
Proc. Workshop on Accelerator Orbit and •va'rticle Tracking Programs, BNL,
May 3-6, 1982

LILA: The Long Island Lattice Analogue

J. Niederer and B. Morris
Brookhaven National Laboratory

Introduction

BNL 31370

3137 '

LILA is a BNL adventure to create a particle orbit and tracking program en-
semble for large storage ring accelerator design and also controls opera-
tion. The accelerator physics parts are based largaly on the PATRICIA pro-
gram of H. Weidemann, as enhanced by S. Kheifets in a later version with
multipole effects. We have emphasized the data base aspects of the tracking
problem, as modern storage rings contain thousands of distinct lattice
items, each with perhaps up to fifty parameters of its own. We have also
introduced the general and flexible program structures long familiar to high
energy physics event analysis, by which an event is reconstructed in steps
from points into lines, projections into tracks, tracks to vertices and the
like. Thus, LILA is a modern amalgam of the original PATRICIA, a relational
data base and memory management mechanism, and a number of enhancements for
treating nonlinear forces.

The Basics of Orbit Tracking

The major part of PATRICIA and similar programs tends to be input and data
structure related, and miscellaneous overheads. The coding is only about
10-20% orbit physics related. Thus in a programming sense, the physics
parts are a perturbation superposed upon a data base problem. Furthermore,
the variety of the physics is rather small, as it describes the life cycle
of a particle in a ring, which is a bit of a bore. The particle drifts, or
its path may be bent, or it may be kicked, or otherwise tormented. The par-
ticle traverses a very limitet and dreary landscape: magnets, deflectors,
etc. Its social life is similarly dull. It moves in a small pipe, it en-
dures beam—beam or random gas encounters, or it may be nudged about by syn-
chrotron oscillations and magnet irregularity influences. This repertoire
of activities contains only about twenty items, all of which have the form
of a series of drifts and forces acting over local sections of orbit. The
modelling problem is clearly dominated by the thousands of elements of the
lattice at which these several processes occur, rather than by the handful
of processes.

These elementary deflection processes are tabulated in LILA by exercises
that compute closed orbits, adjust sextupoles for desired chromaticity, mea-
sure effective aperture, track particles for many turns, display phase space
plots of the tracking, and Fourier analyze the plots for harmonics and in-
stabilities. Th? papers of S. Kheifets and F. Dell of this Workshop de-
scribe these PATRICIA calculations in detail. LILA reorganizes these pro-
cedures to be more flexible and self-contained, and couples them to a com-
prehensive data base structure. This flexibility, for example, enables
Fourier analysis to be done repeatedly during a simulated storage cycle to
analyze the buildup of particle harmonics in time.

DI3TR!3UT;eN 3,r T!!!£ CCCi.:.''^"- ;;
.r

Work performed under the auspices of the U.S. Department of Energy.

Tracking and the Lattice Data Base

LILA is designed to ease the task of assembling elaborate beam element lat-
tices from a set of simpler magnet and force components. This is accomp
lished in part by an input language of familiar accelerator terms, and :•: ,
modular data and program structure to be outlined later in this paper, fbe
lattice description within the program may progress through several stp..̂ -is
of increasing complexity and storage size. The program reexpresses this
data in forms which yield maximum execution speed. In the simplest stage ,
which is adequate for central orbits of on-energy particles, only a few
standard linear elements need to be involved. Input data are converted to
appropriate transfer matrices for these. As most analyses will also
consider the effects of small energy or magnet strength fluctuations upon
the beam, the first and second derivatives of these matrices are also
computed during the setup step. In an intermediate stage, orbits are
subjected to nonlinear forces, and a representative multipole set may be
interspersed among the basic linear elements. Typically this will involve
about ten varieties of pole set, placed at a few hundred lattice points.
For this stage, LILA combines sequences of adjacent linear elements lying
between nonlinear ones into equivalent matrices for speeding up tracking and
orbit loops. Use of pointers and linked lists enables the program to reuse
the same basic matrices and pole sets, minimizing storage and setup
complications. More detailed tracking usually involves a lattice with
realistically misplaced magnets, fields with a distribution of errors about
assumed tolerances, and time dependent variations of particle energy and
perhaps fields. For these LILA uses the constructs of the basic beam
elements to assemble a modular representation where every element acquires a
unique matrix, or pole set, with the necessary fluctuations expressed
through randomization or other criteria. This final stage requires a large
increase in memory. As the number of distinct elements seen by the program
is now increased by a hundred fold, updating for energy changes becomes
lengthy when done exactly. Updates are therefore handled by small change
approximations using the derivatives of the original element matrices. The
various stages can be written or recalled as disc snapshots using commands
in the input stream. The program contains checks to insure that the stage
of the data matches the operations needed. This hierarchy also helps with
fitting the program into smaller computers.

Modular Structures

Both data and coded procedures are organized into self-contained modular
units in LILA. This emphasis on structure leads to a program that is very
flexible with respect to inputs and program changes, and one which tends to
go to completion, leaving a trace of diagnostics, regardless of how erratic
its inputs may be. Tracking is a major procedure thai, illustrates the
structural principles of the program. Tracking can be viewed as a straight-
forward tabulation of a series of effects by forces and dr:€ts on the orbit
of a particle. The details of the forces are contained in entities called
data modules. A data module resembles a packet, with a header (envelope) to
tell what it contains and what is to be done with it, and a data or table
part as contents. LILA uses a pattern mechanism to describe the order in
which the drifts and forces are encountered. A section of code, called a
process, corresponds to each of the elementary force or drift variants. The
tracking procedure thus employs a set of processes in code, each of which
operates upon a unique type of data module, in an order specified by a pat-
tern. Tracking over an orbit consists of reading a pattern, computing an

indicated deflection or displacement using the data of the module, and then
returning to fetch the next item of the pattern, and repeating. There is a
marked analogy to the way proteins are built from patterns coded into DNA.
The main procedures of LILA all have the Read, Branch, Compute, Repeat form.
This structure is aided by standard service routines which relate names of
lattice elements to places in memory, and create data modules, patterns and
the like.

Using LILA

The inputs to LILA are based upon the same organization of procedures, pat-
terns, and processes keyed to data modules. They provide data for the menu
of basic forces, and for the patterns. Commands initiate procedures once
the data corresponding to- a lattice have been submitted. These features
provide an extremely powerful and flexible mechanism for exploring accelera-
tor design options.

All data for a beam element is contained in a single data module. The first
appearance of data for a named element, such as

Bl = BEND(L = l.,S = 2., ...)

creates a module for that element. The data may be changed, or expanded
during Che course of a run, but the module itself continues as the sole con-
tainer of information about Bl. In this example, Bl is the name of the lat-
tice element, BEND is a keyword that refers to the general type of element,
and the brackets enclose a list of attributes, length (L), strength (S),
etc. Bl is a base element which describes an elementary force; it cannot be
subdivided into simpler components. A data module may be rewritten during
the various stages of the more complicated procedures, but its purpose,
name, and linkage remain the same.

A second type of input includes information about the patterns which
describe the order of elements in the lattice. A pattern is simply a list
of names, for which the order is its most important property. A pattern may
include names of other patterns, and many levels of nesting can be handled.
The pattern must eventually reduce to a series of names of base elements
containing attributes. An ISABELLE cell, for example, might ba described
as

Cl = CELL(qF,Dl,Bl,D2,B2,D3,B3,Dl,QD,Dl,B3, ...)

where the names are those of magnets and drifts. A group of pattern modules
will usually be expanded into a map consisting entirely of base elements, by
a routine that works very much like the loader of a computer operating sys-
tem. It essentially links the names in the various pattern modules with the
locations of base data modules in a memory pool.

Commands to LILA are of a pushbutton nature, such as computing an orbit, ad-
justing sextupoles, or tracking. Commands instruct the program to operate
on the data base which results from lattice inputs. A command normally
names a region of the lattice, and may also include parameters and referen-
ces to lists which help describe the type of action intended. These fea-
tures permit tuning sextupoles to differing .criteria over different sections
of the. ring, for example. A command may require that modules of the data
base be modified to a new stage. It may also require a pattern map for the
region named. A command can operate over the full lattice, any part of it,
or even mix-match combinations of tentative design options.

A final category of inputs is a group of quantities which help to paramet-
erize commands, such as number of turns for tracking, program switches, and
starting values of injected particle tracks.

SWITCH(22) = 12, 13,,15(sets switches 22, 23, and 25)

A simple minded characterization of these input data line types is "NOUN"
for a pattern or other name list, "ADJECTIVE" for basic data modules, (at-
tribute) "VERB" for command, and "ADVERB" for parameter. This view leads to
an impressively clean separation of function and modularity.

The LILA Language

The LILA input language is free field and user friendly. It is very similar
to that of the MAD package described by C. Iselin at this Workshop. The vo-
cabulary is familiar: MAGNETs are joined into a CELL, STRING, GROUP or IN-
SERTION, CELLs into a SECTOR, SECTORS into a PERIOD, and PERIODS into a
RING. The idea of a complicated lattice assembled from repeated simple
structures is fundamental; the names can be changed to taste. A MAGNET can
be represented as a combination of a DRIFT, an EDGE lens, a BEND, a QUARDU-
POLE, a SEXTUPOLE, and a MULTIPOLE as basic elements. Actually, LILA should
accept most MAD inputs with a few statements added at the head of the input
stream to reconcile the slightly differing vocabularies. Given the unusual-
ly thorough specification for MAD, it seems prudent for us to include all of
the;force options treated by MAD into future versions of LILA, and also to
minimize differences in input descriptions so that common documentation can
be used for the two sets of programs.

An example of the statements needed to randomize multipole sets in magnets
illustrates the power of this approach to lattice design.

Multipoles MP1 and MP2 are to be randomized at their various occurrences
within region THIRDA of the complete ring:

BLUE = RING(THIRDA, THIRDB, ...)
Base element multipoles occur within the pattern:

MP1 = MULTIPOLE ()
Pole values are to be varied within a set of tolerances:

TLIST = TOLTABd., 2., 3., ...)
Tolerance lists are matched to the magnets involved:

CODEA = TOLERANCE(TLIST, MP1, MP2, ...)
A command initiates the procedure for randomizing multipoles:

RANDOM(CODEA, THIRDA)
Similar routines carry out a second example, the updating of the current in
a group of magnets connected to a common power supply.

BHl = BEND(L = 3., S = 5., ...) (Basic Bend)
PI = SUPPLY(CH = 0.01, ...) (1% increase in current)
PLIST = POWER(P1, BHl, BH2, ...)
RIPPLE(PLIST, ASECTOR)

Magnets of kind BHl, BH2, etc. connected to supply PI have strength in-
creased by 1% throughout the region ASECTOR.

Input Handlers

Input handlers resemble those of conventional compilers. While much of this
handler is overbuilt for a tracking application, it is intended to be the
common interface between the accelerator operator and a number of system
data bases, such as p-lumbing and power, as well as lattice simulation. An
input line is assembled into groups of related characters called tokens.
Types of tokens include names, numbers, strings of characters, relational
(= , <, >, £, ^, :, = -) and mathematical operators, ignores (i.e. blanks),
punctuation, and characters whose role can be specially assigned. A name
begins with a letter or special character and ends with punctuation, an
operator, or an otherwise defined break character. Each symbol of the
character set has an index, which may be changed as desired to redefine the
function of the symbol. Thus while we choose to ignore blanks, a blank may
be redefined to be a part of a name or as punctuation. Tokens and their
function tags are grouped into a temporary data module.

A parsing procedure sorts tokens of an input line into keywords, names, op-
erators, and lists. Keywords are used to distinguish the kind of line:
lists of names for patterns, lists of attributes for basic lattice elements,
and program commands and parameters. The name of a keyword may be redefined
during the course of a run. The name of an element already linked to a key-
word may be used in place of a keyword (equivalence). A keyword has an as-
sociated template for building data modules from a line of tokens. A tem-
plate may include names of attributes, range limits for checking valid data
values, a scale factor, and password protection if relevant. The parsing
step recognizes new lines, equivalences, continuations, and changes and re-
placements to existing lines (modules). It relates names to the memory
storage and pooling scheme, using a directory, and linked lists of modules.
Diagnostics are provided. The forgiving style tries to get through all of
the input data despite errors.

Parsed results are passed to storage routines that assign token lines to
pool memory or a specific common. These routines act like the FORTRAN READ
and DATA statements. Storage indices are checked against linits set in com-
mon blocks or data modules. Data values are checked against limits if pre-
set in templates of keyword or common modules. Finally acceptable new and
continuation modules are linked into the directory and memory pooling
scheme. Errors result in diagnostics.

A keyword set is predefined in BLOCK DATA statements, and additional key-
words can be entered in the input stream. The keyword mechanims relates
user names to the storage scheme, marks type of line, and contains the tem-
plate mechanism. Any number of keywords, which are expressed as separate
keyword modules, may be used, subject to available memory. Similarly the
attribute or data part of a modules, whose structure is defined by means of
the template in the keyword, may be of any length, and may include arrays.
Its items may be names, strings, or numbers. This mechanism in effect maps
the free form of the inputs into the necessarily position oriented data
structures needed by conventional programs. Definitions and defaults for
program parameters are also preset in BLOCK DATA.

Controls and Program. Formats

Controls requirements have strongly influenced the construction of LILA.
The code produced is exceptionally fast, robust, modular, flexible, and gen-
eral. All of these factors lead to important advantages for storage ring
design applications as well. They do lead to more complication, and take
more code to do a given job than a conventional single author tracking pro-
gram. Yet modern programming techniques and tools h--ve readily borne this
additional burden. The cede added for efficiency is insignificant in memory
needs when compared with the typical 100 000 word data bases involved. The
memory management scheme, essential to flexibility, allows a physicist to
expand a lattice of 2000 elements in one representation to a more complicat-
ed one of 50 000 by changing a single memory size number in two places in
the MAIN program.

LILA is coded in FORTRAN, and is currently meshed with the CDC UPDATE pro-
gram library mechanism. A migration to a PATCHY form should be attempted if
LILA gains acceptance. Conversion from its present 60 bit CDC 7600 form to
that appropriate to 32 bit machines has been anticipated somewhat in the
coding, but the indexing and pointer mechanisms are more effective on the
larger word size machines, and will need attention during translation. The
most effective translation scheme appears to be via PATCHY or a similar pro-
gram library that is portable, and allows for conditional compilations.
Thus lines of code needing translation can be written in place in the form
needed for a particular computer, and the library sorts them out at compile
time.

Status

Coding and most debugging is complete. Timing depends mainly upon the num-
ber of multipole locations and number of terms used. An extreme case of 540
multipole sets of 15 poles in a ring yields timings of about 25 milliseconds
per turn. Improvement factors of about two seem possible from machine lan-
guage coding the niultipole algorithm, and more from more reasonable lattice
models, so numbers in the range of 5-10 ms seem likely for ISABELLE-size
configurations. A few of the more complicated energy variation procedures
remain for debugging.

Acknowledgment

LILA was prepared by a programming team approach. T. Clifford prodded us to
more user friendly approaches, and helped test some of the front end con-
cepts by applying them to an enhanced PERT-like management monitoring sys-
tem. G. Smith helped with the nonlinear force presentations. P. Taibbi
handled the data entry and program library chores with quite phencraen&i ac-
curacy and diligence. Our debt to our SLAC colleagues for the originals has
been noted, and S. Kheifets has been most generous in helping adapt PATRICIA
for BNL use.

