with a
well defined nuclear shape, has generally looked towards geometrical models for
physical interpretation. Beyond some practical computational advantages of the
IBA-1, its use should be particularly appealing for deformed nuclei which are
perhaps the most well understood in the geometrical framework. Moreover, the
IBA-2 tends to differ most from the IBA-1 where the proton and neutron bosons are
constructed from fermions in widely different regions of their respective major
shells. Such is not the case in deformed nuclei. (At the end of this paper,
there will be a brief return to the relation between the TRA-2 and a modified
version of the IBA~l: thenceforth the notation IBA will be used to mean IBA-1
unless the context demands a specific distinction with IBA-2.)

In the IBA, one assumes that the low lying excitations can be constructed from a
fixed number, N, of bosons, where N is half the number of proton particles {or
holes) and neutron particles (or holes) from the'r respective nearest closed
shells aund that these bosons can occupy states with angular momentum 0 (s bosons)
or 2 (d bosons). [Numerous extensions (albeit also complications) of the model to
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include higher angular momentum bosons (e.g., g bosons with L=4), negative parity
states (f bosons or p bosoms), or to account for intruder states via s',d' bosons
constructed from different subsets of shell model fermion stutes, have been
carried out, in some cases with considerable success. Generally such extensions
deal with higher lying or special states and will only be casually mentioned
here. For references to such topics, see Sage and Barrett, 1980; Wu, 1982; Lin,
1982; Duval and Barrett, 1981b; Sambataro and Molpnar, 1982; and Van Isacker and
co~workers, 1981, 1982.]

The s and d bosons are allowed to interact via a boson Hamiltonian, expressed in a
second quantized formalism (with operators s,sT,d,d") including terms that change
the d boson number, ng, by up to two (while conserving N=ngtng). For our
purposes, and indeed for most IBA-1 applications, a more convenient version of the
resulting Hamiltonian is expressed in terms of operators (Q, P, etc.) that can be
thought of as quadrupole, pairing, etc. operators acting on the boson space. A
somewhat simplified version, adequate for most of the present discussiorn, is

H=¢en, - kQ*0 = k'LeL, + Kk"P*P + ..... (1)

d

where € is the d boson energy,

~ (2) x ~ (2)
Q = (s*d+dts)  + -2 (@t
Y5

P = (a¥atss)(?) + y (st (2)
L= (d"'E')(l)

More precise definitions and discussion of these operators, including numerical
constants, are given in Iachello (198la, 1981b). 1In Eq. 1, L is a diagonal boson
angular momentum operator that conserves d boson number, and the neglected terms
in Eq. 1 are also d-boson number conserving terms that may be used to fine tune
ener§y or trl:ansition rate calculations. (One of these, a temm
T3(d d+)(3)('5&3\3), is crucial to the 0(6) limit and will be returned to in
Section V). Note that the term in Q+Q has An4=0,1,2 components while that in
PP has Ang=0,2 components. The internal constant xq in Q is usually chosen
so that Q becomes a generator of SU(3), that is, xq = -/35/2 = -2,958. (See
last chapter for a re-formulation incorporating a variable XQ-)

The elegance of the Hamiltonian of Eq. 1 is manifest when the group structure of
the IBA is comsidered. Since the components of the s and d bosons span a 6 dimen-—
sional space, the IBA-1 can be expressed in terms of the group U(6) and its sub—
groups. A group decomposition shows (Iachello, 1979, 198la) that there are three
distinct chains, each corresponding to a particular nuclear symmetry, namely
SU(5), an anharmonic vibrator, SU(3), a special case of the deformed rotor, and
0(6), a y-unstable vibrator. For each of these three limits the characteristic
wave functions are generated by specific terms in Eq. 1: SU(5) by the eny term,
SU(3) by the xQ-Q term and 0(6) by the k"P+P term. These terms are those that
separate families of levels in each 1limit according to major quantun numbers:
ng for SU(5), (A,u) for SU(3), ard o for 0(6). 1In all three limits the diagomal
kx'LeL term may also be added to separate states of different spin but otherwise
identical quantum numbers. In 0(6), the T3 term mentioned zbove is also used to
separate states according to another quantum number t. The low lying levels of
each symmetry are shown in Fig. 2,
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Fig. 2. Some low lying levels and E2 transitions in each
limit of the 1IBA, (To avoid cluttering, the
B'+y' transitions, though characteristic of
SU(3), are not shown.)

Important characteristics of each limit are the E2 transition rates. Each limit
carries with it certain specific selection rules as well as simple analytic
expressions for the relative sizes of allowed transitions. To define the E2 prop-—
erties of each limit, or, indeed, of any IBA calculation, one needs to specify the
E2 operator, T(E2). It is given by

T(E2) = al(s*Trats) P+ EX @D (?) 3

where a is an overall normalization constant, If one demands that, in the limit-
ing symmetries, the operator be composed of generators of the group then x=0 for
0(6) and -2.958 for SU(2). 1In intermediate situations x is usually treated as a
free parameter, allowed to vary from 0 to -2.958. Some of the principal transi-
tions for each 1limit are included in Fig, 2.

It is convenient and useful to illustrate some of the preceeding ideas by the sym—
metry triangle shown in Fig. 3. The triangle highlights an extremely important
point. While one may insert any combination of parameters into Eg. 1, nuclear
transitions from one symmetry scheme to another proceed most directly along one of
the legs. A first order approach to the calculation of such transition regions
then corresponds simply to a one-parameter progiression along the leg. The omne
parameter is the ratjo of the coefficients of the terms controlling each vertex.
These characteristic transition parameters are indicated in the figure along with
specific nmuclei that seem to reflect these transitional progressions. Of course,
while fine tuning of any actual calculation may involve other terms in Eq. 1
{including the terms not shown), it has been found so far that the simpler treat-—
ment just introduced accounts for all the broad features and many of the fine
details as well. Except for occasional caveats below, the discussion here will be
couched in terms of the simpler scheme.

The wave functions in the IBA are normally expressed in terms of the basis states
of the SU(5) limit, which are determined by four quantum numbers ng, ng, np
and the spin L, where ng(np) is the number of pairs (triplets) of bosons
coupled to spin zero. The lowest states of the SU(5) symmetry and their quantum
numbers are illustrated in more detail in Fig. 4. These will, of course, be
instantly familiar to the reader as analagous to the eigenstates of the harmonic
vibrator.
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Fig. 3. A schematic description of symmetries (vertices)
and transition regions (legs) in the IBA. Along-
side each symmetry vertex the coefficient of the
characteristic term in Eq. 1 is given.

As noted, the terms in P+P and Q-Q in Eq. 1 do not conserve ng and thus mix the
basis states. The wave functions for the lowest three 0% states of the three
limits are given, for N=6, in Table 1. For 0(6) the only non—diagonal term is P.P
and thus the wave functions, though clearly more complicated than in SU(5), dis-
play evident regularities. Only basis states differing by a zero coupled pair of
d bosons (i.e., by (And,Ans,AnA) = (2,1,0)) are present in a given 0(6)
state. The T quantum number (Arima and Iachello, 1978b) distinguishing states
within a given major ¢ family in this limit is directly related to the lowest ng
value occuring in each wave function (e.g., the ground state and 0’*'2 state have
=0, the 0"‘3 level has t=3). The SU(3) limit 1s generated by the Q+Q term which,
having Ang=0,1,2 terms, more thoroughly mixes all the SU(5) basis states and it
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Fig. 4. States of the SU(5) limit with ng £ 4. These
are the wusual basis states of the IBA and, in
particular, of the IBA-1 code PHINT (Scholten,

1977).



TABLE 1 Wave functions expressed in the SU(5) basis for the
first three O% states in each limit of the IBA

Basis States (ndanA
a)
State Limit (000) (219) (301) (420) (511) (602) (630)
su(5) 1 0 0 0 0 o] 0
0+
1 0(6) -.43 -.75 0 -.491 0 o] -.095
SU(3) .134 .463 —.404 606 -.422 -,078 .233
su(5) 0 1 0 0 0 0 0
0+
2 0(6) +685 .079 0 -.673 0 0 -.269
SU(3) .385 .600 -.204 -,175 456 146 -.437
su(5) 0 0 1 0 ] 0 0
ot
3 0¢6) 0 0 -.866 0 -.463 0 0
sSu(3) —-.524 -.181 -+554 .030 -.114 -.068 -. 606

a) The states are crdered for pedagogical clarity and not necessarily in the order
of increasing energy: indeed, the t=3 0T state in 0(6) (here labelled Ot3) is
usually the 0%, state (see Fig. 2, for example).

is clear from Table 1 that the SU(3) wave functions are rather complex. Such
complexity will also characterize the wave functions from realistic calculations
for deformed mnuclei which (see below) are usually carried out by introducing some
degree of symmetry breaking to the SU(3) limit. It is already evident, then, that
it will be difficult to gain an easy physical feeling for the structure of such
wave functions from their SU(5) decomposition. This point will be returned to

later.

B. Some Tests of the IBA

It is not the purpose here to survey the empirical tests of the IBA. This has
been done recently (Casten, 1980, 1981)., However, to place the following discus—
sion in context and to provide some suggested background reading material, it is
worthwhile to mention a few selected studies. One of the first successes of the
IBA was its prediction of the 0(6) symmetry (Arima and Iachello, 19{32). This was
accompanied almost simultaneously by its emplrical observation in Pt (Cizewski
et al., 1978). One of the principal attractions of a symmetry scheme is that it
provides a new benchmark for the interpretation of nuclei that deviate from it.
Thus, for example, level energy sequences close to an I(I+l) dependence are unin-
telligible without a foreknowledge of the rotor symmetry: with it, they simply
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reveal a rotational nucleus with small interactions (e.g., rotation—vibratiovn
coupling) breaking the symmetry. Similarly, the Pt-~0Os nuclei have always been
considered extraordinarily complex, reflecting the coupling and interactions of
prolate, oblate, hexadecapole and axially asymmetric degrees of freedom. However,
with the manifestation of the 0(6) limit in Pt, it became immediately obvious
to treat this region as initiating an 0(6) + SU(3) transition down the right leg
of the symmetry triangle (Casten and Cizewski, 1978; for related IBA-2 calcula-
tions see Duval and Barrett, 198la; and Bijker and co-workers, 1980). The Kr iso~
topes also reflect the same transition leg (Kaup and Gelberg, 1979). Completely
analogously, but more familiar because of similar, prior geometrical model inter-
pretations, is the treatment of the Sm isotopes in terms of a vibrator to rotor,
or SU(5) + SU(3) transition (Scholten, Iachello and Arima, 1978), corresponding to
the base of the symmetry triangle. Very recently Stachel, Van Isacker and Heyde
(1982) have suggested that the left leg (SU(5) toward 0(6)) is at least partially
reflected in the Ru isotopes although, here, the correspondence is less clear cut.

Conspicuously absent in the above listing is a detailed treatment of a well
deformed nucleus. However, this is a crucial test for several reasons. First,
such nuclei represent the largest single class of nuclei. Secondly, critiques of
the IBA have suzgested (Bohr and Mottelson, 1980) that it is in exactly such nuc-
lei that any shortcomings should be most evident. Finally, the IBA in deformed
nuclei inherently contains some characteristic predictioms that contrast sharply
with those of the usual geometrical model interpretation and which therefore merit

extensive testing.

However, precisely because these differences center on hard-to—observe low energy
transitions between bands at 1-2 MeV, the requisﬁﬁf empirical information has not
been available until a recent (n,Y} study of Er by Davidson and co-workers
(1981). The result of that study is a complete set of about 20 rotational bands
up to 2 MeV and a very thorough set of transitions connecting these states. Since
the full set of K=0 and 2 bands below 2 MeV was disclosed, a detailed test of the
IB4A became possible, including whether or not there is a one~to-one correspondence
between the empirical and model states.

The rest of this paper is devoted to a description of the application of the IBA
to deformed nuclei, with special emphasis in the next section on the basic ch?ggc-
teristics of the IBA predictions for such nuclei and a comparison with the Er
level scheme. Following this will be a discussion of the IBA predictions in terms
of geometrical concepts and then a particularly simple interpretation of the cal—-
culations for deformed nuclei In terms of a re—expansion of IBA wave functions
and transition rates and a transformation of the Hamiltonian into the SU(3)
basis. Lastly, a recently proposed modification to the formulation of the IBA-1
will be discussed which relaxes the assumption that the quadrupole operator of the
Hamiltonian should take the form of the SU(3) generator.

II. 1IBA CALCULATIONS FOR DEFORMED NUCLEX

A. Tke SU(3) Limit and Broken SU(3) Calculations

The starting point for any IBA calculation of deformed nuclei is the SU(3) limit
(Arima and Iachello, 1978a), illustrated in more detail for N=16 in Fig. 5 and
generated by any combination of the Q+Q and LeL terms in Eq. 1. The levels are
grouped into representations defined by the quantum numbers (X,p). Within each
representation appear one or more level sequences that resemble rotational bands.
The eigenvalue expression is:
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Fig. 5. The 1lowest four representations of the SU(3)
limit showing the level groupings into rotational
bands. The labels g', B', Y', etc. are a short-
hand nomenclature for these bands which reflects
their approximate similarity to the corresponding
geometrical excitatioms but which also, by virtue
of the primes, emphasizes their distinctiveness.

E()\,u?L) = (3/4k -~ x') L(L#+1l) — «C(i,n)
(4)
where C(A,u) = A2 + % + Ay + 30+p)

The coefficients x and x' are those of Eq. 1. Only the Q+Q term determines the
overall energy scale of the different representations. It is immediately clear
that the SU(3) 1limit closely resembles a deformed rotor. There is a ground state
rotational band followed, at higher energy, by two bands which seem to resemble
the familiar 8 (K=0) and Y (KR=2) bands of the Bohr-Mottelson picture followed Ly
still higher lying bands which mirror the K=0 88 (double 8), the K=2 By and the
K=0 and 4 yy (double y) vibrationms. [In principle, since the states of a given
spin within a representation are degenerate in SU(3), the separation into distinct
bands effectively implies a specific choice of axes, that is, a projection onto
states of good (or nearly good) K value. In practical calculations, such a pro-—
jection can be introduced by an infinitesimal perturbation of the pure SU(3)
Hamiltonian, for example, by a minute eng term in Eq. 1.]

Despite these similarities to the geometrical model it is already evident from
Fig. 5 that the SU(3) limit must be a speclal case of a deformed rotor because of
the band degeneracies. In most empirical deformed nuclei the B and Yy bands are
not degenerate and thus, to calculate such cases, one is forced to break the SU(3)

symmetry.

It is well to emphasize at this point that, in the following, the phrase
"geometrical model” will refer to the simplest harmonic version of the model.
This geometric model is an extreme simplification and cannot fairly be expected to
apply to real nuclei without the introduction of further interactions and
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perturbations. Comparisons below between the IBA and this model are therefore not
generally intended to be pejorative to it but rather, by comparison with it, tc
elucidate characteristic features of the IBA and to belter understand the struc-—
ture of the IBA in deformed nuclei by reference to familiar geometric concegts.
To highlight both the similarities and differences between the geometrical model
and the SU(3) limit of the IBA, it is best to introduce a somewhat tedious but
necessary notation: the the IBA SU(3) intrinsic excitations will be Jenoted by a
primed geometrical terminology g', 8', ¥', 88', By', vy' while related excitations

in a brokea SU(3) calculation, or the empirical excitations themselves, will
generally be referred to within quotation marks (e.g., "87, "Y", etc.).

As just noted, the "B" and "Y" bands in actual nuclei are seldom degenerate. In
particular, in the majority of well deformed muclei, the "f" band is above the "y~
band. This feature can be obtained from the Hamiltonian of Eq. 1 in a simple
way. As shown in Fig. 2, the 0(6) limit, which is generated by the PeP term in
Eq. 1, is characterized by a low lying level sequence built on the 2t, level that
is reminiscent of a "quasi Y" band and with the lowest 0% excitation considerably
higher. Thus one might suspect that the use of a small PP term to break the
SU(3) symmetry might be effective in raising the "B" band energy. This is indeed
correct and it appears that, aside from possible fine tuning, it 1s possible to
represent deformed nuclel with Ewg» > Evy» by the Hamiltonian

H = =kQ*Q - k'LeL + k"P+P (5)

In this scheme, the P+P perturbation has little effect on the ground and "y" band
energies. Thus, the parameters x and k' are still fixed by using the SU(3) eigen-
value expression, Eq. 4, for the first two 2t states. Then, the one remaining
parameter, k", is varied to fit the energy of the first K=0 excitation.

Among the most important signatures of nuclear structure are muclear transition
rates. In deformed nuclei, the most crucial of these involve E2 transitions,
which will be discussed throughout this paper. However, it should be noted that
Ml transitions can also be described in the IBA framework. They will not be dis-
cussed here, and the reader is referred to Warner (1981) for a discussion of this

subject.

The E2 selection rules for SU(3) are A(A,p)=0, that is, only transitions within a
representation are allowed. The 1limit is characterized by strong intraband tran-—
sitions, weaker ones between bands belonging to the same representation and mno
transitions between bands of different representations. Although the strong
intraband transitions are a familiar feature of the geometrical deformed rotor,
the other features lead to results that are distinctly different from the geomet-—
rical nodel of harmonic 8 and y vibrations in which, since E2 transitions may
change the B or Y phonon number by ome, 8*g and Y+g transitions are allowed but-
g+y transitions are forbidden. In the SU(3) limit of the IBA, the latter transi-
tions are allowed while those to the ground band are forbidden. Thus the starting
print of the geometric model and the SU(3) 1limit are superficially similar but
substantially different in detail. Figure 6 summarizes the key differences for
the lovest bands in the two models, each in its extreme or purest form: the SU(3)
licit for the IBA and pure B, Yy vibrations for the geometric model. The dashed
lines represent decay modes that are strictly forbidden but which may be intro—
duced by perturbations in the respective schemes.

Many features of the application of the IBA in deformed nuclei, and of its rela-
tinaship to the geometrical picture, can be understood by a study of the role of
the £2 npe.'f'utor In the SU(3) limit of the model. This subject is dealt with in
detall In Wwarner and Casten (1982b). Some of the essential results are summarized
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here. As long as A(A,u) < 4 each of the operators (s¥3+d*s) and (1/v5)(a*d) in
T(E2) (see Eq. 3) gives a finite contribution to an inter—representation matrix
element. The fact that the total inter-representation matrix element is zero in
the SU(3) 1limit results because these contributions are always in the precise
ratio of 2.958:1. Thus, when x = -2,958, the two terms cancel. Hence, the use of
a x value different from ~2.958 will lead to finite inter-representation transi-—
tions even though the wave functions remain pure SU(3) in structure.

Thn constancy in the relative matrix elements of the two operators in T(E2) leads

an interesting and useful result. Denoting the matrix elements of
(s+d+d+s)(2) and (1//5)(d+d)(2) by T; and T, respectively, one bas, for any
inter-representation transition with A(A,u) < 4, <IHT(E2)]j £> = Ty + xT2. But,
as noted above, T, = (1/2.958) T;. Thus the matrix element can be rewritten
<ill T(E2))] £> = T; (1 + x/2.958). Then any ratio of inter-representation matrix

elements becomes

<1||T(E2)||f> Ty (1 + x/2.958) T,
= e = (6
<i'”T(E2)“f'> T.' (1 + x/2.958) T,'

independent of x.




This, in turn, leads to a particularly simple interpretation of the "multi-phonon”
excitations of the SU(3) limit via a comparison of their predicted relative E2
decay modes with those expected from harmonic 8 and v vibrations. The result is
that the behavior of those double excitations with K=2 and K=4 closely follows
that of the corresponding multiple geometrical excitations (By and YY), but that
for the "multiple” modes with K=0, of which there are two, the decays differ from
expectations arising in a phonon picture. It 1s, however, possible to recover a
simple interpretation if it is assumed that each of these K=0 bands is a linear
combination of the pure double modes. Then one can solve for the coefficients of
these amplitudes by using the transition strengths for the pure geometrical double
vibrations and by reproducing the calculated SU(3) B(E2) values with the composite
wave functlons. The results depend slightly on which band members are chosen but
to a close approximation cne can write

Yeog(2M8-8,4) = Y0.67 g8' + ¥0.33 vy'
WK=0(2N—6,0) = + 0,33 BR' - v0.67 vY'

(The choice of phase convention is arbitrary.)} Thus the labels B88' and yY' in
Fig. 6 and in all subsequent discussions are a shorthand notation that ideantifies
only the dominant amplitudes in the K=0 bands of the (2N-8,4) and (2N-6,0) repre~
sentations, respectively., This simplification should be borne in mind when the
terminology 1s used below.

As noted above, inter-representation transitions will oceur even in the SU(3)
limit if x # -2.958. It is thus worthwhile discussing the behavior of such tran-
sitions as a function of x and this 1s illustrated on the left in Fig. 7. The
B'+g' and Y'+g' transitions go to zero for x = —2.958 whereas the intense intra-
band intra-representation 2 v»0t,+ transition is insensitive to ¥ and so is
the inter-band intra-representation 2+Y-+0+3v transition. Note, moreover,
that the y'+g' B(E2) value is always larger than the B’+g' value and, of course,
from our previous argument (Eq. 6), by a constant factor.
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These general characteristics are preserved in the broken SU(3) limit as shown on
the right in Fig. 7 for a typical value of x". The intra-representation transi—
tions are hardly affected by the perturbation. The "y"+>"g"” transitions exhibit
approximately the same behavior as in SU(3) except that they nc longer vanish for
x = —2.958. The most important change is that the "8"+"g" transitions now vanish
for a different value of yx (=~1.9). OCnce again, they are always smaller than the
"y"+"g" transitions. To reiterate, for broad ranges of the parameters, both of
the Hamiltonian and the E2 operator, ranges which encompass most deformed nuclei,
the IBA clearly and unequivocably predicts that a) "B"+"g"” transitions are weaker

than "y"+"g" transitions and b) "B"+"y" transitions are stronger than "R"+"g
transitions.

It is well known empirically that the "y"+"g"” trausitions in deformed nuclei are
collective. Perhaps not as well recognized is the fact that the B(E2) ratio
B(EZ:2+Y+0+g)/B(E2:2+g+0+g) falls 1in a rather narrow vrange centering on
=0.03. These systematics, as well as those for the "B" band (discussed below) are
collected for the rare earth region in Fig., 8. The sensitivity of the B(E2) ratio
B(E2:2+Y+O+ )/B(E2:2t,»07,) to x and its relative imsensitivity to «”,
make this empirical quantity particularly useful for fixing the value of x. Then
the narrow empirical spread of this ratio leads to a correspondingly narrow range
of possible x values, namely, -1.2 < x £ -0.5, which is then applicahle to all
deformed nuclei (with Ew»g~ > Ery»). (See Warner and Casten, 1982; and
McGowan, 1981.)

An important consequence arises from this mnarrow range of permitted x values in
that many aspects of IBA calculations for deformed nuclei may be approximately
calculated by taking a “global” mean value of yx = -0.85, This allows a rather
general study of the structure of IBA predictions for deformed nuclei that does
not depend on the details of a given nucleus.
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B, 1IBA Calculations for Er

As noted in the Introduction, the empirical level scheme for 168, ;5 an dideal

test case for the IBA in deformed nuclei. It is centrally located in the rare
earth region, is well deformed, exhibits sufficiently low lying intrinsic K=0 and
2 excitations (8 and Y bands in geometric terminology) that it may be possible to'
observe multi-phonon mcdes, and, now, has been thoroughly studied by a combination
of (n,Y) techniques (Davidson and co-workers, 1981). The wealth of intra~ and
interband transitions that are essential to grouping the levels into the 20 rota—
tional bands identified are exemplified by those shown for the lowest bands in
Fig. 9. Note in particular the low energy transitions within each band and
especlally those batween "8" and “y" bands. These latter, "8"+"y", transitions
have seldom been observed before, and never in such detail, because, though they
will be seen to represent large collective matrix elements, their empirical inten—
sities are extremely weak due to the ESY factor conmnecting B(E2) values and
transition rates. When this is factored out, it turns out that the "B"+"y" tran-—

sitions dominate the "B"+"g" ones.

These empirical results have been subjected to a rather extensive comparison with
IBA calculations in Warner, Casten and Davidson (1980, 1981). Since the "B“ band
empirically occurs well above the "y" band, the scheme for broken SU(3) calcula-
tions described above (i.e., Eq. 5) was used. To reiterate, the quauntities x and
k' were obtained from the SU(3) expressions and the one parameter «" was varied to
obtain the overall energy fit with emphasis on the 0% band. For the E2 operator,
x was adjusted to fit a single B(E2) ratio. Before examining the results it is
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well to strongly emphasize the specific philosophy behind these calculations.
They were designed to test whether or not the IBA, treated in the simplest
possible manner, appeared to be a suitable vehicle for wunderstanding deformed
nuclel, The calculations were extremely schematized and at no point was there any
attempt to fine tume the calculations either by further optimization of these
parameters or by the introduction of other terms intc the Hamiltonian.

The results of the calculations for energy levels are shown in Fig. 10, taken from
the above reference, in comparison with the empirical results. In addition to the
empirical levels shown in Fig. 10 there is a K=3" band at 1653 keV. Since such a
band cannot arise in an s, d boson IBA-~1 framework, or indeed in the geometrical
description, it is outside the scope of the present discussion and is omitted:
presumably it arises either from quasi-particle excitations or, more likely, from
a type of hexadecapole mode that would also appear in the IBA if a g boson were
incorporated. Also omitted in Fig. 10 is a calculated K=4 band near the OF;
band. Since the location of this K=4 mode has subsequently (Bohr and Mottelson,
1982) taken on some importance in critiques of these calculations we point out
that the lowest empirical collective K=4 band is substantially higher, at least as
high as 2055 keV (Davidson and co-workers, 1981).

Given these caveats, it is immediately evident in Fig, 10 that there exists a
remarkable agreement between theory and experiment. Indeed, there is a one-to-—one
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TABLE 2 Comparison of experimental and theoretical relative B(E2)
values from states of the "y" band in Er (from Warner,
Casten and Davidson, 1981)

Relative B(E2:1i+1f)
I'; ITf',K IBA Exp.
2t ot, 66.0 54.
2t 0 100.0 100.0
&+ 0 6.0 6.8
3t 2t.0 2.7 2.6
&t 0 1.3 1.7
2+,2 100.0 100.0
4t 2t.0 2.5 1.6
5*.0 8.3 8.1
6+,0 1.0 1.1
2t,2 100.0 100.0
5+ 4+0 4.3 2.9
6t,0 3.1 3.6
3t,2 100.0 100.0
4,2 98.5 122.0
6t 40 0.97 0.44
6*,0 4.3 3.8
8t 0 0.73 1.4
4*,2 100.0 100.0
s5t,2 59.0 69.0
7t 6t,0 2.7 0.74
5t,2 100.0 100.0
6+,2 39.0 59.0

correspondence between empirical and ecalculated states for all K~0 and 2 bands.
This is particularly noteworthy when it is recalled that ome has not inserted an a
priori band structure into the Hamiltonian of Eq. 1. The band structure arises

naturally when the Q+Q term dominates and is able to accurately mirror empirical

level sequences for deformed nuclei.

0f course, the remarkable agreement in Fig. 10 must be assessed carefully.
Although there is an apparent agreement in level sequences, a full test must ver-—
ify that this is not fortuitous, that is, that the structure of the calculated and
experimental levels is similar. This can best be done by a detailed examination
of the E2 transition rates. For this comparison we take x = -0.68, the specific
value fitted for this micleus although results for the "average” value discussed
earlier would not differ significantly. This comparison is presented in Talles 2
and 3. [See Warner, Casten and Davidson (1981) for further details.]

These tables show the E2 deexcitation transitions from the "y" and "B" bands.
There are a number of notable points. First, for the "y" band, it is clear that,



TABLE 3 Comparison o¢° experimental and theoretical relative B(E2)
values from states of the "B8" band in Er (from Warner,
Casten and Davidson, 1981).

Relzative B(E2;I +I )
i E

| T a)

1 I,K IBA Exp.

i £

ot 2t,0 5.5 5.5
2t,2 100.0 <28.0

2+P) ot,0 0.10 0.23
4+,0 0.32 1.4
2t.2 2.6 4,0
3+,2 4.9 4.9
o*,o0’ 100.0

4t 2+,0 .09 0.02
6+,0 0.23 0.11
2+,2 0.04 0.03
3t,2 0.63 0.35
4t .2 2.2 0.52
5+,2 2.6 0.19
2,00 100.0 100.0

6t 4*.0 0.07 0.02
st.o 0.21 0.07
4+ 2 0.09 0.11
5%,2 0.73 0.32
6t,2 2.0 0.93
4+,0! 100.0 100.0

a) The unotation 0' refers to the 0*2 cr "B8" band (i.e., an intraband transition).

b) No multipolarity determinations could be made for the 2+->2+Y and Z++3+y
transitions, which have, therefore, been assumed to be pure E2 in this coompari-
son. No meaningful limit could be obtained for the Z++0*" intraband transition,
and hence, the 2++3+Y has been used for normalization in this case.

overall, the detailed agreement is remarkable. Not only are the relative sizes of
intra— and interband tramsitions given correctly but the variations in detailed
individual B(E2) values are excellently reproduced. Secondly, careful inspection
reveals some disagreements, particularly for the higher spin states, For transi-
tions from the 67 and 7% states these amount to factors of 2~3. These discrepan-
cies themselves provide a significant clue to their origin since, where they exist
in interband transitions, AI = +1,+2 transitions (e.g., 6t+8%) are consistently
under—predicted and Al = -1,~2 transitions (e.g., 61+41) are consistently over-—
predicted. Moreover, the discrepancies comsistently grow with increasing initial
spin. These observations suggest a neglected interaction having a characteristic
spin dependence and will be treated in terms of a bandmixing formalism in the next
section.
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For the "B" band, the detailed results in Table 3 again exhibit the excellemnt
overall reproduction of the relative sizes of dintraband, "8"+"Y", and "8"+"g"
transitions which appear, both in the data and the IBA, in that order of decreas—
ing strength, Further inspection of Table 3 shows that the detailed agreement
does not approach that for the "y" band. Both the "8"+"y"” and "B"+"g" transitioms
are empirically found to be on the average about a factor of 3-4 weaker than the
calculated ones and there is substantial variation in the agreement for different
transitions. WNevertheless, in general there is a high correlation with experi-
ment. For example, with the exception of the 4+uB"+5+" » transition, the rel-
ative strength ordering of the transitions to a given ginal band is correctly
given. Ouce again, the size and direction of the discrepancies is an important
clue to an understanding of thelr origin. When the overall scale discrepanciles of
the "B8"+*"y" and “B"+"g" strengths are removed, it is seen that the AL = 0,+1
"f"+"y" transitions are more overpredicted than the spin decreasing transitions.

This is opposite to the trend of the comparison for the “"yY" band and, again, will
find a ready and interesting interpretation below in terms of bandmixing.

Finally, concerning the “8" band, a comparison of the absolute transition rates
(see Warner, Casten and Davidson, 1981) discloses an important point, namely that
the calculated "B"»"y" B(E2) values are about half as large as those for the
"y"+"g" transitions and thus represent a definite collective enhancement. More-
over, the empirical "B"+"g" transitions themselves are on the order of =0.1
S.pe.u. which, though relatively small, is nevertheless larger than can be obtained
for the deexcitation of any K=0 two quasiparticle excitation in this wmass region,
by a factor of 10°-109,

While most of the emphasis here is properly placed on the key low lying collective
"8" and "y" excitations where the most complete empirical information exists, it
is worthwhile commenting bricfly on the higher ones (see Warner, Casten and
Davidson, 1981, for details). For the OF3 band, the overall agreement between
experiment and theory 1s again qualitatively correct. The strongest interband
transitions are to the "y" band. As with the "8"+"y" transitions their absolute
intensities (empirically known only for the 4% initial state) appear to be some-
what overpredicted. Both theory and experiment show the transitions to the ground
band to be weaker than those te the "y” band but here there is a substantial
discrepancy. The calculated values are much too small. However, in this case,
the calculatiogs arg probably meaningless since the predicted B(E2) values have
strengths =107°-10"" s.p.u. and therefore cannot be considered immune to small
perturbations to this collective description.
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To summarize the comparison between the IBA and the empirical results for Er

the followlng points are significant:

1. With an extremely simplified treatment, the IBA predicts a sequence of states
belonging to K=0 and K=2 bands that is, on energy grounds, in a one-to—one
corvespondence with the known-to-be—complete set of empirical Ilevels and

bands.

2. Given the same simplified framework, the overall prediction of B(E2) values is
also excellent. In particular

a. the relative magnitudes of intra- to interband transitions are correct.

b. the calculations correctly predict the unexpected but observed dominance

“ o N

of "B"+"Y" over "B“+"g" transitionms.

c. the absolute values for the calculated "8"+"y" and "B"+"g"” matrix elements
appear to be within a factor of about 2 of the data (see Section III for a
more rigorous extraction of this comparison).



d, Discrepancies do appear for certain individual "y“"+"g" transitions that
amount to factors of 2-~4. This point has been emphasized by Bohr and
Mottelson (1982) as a major discrepancy and will be discussed extensively
in the next section and in Section V. For the present, it is important
only to note that the discrepancies for “"y“+"g"” (and "B"+"y") transitions
that do exist exhibit a systematic spin dependence that suggests a simple
origin in neglected interactions.

3. The observed differences (#20%) in the intraband rotatiomal spacings (moments
of inertia) are not reproduced and seem to be outside the scope of the simple
Hamiltonian of Eq. 5, although one presumes they could be reproduced, without
altering the agreement for transition rates, by the addition of higher order
terms.

4, The calculations predict a K=4 band near the 0+3 band while experimentally
the lowest K=4 band 1lies 300-400 keV higher. This point has been emphasized
by Bohr and Mottelson (1982), who interpret the two IBA bands as double ¥
vibrations but argue that the high empirical energy of the K=4 band implies
that the Y mode of intrinsic excitation is lhighly anharmonic. Therefore, they
conclude that a) the low lying empirical Ot; band, observed at 1422 keV,
cannot be a double Y vibration, and b) that it therefore cannot correspond to
the calculated band, despite the (apparently fortuitous in this view) agree—
ment in energy. This critique undoubtedly has some merit and it would be an
oversimplification to assign the easpirieal 0'*'3 band a purely collective char-—
acter. However, the following points are also relevaut. First, as will be
evident in Section IV, the calculated IBA OF3 excitation does not only have a
large vY' amplitude but also a strong BB8' character and admixtures of other
collective modes as well. In the same vein, the 0+3+"Y" band transitions in
the IBA calculations do not have the structure expected for yy'+y' transitions
and, indeed (again, see Section IV), that amplitude is only one of several
comparable coherent contributions to the overall O0%3+*"y" transition
strengths. Finally, the presence of a collective K"=3% band at 15656 keV
suggests that it might be necessary to incorporate a g beson into the Iba
description of the higher bands. (Indeed, work along this line is actively in
progress (Wu, 1982; and Lin, 1982).) This additional mode is expected to have
a strong effect on the K=4 band and, pending a fuller treatment of these
effects, it seems prematurm to conclude very much about K=0 bands below 1.5
MeV from the properties of K=4 bands abcve 2 MeV. Nevertheless, it would not
be at all surprising or unanticipated if some of the discrepancies between the
predi:ted and observed characteristics of the Ot; band could be ascribed to
the presence of substantial two quasi-particle amplitudes, outside the collec~—
tive IBA basis.

C. Other Deformed Nuclei

IBA calculations, as extensive as those for 168Er, have not been carried out for

other deformed nuclei, primarily because of the lack of the requisite detailed
empirical level schemes., Even were such information available, this would not be
the proper forum for such a review. Nevertheless, it is worthwhile including a
few brief comments on two of the most critical characteristics of the IBA in
deformed nuclei, namely the Aominance of “B"»"Y” over “B"+"g"transitions and the

w0 o0 n

weakness of "8"»>"g" transitions compared to "y"+"g" omes.

Concerning the first, there is very little data. These transitions are extremely
weak, even if the matrix elements are large, due to the E Y factor. Moreover,
their transition energies are close to those of intraband transitions and thus
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must be sought in complex, high background regions of the spectrum. For the most
part they have only been systematically sought in {(n,¥) studies utilizing the bent
crystal spectrometers at the Institute Lauve-Langevin in Grenobleb. France for their
detection, Thus farl, such transitions have been observed in aErl' éla)avidson and
co-workers, 1981), Gd (Greenwood and co-workers, 1978), and 66gy (McGowan,
1981). In each of these, a ]Ig% lying K=0 band is found which predominantly
deexcites to the "y" band. 1In Gd where a study (Backlin and co-workers, 1982)
has also been completed, the "B” and "y” bands are nearly degenerate and thus
tl:lél%r?sa.s no hope of testing the prediction here. Other studies, including omes on

> Dy, are in progress. To date, wme can summarize by stating that dominant
K=0*>“y" transitions have been found in those cases where the empirical level
spacings should permit their observations and where the appropriate studies have
been carried out.

As for the second characteristic prediction, it has been well known for years that
"g+"g" transitions are empirically much weaker than "y"+"g" transitions. Some of
the data were summarized in Fig. 8. Although the relative strengths of the deex—
citations of these two collective modes 1s beyond the scope of phenomenological
geometrical models, microscopic c¢alculations (e.g., Bes, 1963; and Bes and
co-workers, 1965) in a pairing plus quadrupole formalism utilizing RPA techniques
have been successful in reproducing much of the systematics. As for the IBA, not
only does it reproduce this gencral feature, both im SU(3) and in broken SU(3)
calculations (see Fig. 7), but it is an unavoidable prediction in the sense that,
were the data of contrary character, one could not force the IBA to reproduce it.

It is important then to try to understand the particular characteristics of the
IBA excitations that lead to such predictions, especially the ways in which they
differ from the familiar geometric vibrations. The remarkable aspect is that the
1BA, both here and in other situations to be encountered below, contains predic-
tions that, to reproduce in a geometric view, require an essentialily microscopic
approach that explicitly treats the finite number of wvalence particle. Very
recent results by Bijker and Dieperink (1982a) bear on this point. Through Lhe
utilization of the concept of intrinsic states, they are able to reproduce the
characteristic IBA transition rate predictions of the SU(3) 1limir, wnamely that
B'+g® transitions are weaker tham y'+g' by a factor of about 6 and that B'>y'
transitions dominate R'»g’ ones. However, they also show that, as N»«, the tran—
sition strengths, and, by implication the structure of the excitations, approach
those of the geometrical picture: that is, intraband transitions dominate,
followed by one phonon changing B'+g' and yY'+g' transitlions, followed by two
phonon changing 8'»y' transitions. Thus, it now  appears that ths particular
uniquen:ss of the IBA excitations resides in differences petween finite and infin-
ite dJdimensional geometrical constructs, and is related to those between micro-
scopic and macroscopic geometric models,

III. THE IBA AND GEOMETRICAL MODELS IN DEFORMED NUCLET

The results of the previous Section show that the IBA, on the whole, successfully
predicts the characteristic properties of deformed nuclei. In this Section an
attempt will be made to examine two of these properties, the "y"+"g" and "g"*"y"
transitions in the context of the familiar bandmixing formalism of the geometrical
model. The motivation for this is clear. For "y"+"g" transitioms, both the IBA
and the empirical branching ratios deviate from the Alaga rules. Moreover, the
discrepancies between theory and experiment exhibit a spin dependence that will
be seen shortly to characterize a missing bandmixing interaction. For the "g"+"y"
transitions, while they are formally forbidden in the geometrical model, it is
clear if B-y mixing is incorporated, such transitions wili be allowed and will

proceed by effectively intraband admixed amplitudes.



The general bandmixing formalism will first be presented below, and then, follow—
ing a discussion of the application ¢f this formalism to "Y"+"g"” transitions, the
structure of the IBA SU(3) wave functions for B8*' and Y' states will be discussed
and related to the bandnmlxing concepts. Much of the development on this Section
is taken from Casten and Warner (1981) and Warner, Castem and Davidson (1981).We
thank L. L. Riedinger for much useful advice and for the derivation of Eq. 12
below.

A. Bandmixing Formalism: Mikhailov Plots

The introduction of bandmixing is a well-known and well-developed technique in the
geometrical model to account for deviations of E2 branching ratios from the Alaga
rules. Originally, mixing of ¥y and ground bands or B and ground bands was intro-—
duced to account for the "y“»"g" and "B"+"g" B(E2) values, respectively. Later,
3-bandmixing of B, Y and g bands was included tc account for small remaining dis-
crepancies in the same B(E2) values. The 3-band mixing formalism was largely
developed by Lipas (1962), It is presented in Bohr and Mottelson (1975) and, more
explicitly, in a paper by Riedinger, Johnson_and Hamilton (1969) which includes
detailed formulae and explicit examples for Sm and !%“ad.

A.l. y-g mixing. Consider first y-g mixing. Following Riedinger, Johnson and
Hamilton (1969) and Fiedinger (1981), define admixed wave functions Y3 for g, Y,
and B bands in terms of pure wave functions ¢4 by:

Yp =01 " egfa(De; - e £,(1)¢
I I, B0I Ty 2L

<
-
1}

=¢. +e f ()¢, +e, £,(1)¢
P g0 Ig By 2 I (7

Yo =¢, +e £,(1)o, - e, £,(I)d
IY IY Y2 Ig By 2 IB

The mixing amplitudes have been separated into spin Independent parts, €3, and
the functions f£o(I) = I(T+l) and fa = V2[(I-L)(I)(I+1)(1+2)11/2 which give the
spin dependence of the mixing for AK=0 and AK=2, respectively. With these defini-—-
tions, and the assumption that the quadrupole moments are the same for each band,
one obtains, in first order:

2
(L;,1.)] (8)

B(EZ:IiY*I ) = BO(EZ)[1+ZYF2(I1’If)_Z

)
fg BYFBY
where the F functions depend of £,(I) and on angular momentum coupling coeffic—-
ients and Bg(E2) is the unperturbed value. The parameters Zy and Zgy are pro-
portional to ey and egy, respectively.

If one neglects the normally small B-y mixing term, it is possible tc rewrite Eq.
8 more explicitly in a particularly useful form. Thus,

R - - 2 o - 2
B(EZ.Iiy*Ifg) 2<I122 2 If0> b4 [dl Mz(If(If+l) Ii(Ii+1))] 92
Here, M; and Mp are directly related to Zy(Zy = -2Ma /(M1 +iM;) and are defined

o= <y [MED) |-y Mp = s/en)t 2Q0(eb)eY (10)
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Thus, except ifor a correction term, M; is the direct intrinsic AK=2 matrix element
and M; 1s proportional to the mixing amplitude €ye The advantage of the form of
Eq. 9 is that it can be rewritten as:

e = MM (I AL (T 4)) a1
fz<1.22—2|1 o>
i f

A plot of the left side against the spin function on the right is a straight line
with intercept M; at Ij=I¢ and slope Mz. From such a plot, called a Mikhailov
plot (Mikhailov, 1966), therefore, one can directly extract, from empirical
results, both the direct intrinsic AX=2 matrix element and the mixing amplitude
eY(ter) provided the data can be fit by a straight line. Moreover, since, in
perturbation theory, ey = <Pi] Hpert|] ¥£>/(E;-Ef), ome can extract the
interaction matrix element as well. Instructive examples of the use of this tech-
nique are found in Riedinger, Johnson and Hamilton (1969), Bohr and Mottelson
(1975), and Warner, Casten and Davidson (1981). The 1latter is for 188z, and is
also discussed below. As noted, the Mikhailov plot formalism is useful only if
the data (and any calculations) can be fit by a straight line. Deviations from a
straight line can arise from several sources: unequal quadrupole moments of the
bands, more than 2-band mixing [except in special cases of spin independent multi-
band mixing (see next Section)], or 2-bandmixing which follows a different spin
dependence than that given by the fg{1I) and f2(I) functions. The simple structure
of Eg. 1l shows that AK=2 bandmixing has a very systematic effect on transitiomns
rates., First, for transitions of a given spin change, the effects must 1increase
with increasing spin. Secondly, regardless of the sign of Mj, it follows that
spin increasing transitions must deviate from the Alaga rules in a direction oppo-
site to that for spin decreasing transitions. Both of these effects were evident
in the systematics of the discrepancies between the dara and the IBA in the prev-—
ious section, again reinforcing the implication that those deviations arise from a
partially neglected bandmixing effect in the IBA,

In Fig. 11, a Mikhailov plot for the "y"+"g" tramsitions in 168Ex:' is presented
along with the IBA calculations (results from Table 2). It is evident that both
the data and the cz'culations fall on good straight lines (the reason for this in
the case of the IBA will be discussed in the next Section). Thus the Mikhailov
analysis may be employed. The essential information contained of the plot, that
is, the intercept M; and the slope Mz, are given in Table 4 along with the desired
quantities of physical interest, the direct AK=2 transition matrix element
<y |M(E2)] g>, and the spin independent part of the y-g mixing matrix element hj.
The factor of three difference in the slopes in Fig. 1l leads to progressively
larger discrepancies as the level spins increase, and to the observed systematics
of these discrepancies pointed out earlier. It is reflected in the extracted
mixing matrix element hs. It is important to note the enormously magnified
effects of these small interactions and admixtures. Since they result in effec-
tively intraband contributions to the coherent matrix elements, the latter can now
partake of the large collectivity of rotational transitions. In particular, one
notes that the discrepancies for some of the "y"+"g" transitions in fact arise
because of a difference of =0.4 keV in the spin independent AK=2 matrix element
(or ~3 keV in the full matrix element for 2% states). This difference is far
beyond the scope of any reasonably expected level of agreement. Nevertheless, the
concept of AK=2 mixing is an important one in deformed nuclel and its systematics
1s also of high significance. The interesting point is not so mch that the IBA
underpredicts the mixing matrix element by 0.4 keV but that, in the context of a
broken SU(3) calculation, it contains such interactions at all. Recall that they
are not inherent in the pure geometrical model but must be introduced ad hoc.
They do arise naturally, however, in microscopic RPA calculations of deformed
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nuclei. Thus,again, the IBA 1s seen to incorporate some aspects of a microscopic
treatment. (See also Section V.)

A.2. B—y mixing. Although B-Y mixing has long been employed iu the geometrical
model to fine tune "y"+"g" or "B"»"g" braanching ratios, its effect on “B8">"y"tran-
sitions themselves has not been investigated despite the fact that, by admixing an
intraband amplitude, it will clearly lead to such transitions. The bandmixing
formalism for "B"+*"Y"transitions is similar to that for "y">"g“"transitions since
both are AK=2. The following expression for B(E2:y>B) values 1s taken from

Riedinger (1981):

-1/2

B(E2:L 1) = {(21Y+1) <v[|Mee2)| 8> +

Qoo
Y 1 \
1 £5(T -£,(T 02010 2
- [ zg, [£2( B;<1_{220|18 £2(1 )T |z,0>1 (12)
B 6
2 2
+ 1z % £2(I )<T,020|1,0:+Z, ??_— £0(I)<I zz—2|180>-' }2
I %o Y -
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TABLE 4 Comparison of values of intrinsic and coupling matrix ele-
ments extracted from Mikhailov plots of the experimental data
and the IBA predictions for 1 8Er (from Warner, Casten and
Davidson, 1981)

Initial and final bandsa)
Y*g B+g g+
Exp IBA Exp IBA Exp IBA

M 0.268(6) 0.269 0.039¢2) 0.069 0.108¢7) - 0.201
(eb)
Mp -0.0045(5) -0.0014 | -0.0006(1) =-0.0005 | -0.0036(6) 0.0015
(eb)

<Ki'M(E2)IKf> 0.250(6) 0.263 0.039(2) 0.069 0.094(7) 0.207
(eb)

CKi,hAKIKf> -0.57(5) -0.181 -0.29(¢5) -0.27 0.28(5) -0.11
(keV)

a) The absolute transition strength scale was determined from the known value of
B(E2:0™ +2+Y) for the transitions from the 2+Y band, and from the predicted
absolute strengths of the intraband transitions from the higher states.

where ong_. Qz and QZB are approximately proportional to the intraband, the
Y+g and B+g B(EZ2:0t»2+) values, respectively.

Equation (12) is particularly instructive. It consists of a direct term, a first
order 8-y mixing term, and two terms which arise only in a higher order mixing of
the vy or 8 bands into the g band. The coefficient QZB/QZOO is very small and so
these latter terms may be neglected. The first two terms are of the same form as
the first two in Eq. 8 and thus may then be cast in the form of a Mikhailov plot.
However, since in the strict geometrical model the direct term is forbidden, one
obtains simply

2 2

Q
. ~ 007y 2 2
B(EZ.IY+IB) —-65;_— ZBY GBY(IB’IY) (13)
B

where Ggy(Ig,Iy) 1is evident by comparison of Egs. 12 and 13. Due to the
vanishing of the direct term, this has a totally different structure than Eq. 8.
There, the mixing had the effect of a correction to an existing matrix element.
Since the correction term was I dependent the resultant relative B(E2) values were
Zy dependent. Here, the Zgy dependent term is not a correction but the entire
source of the transition strength. Thus, whereas in Eq. 8 different values of



Zy altered the branching ratios, here the corresponding Zgy cancels out and
one has the striking result that the branching ratios are independent of EBY°
Therefore, while it is thus possible to obtain “B"+"y" transitions, one cannot at
all control their relative size, It is clear that the empirical average “"B"+"Y"/
"g"»"g" dominance can be reproduced by some choice of Zgy but the spin depend-
ence of the branching ratios will be seen below to disagree with the data, and to

require for its correction the re—introduction of a direct matrix element.

First, however, one must inquire whether, indeed, the actual observed magnitude of
the "B"»"Y" dominance can be reproduced by this approach for reasonable values of
Zgy- To see thls qualitatively it is sufficient, on average, to ignore the
effects of B-g mixing on “B"+"g" transitions. In Eq. 13 the factor Q7 goQ Y/
6Q23, for typical_iptraband, "f"»"g" and "y"+"g"” B(E2) values in the rare earth

region, is 15e“b % 2 2 For moderate spins GBY(IS’IY) is =20 and so
B(EZ:IE*IY) = (3x10 e b")Z %y Since typical B+g B(E2Z) values are on the
order ~of 0.005 e®b® the ratio B(E2:Ig>Iy)/B(E2:Ig>Ig)=(6x10")z%gy. . To
produce a ratio of 10, which is approximately the empirical value for Er,

therefore, requires a ZBY of 0.013. Remarkably, this is precisely the order of
magnitude of Zgy values previously extracted in typical rare earth nuclei (see
Riedinger, Johnson and Hamilton (1969)). Thus, one concludes that a magnitude of
8-y mixing fully consistent with previous analyses of "Bf"+"g" and "Y"+"g" transi-
tions indeed leads to "8"+"y" dominance. Before proceeding to the specific com—
parison of this bandmixing approach with 168Er, we first consider tte structure
and origin of Bi+y' transitions in the IBA in relation to the above bandmixing

pilcture.

B. Origin of B+y Transitions in tne IBA

First consider the pur= SU(3) limit interpretation of B'+y' transitions in the IBA
in terms of bandmixing. Despite the apparent existence {see Fig. 5) of XK=0 and
K=2 bands in the (A-%4,2) representation, the structure of the IBA wave functions
in the SU(3) 1limit is such that the "K=2" band contains a small admixture of the
K=0 band (Arima and Iachello, 1978a). This is related to the fact that the wave
functions of the SU(3) band can be expressed in terms of the Vergados basis where-
as a scheme involving pure K bands is the Ellictt basis. If }(X,p)PoI> represents
the SU(3) wave function in a Vergados basis for states of spin I in the band
starting with I=2 in the (A-4,2) representation, one can express this wave func—
tion in terms of the familiar Elliott basis states of good K by

OLeI> = Xo] (A, 1) ,K=0,1> + xzf(x,u),x=2,1>

Clearly X3, the coefficient of the K=2 part of this state, 1is =1. Arima and
lachello (1978a) give the following expression for Xg:

(I-)(T)(1+1)(1+2)
X = - (14)
4O2) (A3 (A=T+2) (A+I+3)

which shows that Xy is small as expected. The ratio —Xg/X; is t: 2 overlap cf the
K=0 and K=2 bands and is given by:

(I-1) (L) (I+1)(T+2)
<K=0[K=2>, = (15)
$((M1,D)6(A+2,1)




TABLE 5 Overlap Amplitudes <K=01K=2) of the K=0(B) in
the K=2(y) Band of the (A-4,2) Representation

a)
Relative Values

=8 N=12 N=16  Now N=16 £2(1)
I=2 0.012 0.005 0.003 0 1 1
I=4 0.047 0.019 0.010 0 3.9 3.87
I=6 0.108 0.042 0.023 0 8.65 8.37
I=8 0.204 0.076 0.040 0 15,27 14.49

a) The entries for N=16 are presented again on the right, normal-—
ized to 1 for comparison with fz(I)=/2((I—1)(I(I+1)(I+2))1/2.

where ¢(A,I) = 2(A+1)2—I(I+l). From the strucfture of Eqs. 14 and 15 it is appar-
ent that both Xy and the overlap amplitude vanish as N(or i)+,

Table 5 tabulates the overlaps for several N values and also gives the relative
values for N=16 in comparison with the function £,(I) from which it is clear that
this mixing in the IBA has essentially the same spin dependence as the gzometric
model and, again, suggests the utility of a Mikhailov analysis. With the
decomposition of the SU(3) states in terms of states of good K, it is possible to
write the expression for B'+y' band E2 transitions (Scholten, 1381).

(21_+1) X I,2 1
@' |[uED| 1> = — c,1) [ —0 Y Y 8(2,15,L)
K c(0,L) \o 0 0

+ ____XZ_ IY 2 IB YIZ ] + C(2,1 )<K=0|K=2> [ Xy IY 2 IB /12
8 I " cco,1)
Y 0 2 -2

+X (I, 2 T\ ea1.,10)] (16)
c(2,1.) BTy
>y 2 0 -2

where the C(K,I) coefficients are tabulated in Arima and Izchello (1978a) and
g(A,Ig,Iy) = 22+5+{Tg(Ig+1)-I4 (I, +l)}/2.

It is instructive to inspect the limiting value of Eq. 16 for large N. To do
this, one needs the results that, as N»=, the C coefficients go to zero as v1/A,
that the ratio of any two approaches a constant and, in particular, that
c(o,Ig)/c(z,IY)s = 2/(2Ig+1)/(21+). Also, <K=0] K=2>/C(2,Iy) goes to
zero  as 1/x2/ . Finally, from Egs. 14 and 15, the product of either Xg or
<K=0LK=2> with g(A,IB,I ) goes to zero as 1/X. Thus, Eq. 16 becomes (leaving

out numerical constants



1/2 1/2 I. 2 1
1 1]
<8 IB,|M(E2)|IY 1> M= (2041)7 921, 41) Y

(17)

> (218+1)1/2<1 022|1 2>

8

Three important conclusions appear from Egs. 16 and 17, First, there are two
mechanisms for B'»y' transitions: ome is a direct AK=2 intrimsic matrix element
and the other stems from the K impurity of the Y' band even in the SU(3) limit.
The latter mechanism vanishes in the N3 limit and 1is related to bandmixing
effects in the geometrical model. The former has no analogue in the strict inter-
pretation of that model. Seccnd, in the infinite dimensional limit (geometrical
limit), the B(E2:8'»y') value zpproaches the square of a Clebsch-Gordon coeffic—
ient and therefore the IBA predicts branching ratios that approach the Alaga
rules. Third, the deviations from these Alaga rules, which in the geometrical
model arise from bandmixing, here arise from two sources, the K mixing just
mentioned and an explicit dependence on boson number.

The essential point in determining the relation to the geometrical model is to
assess the relative sizes of the direct AK=2 and overlap contributions to the
M(E2:8'»y'} in the SU(3) 1limit. Table 6 gives the results for several N values
for the tramsition 2gv+2y1. It 1is clear that the direct AK=2 term dominates,
even for modest boson mumber. This is typical for most spins except AI=2 tramsi-
tions between high spin states where the Clebsch-Gordon coefficient for the direct
term is rather small. Thus, transitions between the B' and Y' bands in the IBA
in the SU(3) limit proceed predominantly by a direct AK=2 mechanism and only tc a
much lesser extent via a mixing mechanism (see Warmer, Casten and Davidson, 1931;
and Casten and Warner {1981)).

For realistic nuclei, the SU(3) symmetry must be broken, Nevertheless, these same
qualitative results persist and it will be seen, from a Mikhailov plot, that the
direct AK=2 term still dominates although its interpretation as a pure B'+y’'
amplitude is altered.

TABLE 6 Magnitudes of the overlap and direct AK=2 amplitudes in the
reduced E2 matrix element for the 2+B'*2+Y' transition in
the (A—4,2) representation

(A-4)=12 20 28 1000
Overlap term 0.145 0.0926 0.068 0.002
K=0 + K=0
Direct term 2.875 2,892 2.901 2,927
K=0 » K=2
C. Bandmixing Analysis of B+y Transitions in 1685,
168

The data and IBA calculations for “B"-+"Y
an apt illustration and test of these ideas.

transitions in

Er, of course, provide
Indeed if the data lie on a straight

line in a Mikhailov plot one can extract, empirically, the relative sizes of the
direct and mixing contributions to these transitions and thereby explicitly test
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whether the geometrical model (with no direct matriz element) or the IBA (with
dominant direct matrix element) is the more appreryriate description, TFigure 12
presents such a plot. The data clearly lie on a straight line (x“=0.5) and so
does the IBA. The bandmixing points are calculated with the full Eq. 12 but with
no direct term. Since only the term in Eq. 13 is significant _these points closely
approximate a straight line. The height of this line (=Z BY) was adjusted to
glve an overall average "B"+"Y" over “B"*"g" dominance in agreement with the
data. The slope is then predetermined since, with no direct matrix element, the
intercept mst be ~4Mp. While the average "g"+"y" strength is by definition thus
reproduced, the branching ratios disagree with the data. The reason 1s clear and
significant, namely the data give explicit and direct empirical evidence for a
non~zero direct AK=2 B+y matrix element since the intercept of the empirical best
fit line is far greater than 4 times the slope. Thus, the bandmixing approach is
in disagreement with the data unless one re-introduces an ad hoc direct matrix
element. Then, of course, a straight line of any desired slope may be cbtained.

From the empirical and IBA lines in Fig. 12 the quantities M1 and M, (and thus
<y |M(E2)| B>, Egy and hence hBY) may be extracted. The results are included in
Table 4. It 1s interesting to note that the magnitude of the deduced direct
matrix element is between a third and half of the collective <y|M(E2)! g> matrix
element and thus, as with the IBA wmatrix element, corresponds to a definite
collective enhancement. The IBA calculations, perhaps despite initial appearances
in Fig. 12, are actually in rather good agreement with the data. From the
Mikhailov plot for the IBA, one can deduce the size of the direct matrix element,
as 0.207 eb. This is within about a factor of =2 of the data and is remarkable in
view of the simple prescriptions used in the calculation. Finally, the slope of
the IBA calculation, which appears to be in gross disagreement with the data, in
fact amounts to a discrepancy of only 0.4 keV in effective spin independent inter—
action strength.

0.5k

JBIEZT T8 = T 0)/[V/2 <T;02211125] s.p.u.
o
)
1

EXP. ‘
BM—" %,
B{E2:AK=2]=0
| 1 1 I i 1
o. 925 -15 -5 0 5 - 15
Toecr Te(Te +1) - T+ I1Incr f

Fig. 12. Mikhailov é:g.ots (see text) for “"B"+"y" transi-
tions in !®%Er (Casten and Warner, 1981).




Another point 1s worth mentioning. Detailed inspection (see next Section) of the
IBA wave functions in these broken SU(3) calculations shows that they actually
consist of amplitudes from a number of different bands and representations. Thus,
it might be thought surprising that the calculated B(E2) values still yield the
straight lines of Fig. 12. However, in the bandmixing formalism, the specific
form of the Mikhailov plot equation (Eq. 11) arises from the assumption of the
specific spin dependence of the mixing amplitudes given by the functions £q¢(I) or
f,(I). 1If, however, the amplitudes are spin independent, then the relative inter-
band B(E2) values are unaffected and a horizontal line results on a Mikhailov
plot. Hence, for example, although the "g" band in Er is composed of the B°'
band highly mixed with other K=0 excitations, it Indeed turns out that that mixing
is nearly spin independent and it 1is therefore not unreasonable that the IBA
B(E2:"8"+"y") values yleld a straight line with slope related to the 2-band mixing
of a "composite” K=0 band with a "composite” "yY" band.

For "B"+"g" transitions ome can also develop a bandmixing formalism, this time
incorporating AK=0, B+g mixing. Table 4 also includes the essential results of a
Mikhailov analysis for this case for Er. Here, the slope of the IBA predic-—
tions is almost identical with the data and very small while the predicted intrin-
sic matrix element is about twice the empirical value. Thus the ratio of predic~-
ted matrix elements <BIM(E2)| g>/<B)M(E2)ly> is nearly the same im the IBA and the
data, Finally, the extremely small slope Mz reflects (again see next Section) not
so much negligible mixing, but rather "composite” "B" and "g” bands where the
mixing is extensive but nearly spin independent.

IV. SIMPLE INTERPRETATION OF THE IBA IN DEFORMED NUCLEI

The purpose of this section 13 twofold, first, to analyze the form of the Hamil-
tonian of Eq. 5 in order to exhibit some simple properties of the resultant
predictions, including a set of rather general curves which give the essential
predictions by inspection in terms of a single empirical parameter, and secondly,
to expand the IBA wave functions in a different basis that transparently illumin-
ates their basic structure and the nature of the interactions that break the SU(3)
symmetry. Much of the content of this section is based on Casten and Warner
(1982).

A, Reduction of the Hamiltonian

The IBA Hamiltonian of Eq. 5 is suitable as a starting point for the treatment of
deformed nuclei with Eeg= > Ewyw. However, it is possible to substantially
simplify it without losing any essential physical content. This reduction of the
Hamiltonian is summarized in Table 7 along with the physical quantities calculable
with it. First, one notes that the LeL term is a diagonal interaction. It cannot
alter wave functions nor energy differences of states of the same spin. Next, the
strengths of the Q+Q and P<P terms can be rewritten by factoring out k. Since €
does not appear in this Hamiltonian, the SU(5) basis states that are admixed by H
(sce Table 1) are degenerate and the combination of Q+Q and P+P represents a par-—
ticular set of SU(5) symmetry breaking wmatrix elements. Thus the resultant mixing
mist be independent of the overall scale factor, k. This coefficient, however,
will clearly affect the final energy scale. Therefore, .15 long as one considers
only wave functions, transition rates and the ratios of energies for states of the
same spin, or alternately these energy differences to within a scale factor, the
final Hamiltonian in Table 7 gives the same results as the initial one. But the
reduced Hamiltonian has only a single parameter «k"/k. This has the value 0 for
SU(3) and in the limit (x"/k)+=, the 0(6) limit is obtained. Thus, for a given N,
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all results of an IBA calculation in this framework for deformed nuclei can be
specified in terms of this parameter (and x for E2 transition rates), and there-
fore plotted as genmeral curves from which one may read off the relevant predic-—
tions. It will be seen shortly that this parameter can in fact be empirically
specified and thus the Hamiltonian reduction is not merely a mathematical simpli-
fication but provides a practical tool as well.

TABLE 7 Reduction of the IBA Hamiltonian for Deformed Nuclei

Hamiltonian Calculable Physical Quantities
H=~-x QQ-«x"LL+ x" PeP E,y, trans. rates (B(EZ))a)
Delete 1 k'L-L
H=-x QeQ + k" PeP Ei(I)-Ej(I),w, a)
= -k [Q*Q - (x"/x) P-P] trans. rates (B(E2))
Ignore 1 K
He QQ - K“/K PP (Ei(I)"Ej(I))/K,lP, a)
trans. rates (B(E2))

a) B(E2) values recuire the further specification of x in T(E2). However,
to good approximation for initial or schematic calculations this can be
fixed at a global value of -0.85 corresponding to the mean value of the
narrow acceptable range for deformed nuclei.

The results for 2% energy levels, for N=16, are shown in Fig. 13. (Note that the
symmetry breaking parameter in Fig. 13, and in similar figures below, 1s given as
k" /4x since this quantity is identical to the ratio, —"PAIR"/"QQ", of the two cor-—
responding input quantities to the IBA-1 code PHINT.)

The behavior of these energy levels is noteworthy. First, the 2+"Y" level is
hardly affected by the P+P interaction, thus justifying, retroactively, the use of
the SU(3) expressions (Eq. 4) to fix x and x' in carrying out a broken SU(3) IBA
calculation. Secondly, the first excited k=0t band rises rapidly in energy. So
do the second and third O bands. The behavior of the "8" band (0F,) in fact
suggests a way of empirically defining the symmetry breaking. WNote that the quan-—
tity Ept»g~/Egt»y» 1s a unique function of «x"/4x and thus can be used to
specify the latter. But, since this in turn specifies the entire calculated set
of predictions corresponding to the reduced Hamiltonian, those predictions can be
directly inferred from the empirical parameter itself., In practice, it turns out
that the OYwg» level is more commonly known and therefore a better choice of
parameter is E0+nBu/(E2+"Yn-E2+"g"). Furthermore, since «"/4k + 0 in the
SU(3) 1limit, it is convenient to have the empirical substitute parameter do the
same and, therefore, it is best to adapt [(EO+"B"/(E2+"Y"‘EZ+"g"))"1]' This
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Fig. 13. Relative 2t energies as a function of SU(3)
symmetry breaking for N=16. The levels are
labelled by the SU(3) description on the left
and by the dominant K quantum numbers on the
right, The subscripts refer to the ordinal
number of the band of that K. Note that the 2%
level of the ground band is not shown and thus
there is a suppressed zero on the ordinate side
(Casten and Warner, 1982),

alternate scale is glven across the top in Fig. 13 and, in subsequent figures
below, may be substituted freely for the k“/4x scale. Note that, since the "B”
tand energy eventually flattens out for large symmetry breaking this parameter
approaches a constant value. At that point (roughly for x"/4k > 2) its utility
decreases rapidly. However, for most empirical nuclei, E"B"/E"-.(" ranges from
1.0-1.7 so that the usable range coincides with the important range.

B. Transformatior ta SU(3) Basis

As illustrated in Table I, the IBA wave functions for deformed nuclei are extreme-~
ly complex in the SU(5) basis. Transition rates, which involve two states, are
even more complex. For example, for N=16 there are 51 2t states in IBA-1. In
deformed nuclei there will be large amplitudes for a considerable fraction of
these SU(5) basis states. A B(E2) value will involve a linear contribution of
over 2500 products of these amplitudes each involving a relevant elementary SU(5)
E2 matrix element: many of these will vanish but a large number will have compar-
able contributions. Moreover, each such contribution corresponds to a transition
in a vibrational nucleus with no easy interpretation in a deformed context.

However, if the wave functions are re-expanded in SU(3) one might reasonably
expect a substantial simplification. This has been studied in Casten and Warner
(1982). 1In practice such a transformation is made trivial Ly using the existing
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IBA program PHINT (Scholten, 1977) to give both the actual wave functions and
those of SU(3). To i1llustrate these ldeas, the expansions of the low lying 2t
states are given in Figs. 14 and 15, for N=16. [They were obtained with the code
IBAOVL written to calculate such overlaps (and also B(E2) expansions). It is
available on request.] The behavior is extremely simple. Each state is pure in
SU(3) but of course becomes admixed as the symmetry breaking is introduced. For
orientation, most typical deformed nuclei correspond to x"/4x values between 0.4
and 1. (In 168Er, x"f4x = 0.94). In no case are more than four or five ampli-
tudes required to effectively describe the low lying states.

Although the results shown in Figs. 14 and 15 are for 2t states, similar conclu-—-
sions apply for other spins so we shall henceforth refer to the structure of the
various "bands". The "g” and "y" bands are particularly simple, each being for
the most part an admixture of one other band. The "8" band, initially situated
between the g' and BR' bands mixes substantially with both. The 0"z band, initi-
ally B8', mixes so strongly with the close lying yYY' band that the two soon inter-—

change character.

The most striking feature of Figs. 14 and 15 is that, for each state, the strongly
admixed amplitudes always have the same K value (with one exception discussed

below). Thus, the SU(3) symmetry breaking corresponds simply to AK=0 interactions
between certain pairs of bands. The simplicity ard elegance of this result is

manifest. One can go further, however, and extract the size of the AK=0 matrix
elements. In Casten and Warner (1982) this was done in a crude but simple way for
the gB8'+yy' mixing by noting that, for x"/4k < 0.5, one could approximate the Ofj3
wave function by a 2-state admixture. Then it 1s trivial to work backwards from
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Fig. 14 Major amplitudes in the expansion of the 2+"gn and
2*.yw states in SU(3) for N=16.
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and the 2t state of the 0%y band in SU(3) for
=16 (Casten and Warner, 1982).

the final energies and admixtures to obtain, as a function of «"/4k, the implied
AK=0 matrix elements between the SU(3) states. Note that, over a narrow region
near k"/f4x = 0.06 in Fig. 15, the BB' and yy' amplitudes are dashed. This was
done since over that region there suddenly occurs very large AK=2 mixing between
the 88’ and By' amplitudes. This arises because these two states are initially
degenerate in SU(3) but move slightly apart from diagonal contributions from the
PP interaction while, at the same time, there is a matrix element between them
which, though remaining very small, grows with symmetry breaking. Over this par-
ticular narrow region, its ratio to the unperturbed energy separation is large.
This fortuitous occurence allows the extraction, in a similar 2-state approxima-—
tion, of a AK=2 matrix element as well. It was found to be = two orders of magni-—
tude weaker than the AK=0 matrix element.

Of course, the more rigorous way to extract the matrix elements between SU(3)
states is by directly transforming the initial Hamiltounian into the SU(3) basis.
In matrix notation, where U is a matrix of SU(3) wave functions in the SU(5) basis
and where Hy(5) is the perturbation matrix also in SU(5) basis, then the inter~
action matrix Hy(3) expressed in the SU(3) basis is given by:

_ T
Hv(3) =U HV(S)U

where UT is the transpose of U.
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Application of this transformation then gives the AK=0 coupling matrix elements,
not only for BB8' and YY' bands and for k"/4Kk ranges where the 2-state mixing
approximation is valid, but for all bands and parameter wvalues. Moreover, 1t
gives the full set of small AK=2 matrix elements as well. It is obvious from the
reduced Hamiltonian of Table 7 that the effect of k"/4x itself is simply a scaling
of the 5U(3) symmetry breaking interactiom. Thus, all non-diagonal matrix
elements simply scale as k"/4x and these matrix elements will thus preserve a
constant ratio. These last two statements imply that a log-log plot of the inter-
action matrix elements in an SU(3) basis vs. k"/4x consists of a serles of
parallel straight lines. Thelr relative heights depend only on the structure of
the P+P interaction expressed in the SU(3) basis. As an example, the matrix
elements deduced from this transformation are illustrated, for N=16, in Fig. 16.
(The values for the 88'+yY' matrix element, deduced in Casten and Warner (1982) by
a 2-state mixing analysis, are essentially identical with those of the figure for
«"/4c < 1l.) Note that the AK=0 watrix elements shown are all roughly the same
size and, in each case, admix SU(3) bands from adjacent representatiomns. Weaker
AK=0 matrix elements between non—adjacent representations also exist but are not

plotted.

Now, the simplicity of the IBA scheme is apparent. In it, deformed nuclel are
characterized as composed of states represented by simple linear combinatioms of
SU(3) states courled by large (several 100 keV typically) AK=0 matrix elements and
very small (<10 keV) AK=2 matrix elements.

A note regarding the relation to bandmixing is relevant here. In the geometrical
model, the bandmixing formalism allows one to account for tiny mixtures among g, B8
and Yy bands. But these elementary excitations themselves are, in effect, pre-

adjusted phenomenclogically for each nucleus, and camnot be directly compared

across large regions. In the IBA the elementary modes are the SU(3) states which,
aside from a small N dependence, are the same throughout a deformed region. They
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Fig. 16. Principal AK=0 and AK=2 matrix elements between
low 1lying SU(3) states as a function of the
SU(3) symmetry breaking for N=16.



are admixed by relatively large AK=0 matrix elements. The uniformity of the basis
yields some qualitative a priori predictions. For example, the large AK=0 matrix
elraent, its sensitivity to k"/4k, and the fact that there are many more low lying
K=y than K=2 excitations leads to the general expectation that the "y" band will
be relatively constant in structure across a deformed region whereas the "B” band
will show much greater variability. It is evident from Fig. 8 that this accords
with the experimental facts.

€. Composition of Transition Rates

It is tempting to exploit the simplicity of the IBA wave functions in the SU(3)
basis to decompose the calculated transition rates. With the use of this expan-—
sion any B(E2) value can be written as a linear combination of terms, each of
which contains the product of a pair of SU(3) amplitudes in the initial and final
wave functions, and the elementary E2 matrix element between those two SU(3)
states. The elementary SU(3) E2 matrix elements must, of course, be calculated
with the same value of y as in the actual IBA calculation.

Since each wave function contains only 2-4 major SU(3) amplitudes and since some
SU(3) E2 transition rates are identically zero for any yx value (if A(X,u)>4) there
will typically be only ~2-6 significant contributions to each B(E2) value. Since
the wave functions are known as a function of «k"/4x, the composition of any E2
matrix element can be similarly plotted. Figure 17 shows two examples for deexci-
tation of the "B” band, and Fi%; 18 shows, in bar graph form, the specific ampli-
tudes for four transitions in !°%Er.

In both examples in Fig. 17, and indeed for any transition, the M(E2) in the SU(3)
limit consists of only a single amplitude corresponding to the transition between
the SU(3) states involved. As the k"/4x (i.e., P+P) symmetry breaking is intro—
duced, the newly emerging amplitudes in the initial and final wave functions
introduce other coherent contributions. In many cases for k"/4x values typical of
deformed nuclei (roughly 0.3-1.5), amplitudes other than the original one can be
rather substantial or can even dominate.

For transitions between states which are primarily mutual admixtures of two SU(3)
states, the coherent sum contains two “diagonal™ terms, that 1is, terms propor—
tional to the SU(3) state quadrupole moments. Orthonormality requires that these
amplitudes will have opposite sign. Then, under the usual situation with quadru-
pole moments of the same sign, these two contributions to the E2 matrix element
will tend to cancel. Moreover, since the quadrupole moments are of intraband mag-
nitude, any differences in them can lead to incomplete cancellation which can
easily dominate the net transition strength even for a rather small degree of
sympetry breaking. This happens, for example, in the "B“+"g" transition. The
relevant quadrupole moments will differ most, leading to the strongest "g"+"g"
transitions (for a given degree of symmetry breaking), for small boson number,
that is, near the edges of the deformed region. In the geometric model, a quali-
tative microscopic analysis (Bohr and Mottelson, 1975), in terms of the E2 szalec~
tion rules in the Nilsson scheme, ascribes a similar origin to the “B"+"g" transi-
tions in terms of differing quadrupole momeunts of specific Nilsson orbits. Once
again, it appears that there is a correspondence between the IBA and microscopic
collective models.

The other transitioms in Figs. 17 and 18 are also of interest. The "B"+"Y" tran—
sitionaclearly mirrors the results obtained earlier from a bandmixing analysis of
the '®8gr calculations, namely that the dominant mechanism is the direct AK=2,

8'+Y' matrix element. The relative purity of the "y"+"g" transition is evident in
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Fig. 18 and, again, is a reflection of the statement made earlier that the y band,
which admixes strongly primarily only with the BAy' band, will remain relatively
pure and stable across a deformed region.

Finally, the 0+3->"Y" transition, from the second excited ot band in 168Er, is seen
in Fig. 18 to be rather complex. The YY'»Y' amplitude is indeed the largest, and
the net coherent amplitude happens to approximate this contribution but the actual
calculated transition 1is composed of several comparable amplitudes. The final
transition strength depends at least as much on the detailed ccherence of these
other amplitudes as it does on the yy'+y' amplitude. Moreover, as discussed in
Section II, the yy' SU(3) state itself is not simply a double Y' mode. Thus, the
relationship of the IBA "yy" K=0 excitation to the analagous geometrical state,
and in particular, its labelling as a Yy phonon state, is by no means obvious.
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V. REVISED FORMULATION OF THE IBA

A, Motivation and Formulation for a llodified Hamiltonian

Despite the success of the IBA for deformed nuclei, there is one disquieting ele—
ment in the formalism. It will be recalled from the discussion of Section II that
the coefficient xy in the E2 operator has been determined empirically to have a
value near —0.85 in deformed nuclei whereas the analogous coefficient xq in the
Q operator of the Hamiltonian is fixed at xq = -2.958. If the quadrupole opera-
tor has a physical significance as such, it would clearly be praferable to utilize
the same form in both instances.

The effects of such a modification have recently been studied (Warner and Casten,
1982a). As noted in conjunction with the earlier discussion of Table I, the PeP
term has Ang=0 and 2 terms while Q+Q has Ang=0,1 and 2 terms. If the coeffic—
ient xo in Q is reduced, reference to Eq. 2 shows that one of the effects will
be to reduce the size of the 4Ang=l term in Q-Q relative to the &ng=2 term:
but this is exactly the primary effect of the PP term. So one might hope that
utilizing the same value of yp in the Hamiltonian and E2 operator would avoid
the need for a P+P term in H, or at least, limit the role of a smaller P+P term to
a fine tuning mechanism.

Thus, one is motivated to propose (Warnmer and Casten, 1982a) the following
Hamiltonian



H' = en, ~ xQ'+Q' - k'L-L (13)

d
where Q' is more defined as in Eq. 2 but XQ now takes on the same value as x in

T(E2). (Henceforth, we refer to these now equal coefficients as XQ-) Tie
expected range of XQ as before lies between 0 and -2.958.

B, Reduction of the Hamiltonian

This is an extremely simple Hamiltonian and it remains to be shown if it is ade-
quate. First, however, it is worthwhile analyzing it along the lines of Section
IV.A (see Table 7). First, for deformed nuclei with Ew#g#>Evy« one may omit
the enq term. Secondly the L+L term is diagonal, and thus cannot affect energy
differences of states of the same spin. As before, wave functions and tramsition

rates are unaffected by the scale factor k. Thus the calculation of all wave

functions, transition rates and relative energy differences of the form (E;(I)-
Ej(I))/K, depends only on the single parameter XQ- By choosing some B(E2)
ratio that is insensitive to changes in the wave functions such as the ratio used
earlier to determine Y, namely B(EZ:2+Y+O+g)/B(E2:2+g+0+g), xq may be
fixed from an empirical branching ratio.

C. Comparison with Earlier Results

One is almost reluctant to expect that such a simplified approach could work but
the motivation for modifying the Q operator in H seems so compelling that it is
worth testin;slé\ow the new formalism works. To do this, the extensive and detailed
results for Er provide a stringent test where the origimal formalism was rather
successful., To carry out such a test, the XQ value for this nucleus was deter—
mined according to the procedure above and a value of -1.1 was obtained. Whereas,
previously, the wave functions could be calculated once and for all for a given
value of «x"/4x and then yx varied, now each xg value in T(E2) represents in
effect a different Hamiltonian and hence a different eigenvector equation. Thus
it is natural that the new yq value differs somewhat from the lggrlier value of
-0.68. It might be recalled that the earlier value of X for Er was but one
example of a narrow range of Y values valid for the whole rare earth region. When
the present formalism is applied over this same region, a similarly narrow range
is again obtained, namely -1.5 £ xq £ -0.9.

With the new value of xq = -l.1 for 168, the level energies and E2 transition
rates may be calculated. The results are compared with those obtained (Warner,
Casten and Davidson, 1980 and 1981) earlier in Fig. 19. (Of course, to normalize
the absolute energy scale in the XQ formalism part of the figure, a specific
value for k was used.) The results are striking. First, without a PP term, the
present formalism reproduces almost exactly the same energy level sequence, band
for band. (For simplicity, only bandheads are shown in the figure since rota-
tional spacings are essentially uancharnged.) Secondly, the principal calculated
B(E2) values are almost unchanged. Specifically, the ratio of interband to intra-—
band strengths (exemplified by the "yY"+"g" strengths, since the intraband
strengths are normalized to each other) is identical. Secondly, the “B8"+"y" tran-
sitions again dominate the "8"+"g". The first noticeable difference occurs in the
"g"+"g"” transitions which are weaker in the new formalism. But this is in better
agreement with experiment since in Tables 2 and 3, and the discussion surrounding
them, it was pointed out that the "B"+"g" transitions were overpredicted by a
factor of =4. The largest change noted in Fig. 19 is in the 0"'3+"B" transitions
but here no comment relative to experiment can be made since no such tramsitions



were observed. Thus, as far as can be determined, the present formalism, with one
parameter less, 1s at least as much in accord with the data as the earlier one.
Indeed, it 1is actually in better agreement in some re=pects. This is most
apparent if the “yY"+"g" transitions are considered in de ail, analogous to the
earlier discussion of Table 2, However, instead of repeatii - such a table cne may
take advantage of the bandmixing/Mikhailov formalism. Given that a set of data
and calculations lie on straight lines on a Mikhailov plot, the extraction of the
direct matrix element and the Z coefficient from such a plot is fully equivalent
to the detailed presentation of the complete table and may be substituted for it.
(As an aside, it is worth noting the power and simplicity of this oft-neglected
formalism.)

Figure 20 repeats the Mikhailov plots of Fig. 1l and adds the line corresponding
to the "y”"+"g" matrix elements of the new formalism. One may argue the signifi-
cance of the earlier factor of three difference in slope between the IBA and the
data, and hence of comparable differences in a few B(E2) values between the higher
spin states, arising as they did from the magnified effects of very small interac-
tions. Nevertheless, it is striking that the new formalism, again with one less
parameter, now correctly reproduces even the fine details of the AK=2 mixing.

The origin of the improvement is still being studied, it the following two points
may be mentioned. In general, comparable fits to the level energies in the two
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Fig. 19. Comparison of calculated level energies of 168Er

{bandheads only, rotational spacings are similar
in the two calculations) in the original IBA-1
formalism for deformed nuclei in which the SU(3)
symmetry is broken with a PP interaction and in
the modified formalism incorporating a variable
X in the Hamiltonian (Warner and Casten,
1982a).
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formalisms result in wave functions that, overall, are very similar in structure.
Both approaches recult in the breaking of SU(3) by strong AK=0 and much weaker
AR=2 interactions. However, in both, the symmetry breaking has two effacts, one a
diagonal contribution to the SU(3) energies, and the other due to off-diagonal
mixing matrix elements. Comparable final energies emerge from the new formalism
by a different combination of the two contributions, specifically, smaller diagon-
al energy shifts and larger mixing matrix elements, both AK=0 and AK=2., Thus, the
wave functions in the modified formalism are rather more mixed. For transitions,
such as "y"+"g" and "B"+"Y", which arise primarily (see Figs. 17 and 18) from the
dominant SU(3) amplitudes of the parent pure states, the greater admixtures of
small amplitudes has little effect and thus similar B(E2) predictions result. For
transitions, such as "8"+"g" which arise primarily from cancellations, stemring
from coherent contributions involving relatively small wave function amplitudes,
the altered mixing in the present formalism is significant. Finally, since the
AK=2 matrix elements are also larger in this formalism, the v'+*g' mixing is larger
and the Mikhailov plot for the IBA exhibits a larger slope.

One may inquire if this improved agreement for the "Y"+"g"” transitions is an iso-
lated case. To test this, similar calculations have been performed for an exten-
sive series of deformed rare earth nuclei. For each, xq was fixed from the
usual B(E2) ratio. This then fixed all other B(E2) values and comparison tables
can be constructed. Again, though, the entire content of a series of such tabes



is contained, as far as deviations of the interband B(E2) values from the Alaga
rules is concerned, from a plot of the calculated and empirical Zy factors. The
results of this comparison of Zy values is presented in Fig. 21, along with some
early microscopic values calculated in a RPA scheme by Bes and co-workers (1965).
Remarkably, the IBA predictions of this extremely sensitive (see earlier
discussion) quantity are In excellent agreement with the data over an extensive
set of nuclei. Nowhere is there more than a factor of 2 discrepancy. Moreover,
both the data and the calculations exhibit the saue characteristic systematics,
which are quite regular, especially when plotted against boson number instead of
nucleus, showing a parabolic behavior, minimizing at mid-shell., This behavior is
not surprising in the context of familiar rotation-vibration coupling ideas. Near
the edges of the deformed region the separation of these two degrees of freedom is
imperfect and thus they mix much more extensively than in the center of the
deformed region., The origin of the systematics in the IBA calculations is
twofold. First, there is a variation in Zy as a function of xq which is
separately fitted for each nucleus. Secondly, however, the AK=2 matrix elements,
and hence the values, exhibit a sharply decreasing behavior with increasing
boson number, N. Since XQ falls in a relatively narrow range, it 1is not
surprising that the boson number effects represent a significant contribution to
the parabolic systematics just noted.

D. The 0(6) Limit: A Special Case

If the new formalism is to be regarded as a substitute for the earlier one it
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particular each of the characteristic limits should be recovered. Clearly the
SU(5) limit can be obtained from Eq. 18 when € is large just as in the earlier
case. More worrisome at first is the 0(6) limit (Arima and lachello, 1978b). Its
characteristic term (see Eq. 1) was the PP term which is now absent. Moreover,
the actual 0(6) spectrum arlses in the earlier formalism, Eq. 1, only by Inclusion
of three independent terms, namely

H = —LeL + x"BP + T3(atat) 3 @GH P (19)

In the new formalism this limit must correspond to x(=0 which makes Q' a genera-
tor of 0(6). Then H' becomes

H' = —xQ'+Q' —k'LeL
(20)

= -K(s+3'+d+s)(2)-(s+3'+d+s)(2)—K'L-L

which contains only two independent terms.

Thus, while the 0(6) wave functions result for XQ=0, the eigenvalue expression
clearly canmot be identical since H in Eq. 19 glves rise to an eigenvalue equation
with three coefficients,

E(g,T,L) = (A/4) (N-g) (Mo+4) + Br(t+3) + CL(L+1) (21)

whereas for H' the resulting eigenvalue expression can contain at most 2 param—
eters and is given by

E'(g,1,L) = A'{(N-g) (N+o+4) + t(t+3)] + C'L(L+1) (22)

Thus, an 0(6) limit is obtained, but it Is a speclal case of the earlier one cor-—
responding to A/4=B. This, per se, is not a difficulty and there is no inherent
reason that empirical nuclei should exhibit this related parameter dependence.
Recall that, analogously, SU(3) 1is a special case of deformed nuclei with
E(2+)Bv = E(Z"')Y-. Neverthelg::;s, since the 0(6) 1limit is so well manifested
in the Pt region, especially 1 “pt, it is interesting to compare Eq. 22 with the
values for A and B extracted earlier (Cizewski and co-workers, 1978) for Pt.
The latter were A=185 keV, B=43 keV. Remarkably, thes2 are almost exactly in the
ratio 4:1 in striking support of a new formalism incorporating a variable xq in
the Hamiltonian.

E. Contour Plots and Parameter—-free Predictions of Energy and B(E2) Ratios

The fact that both SU(3) and 0(6) schemes are contained in the new formalism leads
to some interesting parameter—free predictions of qualitative systematics. A
rarige of nuclei spanning these two limits corresponds to a range of xq from
-2.958 to 0. Any energy or B(E2) ratio can now be calculated as a function of
XQ for different N values and a contour plot against N and Xq constructed.
Examples are given in Figs. 22 and 23. For any given mnucleus of interest, of
course, xq can be determined and the appropriate quantity read off the plots.
[Note: It is strongly emphasized that these or similar plots are not to be taken
as the IBA predictions: they are only the results of the extremely simplified
truncation of the Hamiltonian and should be considered as a starting point for
actual calculations. Despite the apparent success of this simple approach, it is
anticipated that many specific calculations will require the re-introduction of a
P+P term, albeit almost certainly of smaller magnitude.] However, the principal



purpose of such plots is not this, but to illustrate that they provide qualitative
parameter—free predictions of the generalized trajectories or systematics across a
transition region. Thus, for example, since the 0(6) limit has xp=0 and,
typically, Ns6, while deformed nuclei have xq = -0.9 to -1.5 and N=12-16, a
B(E2) ratio in an 0(6) to SU(3) transition will follow a path from roughly the
lower left corner to the upper center,

Consider the ratio B(E2:2%,»0%;)/B(E2:2%,»0%,). In 0(6), this is zero
(the transition in the numerator is forbidden) and it is also very small in SU(3)}
(ratio of inter— to intraband tramsitioms). From Fig., 22, however, it is clear
that the IBA predicts, unambiguously, and independent of the details of parameter:
fitting, that this branching ratio must peak 1In the intermediate transition
region, and at a value of the order of ~0.1 or less. In general these qualitative
trends are reflected empirically in the Pt-W nuclei in further support of the IBA.

Figure 23 shows similar plots of the "B" band (Warner, Casten and Dejbakhsh,
1982). It is clear that, within the realm of deformed nuclei (~1.5 £ %Q <
-0.9), the B(E2:2+B+0+g) is approximately 50-200 times weaker than the
B(E2:2+Y->O+g) value, The energy contour plot shows. that this band will lie
between =1.4-1.7 times the Y band energy. Both these predictions are qualita-
tively in acenrd with a large body of data. Since there is no parameter in the
new formalism that is fitted with any reference to the “8” band, these results
imply that the predicted "B" band properties are coupled to those of the "Y" band
whose properties are used to fit xqo. Thus the qualitative agreement just noted
is a rather stringent test, and the implied relation between these collective

modes an intriguing councept.
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F. Relation to IBA-2

The IBA-2, which aistinguishes proton and neutron bosons, is =learly mowe ammen-—
able to a microscopic derivation of its parameters and thus is linked to shell
model concepts of generalized seniority and pair occupation. Since it has been
noted that the IBA-1l contains many features relating to finite particle number, it
would be tremendously advantageous to relate it to the IBA-2. The IBA-2 Hamilton-
ian (Otsuka and co-workers, 1978; Otsuka, Arima and Iachello, 1978; Iachello,
1979; Scholten, 1979; Bijker and co—workers, 1980; Duval and Barrett, 198la), as
conventionally used (i.e., somewhat truncated from the complete one) is

Hp = E(ndﬂ+ndv) - xQ_*Q, + diagonal terms in (d+d+)“(v)(dd)"(v) (23)

where Q is defined as in Eq. 2 for either protons or neutrons. The precise rela-
tionship between the IBA-1 Hamiltonian of Eq. 1 and this IBA-2 Hamiltonian is
hardly immediately transparent although projection formulae connecting the two
have been suggested (Scholten, 1980). In the Hamiltonian of the new formalism,
given in Eq. 18, however, the form of the quadrupole operator is now the same as
in Eq. 23 and there is a closer analogy to the IBA-2 Hamiltonian.



There is already one recent (Bijker and Dieperink, 1982b) result which emphasizes
this connection. These authors have, for the first time, worked out the symmetry
structure of the IBA-2, in terms of group chains based on U(6)xU(6) and obtain
each of the three characteristic IBA-1 1limits (plus, incidentally, a fourth
corresponding to triaxial nuclei). However, the 0(6) limit turns out to be a
special case of the gemeral 0(6) limit of IBA-l. Remarkably, it is exactly the
same speclal case, with A/4=B, as obtained for the 0(6) limit in the present
revised formulation of the IBA-~1.

VI. SUMMARY

There are too many individval points to offer a complete summary. Rather, we may
schematically review the foregoing by emphasizing a few of them.

The structure and characteristic properties and predictions of the IBA in defgrmed
nuclel have been reviewed, and compared with experiment, in particular for 1685,
Overall, excellent agreement, with a minimum of free parameters (in effect, two,
neglecting scale factors on energy differences), was obtained.

A particularly surprising, and unavoidable, prediction is that of strong "g"»"y"
transitions, a feature characterically absent in the geometrical model, but mani-
fest empirically. Some discrepancies were also noted, principally for the K=4
excitation, and the detailed magnitudes of some specific B(E2) values. Consider-—
able attention was paid to analyzing the structure of the IBA states and their
relation to geometric models. The bandmixing formalism was studied to interpret

both the aforementioned discrepancies and the origin of the “B"»>"y" transitions.

The IBA states, extremely complex in the usual SU(5) basis, were transformed to
the SU(3) basis, as was the interaction Hamiltonian. The 1IBA wave functions
appear with much simplified structure In this way, as does the structure of the
associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual
deformed nuclei was seen to be predominantly AK=0 mixing.

A modified, and more consistent, formalism for the IBA-1 was introduced which is
simpler, has fewer free parameters (in effect, one, neglecting scale factors on
energy differences), is in at least as good agreement with experiment as the
earlier formalism, contains a special case of the 0(6) limit which corresponds to
that known empirically, and appears to have a close relationship to the IBA-2,
The new formalism facilitates the construction of contour plots of various observ—
ables (e.g., emergy or B(E2) ratios) as functions of N and XQ which allow the
parameter—free discussion of qualitative trajectories or systematics.

Several general themes recur throughout. First the IBA works rather well in
deformed nuclei. Secondly, its principal predictions can be obtained with a mini-
mum of parameters and can be understood rather simply. Thirdly, the IBA contains
a number of striking, characteristic, and empirically verified, predictions, such
as the strong "B8"»"y" transitions, the dominance of "y"»>"g" over "B"+"g" transi-
tions, the contribution to "B”+"g" transitions from differences in parent SU(3)
state quadrupole moments, the approximately parabolic systematics in Zy and the
predicted energy and B(E2) ratio trajectories of the revised formalism, and
others, not discussed above, such as the systematics in the decay of 0F states 1ia
near 0(6) nuclei (Casten and Cizewski, 1978; Casten, 1979). Notably, many of
these arise in the IBA precisely due to the explicit inclusion of finite boson
number effects. Given this, it is hardly surprising that these features can be
reproduced in geometric models by the introduction of perturbatioms, to the simple
harmonic picture, whose origin is known to be essentially microscopic. These
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conclusions suggest, in turn, that the IBA-1, though evidently phenomenological in
its approach, is intermediate between phenomenological and microscopic in its
predictive power, due largely to the incorporation of finite boson number.
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