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ABSTRACT 
The spacial dependence of the energy deposition in the 
fragmentation regions is estimated for nuclear collisions at 
ISR energies, /?/ A % 30 GeV/nucleon. Two models (the 
trailing cascade and sequential decay scenarios) are 
contrasted. The results are compared to the quark-gluon 
plasma energy density computed via OCD lattice methods. 

There are three major questions that need to be discussed in 
connection with the formation of a quark-gluon plasma via nuclear 
collisions. First, how efficient are nuclear collisions in 
generating high energy densities? Second, what is the critical OCO 
energy density at which hadronic matter dissolves into a quark-qluon 
plasma? Finally, which observables could tell us that a plasma was 
indeed formed? In the past two years, considerable progress has 
been made toward answering these questions, but much work still 
remains to be done. This lecture is intended to provide an 
introduction to some basic concepts and theoretical considerations 
that are currently under debate. 

The most basic concept needed in discussions of nuclear 
collisions at energies.E, b % 1Q0 GeV per nucleon is the growth of 
longitudinal distances. From this concept follows the 
transparency of nuclei and the limited cascading of secondaries. 
With regard to q-g plasma formation the most important consequence 
is the limitation on the energy density that can be achieved. This 
limitation was first recognized in the work of HcLerran, et al. 
that was based on the parton model of hadronic processes. 



Longitudinal growth can be understood as follows: In an 
inelastic reaction between two hadrons, one with rapidity y T » 
tanh - i v T - 0 and the other with rapidity y„ » 1, partons 
with rapidity between y T and y„ are produced with a distribution 
dN/dy. These partons begin to separate and after some time, r(y), a 
group of partons in a rapidity interval ay -1/2 coalesce ;to form a 
hadron (pion) with velocity v = th y. To estimate xfy), we assume 
that in the rest frame of the produced hadron it takes a 
characteristic time, T ~ 1 fm/c, for the partons to arrange 
themselves according to the wavefunction of that hadron. Viewed in 
the frame where that hadron has rapidity y and perpendicular 
momentum p^, this time is dilated according to 

J' m o m 2 o 
2 2 2 

where m[ = m + p£ (recall c = r^ ch y, p.. = m^ sh y). Since the 
velocity v., (y) a 1 - 2e y is close to the speed of light, c = 1, the 
formation distance of secondaries, dL (y) = -r(y) th y, along beam 
direction, grows very rapidly with y. Therefore, a secondary can 

m 
"materialize" in a target nucleus of thickness 2R * 2.4 A ' fm 
only if d (y) < 2R or 

AD 

y < In |5 = y c , (?) 
o 

For Uranium, y w 3.4. Of course, a secondary produced within the 
nucleus at depth z into the target only has a distance ?R - z to 
materialize, and hence yjz) = y + S.n (1 - z/2R) is 
smaller than for a secondary produced at x = 0. 

On the other hand, a parton packet does not have to be in its 
ground state before interactions with target nucleons car occur. 
The transit time of the packet through the nucleus is t(yl = 2R/th 
y. During this time the packet is displaced relative to the 
projectile by an amount 

4r„(y) = rv p - MjjTyn t(y) » 4R e ^ y (3) 
" i ^ P l ^ ^ T ^ ^ mJ 4 R e f y . f41 
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Thus, Ar,, - e~Tir^, and the transverse separation is much greater 
than the longitudinal one. This.point was emphasized by McLerran et 
al. Note that for partons that are slow enough feq. (?.)) to 
materialize in the target ar.. - T Q / 2 R « J fm, while 
Ar, > T - 1 fm. Therefore, if we assume that secondary 
interactions occur as soon as ar^ > T Q - T fm, then 

4R Pi 

Therefore, the materialization condition in the target, eq. f?i, is 
equivalent to the requirement that the centers of the projectile and 
secondary packets separate by Ar - 1 fm in the transverse direction. 

For hadron-nucleus collisions, this requirement clearly insures 
secondary cascading since the incident hadron has limited 
perpendicular extent, ~x . Therefore, when a secondary hadron is 
displaced by x in the perpendicular direction, a new row of 
target nucleons will start participating in the reaction. However, 
for a nucleus-nucleus collision, the significance of such a 
transverse displacement is less clear. The incident projectile 
nucleus is a Lorentz contracted pancake with a large transverse 
extension R » T . The thickness of that pancake is limited to 
-1 fm since the projectile wavefunction in the target frame contains 
many slow "wee" partons (near Feynman x f - 0). Therefore, it 
takes each target nucleon on the order of T - 1 fm/c to interact 
with the projectile nucleus. Now consider a parton packet of mean 
rapidity y produced immediately after the projectile nucleus 
enters the target (at depth z = 0). By the time (~?R) the 
projectile exits the target and the center of that packet is 
displaced An, and Ar, relative to the projectile. However, in this 
case, because the projectile has a large perpendicular extent 
R » T , the parton cloud is still immersed in the projectile 
pancake as far as a target nucleon is concerned. Therefore, a 
target nucleon on the exit side may not respond incoherently to that 
parton packet. Simply put, the target nucleon will not have had 
enough time to complete its response to the projectile before that 
secondary hits it. In this situation a detailed dynamical theory is 
needed to determine the actual response of the target nucleons. On 
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the other hand, there is stilT a nontrivial kinematic domain where 
incoherent interactions (i.e. cascading) can be expected. If the 
par.ton packet lags behind the projectile by Ar.. - 1 fm, then a 
target nucleon will respond incoherently to the projectile and to 
the trailing packet. This is because the characteristic response 
time of a hadron is also on the order of the parton rearrangement 
time T discussed before. The condition for lagging behind the 
projectile is Ar„(y) > x , which with eq. (3) is 

Note the factor of 1/2 that arose from the Lorentz kinematic 
difference between longitudinal and transverse displacements, eqs. 
(3,4). Incoherent scattering could also result if 
&r, (y) > RDroi >:> T o ' b u t f o r ^ a r 9 e nuclei, this is even more 
restrictive than eq. (5). 

Up to this point, we have assumed that the target remains at 
rest after the interaction. We must of course include recoil 
effects. An inelastic collision converts on the average a fraction, 
n, of the incident kinetic energy into hadrons. This inelasticity 
reduces the kinetic energy per nucleon in the center of mass sytem 
by exp (-Ay), where Ay is the recoil rapidity shift. Energy 
conservation relates Ay r to n via /s (2e~ A y + n) = Ss, giving 

A y r - « T q f • m 

At ISR energies, Ay < 1. 
As the projectile sweeps through the target, each hit target 

nucleon acquires a rapidity Ay . For a parton packet with a mean 
rapidity y produced at z = 0, it takes at least a time t = 2R/th y 
to reach a target nucleon Oil the opposite side of the nucleus at 
z = 2R.- The exact time is determined by the catch-up condition 

v t = 2R + v r ft - 2R/v ) , fPl 

where 2R/v is the time at which the projectile interacts with the 
last target nucleon and v = th ay . Therefore, in the lab 
frame, 

A t = t _ 2 R / v | R ! £ ! ,o) 
P r 
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y < 7<*c 
+ Ay r) = 1 7 To * i-n ^ c ' 

where we used T r d - - » r) - 1 - n from eq. (71. For U + u 
y£ = 2 .0 ± 0.: 5: for n = 2/3, To = 0.5-2.0 fm. 

is the time lag between interactions of the last target nucleon with 
the projectile and with the secondary parton packet of rapidity y. 
In the target recoil rest frame, a shorter time lag, At/ T , is 
experienced between these interactions. If At/-yr < T , then the 
target responds most likely coherently to these interactions. On 
the other hand, if tthr > t 0, then the recoil target nucleon 
will respond most likely incoherently to these interactions. 
Therefore, the conservative cascading condition including recoil is 
4t/Y_ > T 0 with At given by eq. (9). This condition restricts 
cascading rapidities to 

(101 

We now turn to a more detailed dynamical formulation of energy 
deposition in the fragmentation regions. The problem is to 
determine how much energy and momentum are deposited in the target 
as a function of the depth into it. Suppose that a target nucleon 
at depth z- suffers a collision with the projectile. The time of 
that collision is t. • Z i / V

D - T n e projectile transfers a 
recoil energy and momentum to that nucleon such that the energy 
momentum per nucleon becomes 

E r/A = r r m N , Pr/A = yf v r raN , (111 

If no secondaries interact in the target, then this recoil alone 
results in a lab compression of the target by a factor (1 -
v /y }~ . This is because the target nucleon at depth z = 2R 
begins to recoil only at time 2R/v , and by that time the target 
nucleon initially at depth z = 0 has moved to z = v„(2R/v_), 

r p 
reducing the nuclear size to (1-v /v_)2R. 

To incorporate interactions with secondaries, note first that 
secondaries, produced at z- with a distribution dN/dy, follow the 
projectile along the trajectory 

Zj(t) = (t - t.) th y + z. (1?) 
for t > t.. The dynamical assumption we now make is that the time 
t(y) when the secondary interacts in the target and transfers all 



its energy-momentum is a monotonic increasing function of y. The 
conservative cascade criteria discussed in connection with eq. fR) 
lead to 

where & = T
0 ' Y r ^s t , i e d'' s t a n c e D y which a secondary must 

trail behind the projectile in order to cascade incoherently in the 
rest frame of the recoiled target. Equation (131 defines the 
Trailing Cascade Model (TCM). 

An optimistic cascade criterion that could be postulated is that 
as soon as a secondary has had enough time, T , in its own rest 
frame to rearrange its parton wavefunction fi.e. decay) it will be 
stooped irt the recoiling target. This criterion simply generalizes 
eq. (1) to 

t(y) - t. = Aj_ ch y , fin) 

with 4. = T m./m . Equation (14) defines the Sequential Peca.y 

Model (SDM) and corresponds to the scenario developed in Ref. <?). 
In either case, replacing t in eq. (12) by t(y) gives the depth 

z.j(y) at which a secondary of rapidity y, which was produced at 
z-,; deposits its energy-momentum in the target. Since we are 
given the rapidity density dN/dy of secondaries, the number of 
secondaries decaying per unit depth is simply 

M AU dy(z-Zj) 

§ U - z ^ - g r y d - z , ) ! — g ^ e d - z ^ (1M 
For the conservative TCM, eq. (12,13) give for t. = z- = C 

z(y) = v p t (y) - 4 p , fifia) 

*W~\ l-n | i | ==i Jin fl+2z/A r , flfib) 



For the optimistic SDM scenario, 
z(y) =Vt2(y) -4 

¥ y(z) = S.n 
) • 

§ - < . * • # 
2,-1/2 

fl7a) 

(17b) 

(17c) 

Note that in both models dy/dz and hence dN/dz falls off as ~1/z 
from the interaction point. Thus, fewer secondaries interact in the 
target at greater depths. However, the energy-momentum carried by 
each secondary increases with depth because e(y) * pfy) - e y . 
The energy-momentum deposition is in fact 

dP 
L^z". 

X>i 
chry(z- Z i)] 

shry(z-z.)J 
dN ,, 
3z ( z V npi 

where the sum is over all struck target nucleons. If the target 
nucleons are distributed uniformly between 0 < z. < 2R with o 
particles per unit length (p„ = 0.145 fm" 3, A = 2/3*R?, 

1/3 R = 1.18 A ' fm), then the sum can be converted into an 
integral. Dividing by the area, changing z - z' » z' the energy 
deposition per unit volume due to secondary cascading is 

E(7l - ! d Ef7l •uf 
y(z) dN 

< m L > c h y 3y d y (19) 

Dividing by o gives the energy per baryon E/A deposited at z. 
Also replacing ch by sh in eq. (9) gives the momentum density 
P/V(z). Note that this is a lab frame quantity. The specific 
dynamical model enters through y(z). 

We must now specify dN/dy. This should be taken from pp data at 
the relevant cm energy. However, we consider here for illustration 
only a schematic model represented by a uniform rapidity density 

\ 3y~ :\ 2y 
(?0) 

with <n ] T >« 12 (/s/30 GeV) , Z and y * = zn / s / m N < For 
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/s = 30 GeV/nucleon, m, dN/dy - 0.5 GeV. Detailed calculations based 
on pp dat». will be reported elsewhe.e. With eq. (20), the 
inelasticity n needed in eq. (7) is given simply by 

m <n > 

For /s = 30,60 GeV, n = 0.53,0.62. Comparing eqs. (20,21), we see 
that m dN/dy = nnu, for this model. The integral in eq. (19) is 
then elementary giving 

nm«z 

P/Z(2) = n m N (ch y(z) - 1) =,i,mN <*'';• g - T > f 7 ? 1 

where t(z) is given by eqs. (16a,17a) for the TCH, SDH, 
respectively. For depths z » A ,A - 1 fm, E/A(z) « P/A(z) = 
yz/i r and Z/A. for these two models. 

The mean flow velocity of the target slab at depth z after 
absorbing both recoil and cascading energy-momentum is thus given by 

sh ay + n(ch ytz) - l) 
v f(z) = th y f(z) = c h Ay r * „ sh ylz) ' ( ? 3 ) 

where Ay is related to n via eq. (7). The invariant mass per 
nucleon of the slab initially at depth z is 

M*(z) = [(Er/A + E/A(z)) 2 - (Pr/A + P/A(z)) ?J 1 / ? . (241 
The compression achieved at a given depth is clearly maximum at the 
time when the energy-momentum due to recoil and cascading is 
absorbed by the target matter at that depth. If we compare two 
slabs separated by AZ , then as with recoil alone a compression 
P/O 0 = (1 - vf(z)/v ) is achieved in the lab. Therefore, 
in the comoving frame, in which v f(z) = 0, the maximum compression 
achieved is 

P*(Z) = r>0<Yf(z)U - v f(z)/v p)r l , (?5) 
-1 2 1/2 where Y_ = (1 - vi) . Therefore, the maximum energy density 
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achieved in the comoving frame is 

E*/V(z) = p*(z) H*(z) . f?fi) 

The results are shown in Figure 1. The solid curves refer to 
•̂i" = 30 GeV per nucleon. The dashed curves refer to vT = 100 GeV 
per nucleon. The Trailing Cascade model results are given by curves 
1 and 2. The Sequential Decay model results are given by curves 3 
and 4. In part (a) the maximum energy density E*/V(zl in the local 
comoving frame is given. The depth z is only the initial location of 
the slab. At a later time each slab element moves with a different 
mean flow velocity as shown in lc. Note that for TCH an approximate 
uniform energy density, compression fpart b), and flow rapidity 
(part c) is found. However, E*/V £ 1 GeV/fm3 is rather small for 
this ISR energy range even up to U + U collisions. On the 
other hand, the optimistic SDM scenario leads to more than a factor 
of two higher energy densities, E/V ̂  3 GeV/fm . At the same time, 
though, significant spacial gradients are generated. The monotonic 
increase of y f(z) indicates for example that in the local comoving 
frame of any given slab element all other slabs are receding! Note, 
by the way, that very little is gained by increasing the mass of the 

131 238 colliding nuclei from Xe to U . Even a super-duper-heavy 
(Sr ) would not yield much higher E/V. 

An important consequence of spacial gradients is that probably 
no more than one-half of the target could turn into a plasma. 
Therefore, signatures from the plasma will most likely be 
contaminated by "ordinary" hadronic processes occurring in the 
cooler half. Unfolding the contributions from various depths in the 
target will be necessary. In any case, the naive homogeneous 
plasma-ball idealization of nuclear collisions will not be adequate. 

We now come to the question of whether the energy density 
achieved is in fact high enough to produce a plasma. For an ideal 
Stefan-Boltzmann gas of Ng gluons, N colors, N, flavors, the 
energy density is 

< E ' v > S B = f s f N g + 7 N c V T " s K SB T * • { m 

For SU(3) up-down-glue matter, (E/V) s g is plotted in Fiq. (?) 
versus temperature. In comparison, Monte Carlo data ' for SUf?l 
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and SU(3) are also shown. It is important to emphasize that these 
data apply strictly to pure glue matter (N f = 0 ) . He have simply 
rescaled those data in Fig. (2) with K S B appropriate to (N = P, 
N c = 3, K f « 2). This rescaling cannot be expected to be 
accurate but only gives a qualitative indication of where deviations 
from the SB limit may occur. We see that only for temperatures 
^ 300 MeV is the plasma describable as a perturbative gas. For 
T < 25P MeV, large deviations from the SB limit occur. Also note 
the qualitative change of E/V at T c *» 220 MeV, which could be 
considered as the phase transition point. 

The maximum energy density reached in l) + U collisions at a 
depth 14 fm is also shown in Fig. 2. The conservative TCH seems to 
fall short of the transition point, while SDH seems to probe the 
transition temperature region directly. Note the remarkably limited 
range of energy densities accessible in both models for the ISR 
energy range /s = 30-100 GeV per nucleon. Thus, at best only the 
vicinity of the phase transition point is probed in the 
fragmentation regions. This, of course, is exciting enoughl 
Nevertheless, it is important to emphasize that near T 
nori-perturbative effects are important as seen by the large 
deviation of the Monte Carlo data from the SB limit. Therefore, 
signatures from the plasma probably cannot be calculated by 
perturbative methods. The truly perturbative domain requires at 
least 10 SeV/fm as seen in Fig. (2). 

In conclusion, we have constructed simple analytical models for 
estimating the spacial dependence of the energy deposition in 
nuclear collisions. Only the fragmentation regions were 
considered. The conservative Trailing Cascade scenario leads to 
almost homogeneous energy deposition, which is, however, too small 
to be of real interest. The optimistic Sequential Decay scenario 
along the lines of McLerran et al. yields significantly higher 
energy densities, but at the price of greater spacial gradients. 
The difference of TCM and SDM already points to the sensitivity of 
nuclear collisions to the space-time structure of hadronic 
processes. Even if no plasma is produced, the fragmentation regions 
promise to provide insight into those processes. An important 
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future problem will be to analyze available hadron-nucleus data to 
see which of the models is closer to reality. 
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Fio. 1. Solid curves 1,3 refer to TCM,SDM at Js - 30 GeV. Dashed 
curves 2,-4 refer to TCM,SDH at Js = TOO GeV. The maximum 
comoving frame energy density fa) and compression (b) are 
shown vs the depth into the target. The flow rapidity 
yf(z) and the stopping rapidity"ycfz) are shown in fc) and (d). The error bar denotes the variation in the 
predictions when the scale parameter T o varies between 
0.5 to 2.0 fm/c (for the curves T 0 = 1 fmlc). 
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Fig. 2. Energy density versus temperature for ideal 
Stefan-Boltzmann plasma (K$B = 12.2). The Monte Carlo 
data for lattice SU(2) ftriangles4) and SUf3) fdots5) 
are shown rescaled to (N g = 8, Nf = 2) matter. The maximum energy densities in U + U collisions at a depth 1a 
fm are indicated for îs = 30-100 GeV/nucleon from Fio. 1. 
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