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Abstract

This paper develops mathematical technigues required for the
study nf neutron-induced activation of importance to fission
and fusion devices -~ reactors, nuclear weapons, etc. The
formalism is presented as a guide for examining the dependence
of activation products on flux time history, spatial gradients
and the sensitivity to the assumed reactions and cross
sections. Exact solutions in powers of the neutron fluence
are presented and examined in various limits. As an exampie,
radiochemical threshold {n,2n) detectors used to diagnose

it hermonuciear explosions are studied using approximations to
these solutions. In particular, approximate formuias for the
sensitiyi*: of the radiochemical products to different cross
sections are derived.
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INTRODUCTION

Large neutron fluences are produced in fission power and research
reactors, in nuclear weapons and in neutron stars and other
as-rophysical phenomena. In addition, fusion reactors burning
deuterium or tritium fuel will also produce large quantities of
neutrons. Activation of materials is a major consequence of these
neutrons and may be a benafit or a problem depending on the
circumstances, For example, the radioactive products from special
detecto, materials loaded in a thermonuclear device are important
measures of device performance.] In a power reactor, however,
certain radipactive products present a significant waste disposal
hazard and are to be avoided.

The calculation of the amount of any radioactive product produced
by a given neutron fluence is, in principal, straightforward, but may,
in fact, be complicated by the presence of strong energy and time
dependences in the neutron flux, Tack of spatial homogeneity in both
the material and the neutron field, the occurrence of multiple
reactions and the uncertainty of certain cross sections. Most of these
difficulties may be handled by suitable computer codes, but these codes
often obscure re]ationships'which may be important to gain a better

understanding of particular problems. An exampie of this is

understanding the sensitivity of the production of certain isotopes to

various assumed intermediate steps and their cross sections. In a
thermonuclear device, for example, :sotopes several mass units from the
stable Tnaded material can be produced by multiple {(n,2n) reactions.

If such products are used for diagnostics, it is important to know, for
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example, how neutron capture on one of the internudiate isotopes
affects the final answer. Although such a problem can be studied by
activation codes, a general formalism is needed to guide such studies,
to identify correlations and other relaiionships, and to focus
attention on important parameters. In this paper, such a formalism is
developed and applied in a geraral way to the radiochemical diagnosis
of thermonuclear devices. In a companion Daper2 {classified) the
formatism is applied to some specific problems for Lhreshold {n,2n}

drcactors.

PROBLEM STATEMENT

In general, we wish to consider a medium in which is present a
time-varying, energy-dependent neutron flux with spatial gradients. In
this medium we consider the production and destruction of a number K of
isotopes and isomers and require the amount Nj(r) of the jﬁﬂ
isotope or isomer (j=1,...,K} at time T. The initial papulation is
Qj(O) = Noj‘ The different members of the set are connected by
neutron-induced cross sections, cij(E)' where 1 (j) refers to the
final (initial} isotope or isomer and E is the neutron energy. Cross
sections on a species j which do not have as their residual nucleus
another member of the set K are combined into a single quantity
UDj(E) (D stands for destruction). I[n addition, members of the set
may decay spontaneously; this is characterized by the decay constant
lj= Tj-], where Tjis the mean 1ife of species j. The decay constant
Aj is the sum of all partial decay constants Aij leading to
other species i within the set K and ADj teading to residual nuclei

not included within tha set.



To hegin with, we will consider a portion of the medium, called a

zone, small enough that both the neutron flux and the population i
N (1) can be considered to be uniform within it. We will first

derive the problem for a single zone. Within the zone let o{T,E)dE

be the instantaneous number of neutrons per unit area per unit time . i
with energies between E and E+dE. This will be referred to as the flux
spectrum and

oflt) =fw(T.E)dE

o]

is the flux at time 1. The total neutron fluence after an elapsed

time t 1s given as:

L
o(t) =fcp('t)d‘r
o H

and one may define a fluence spectrum

t
a{t,E) f o1, E)dt
0

or other special fluences
®(t,AE) = fq:(t,E)dE
AC

where, for example, AE may be a region of the neutron spectrum around
14 MeV. The latter quantity, then, is referred to as the "14-MeV f

fluence.”
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For species i, the increase in its population during interval
dt, because of neutron-induced reactions, from other members in the

set is

Z 0;5(E) @ (%,E)E 1 Wy(x)dr
(3#1) °

and the increase as the result of decays of other members to species i

is

rv17=

N (t}dr .

(f)

; During the same time interval, the decrease in population of
species i from neutron-induced reactions on it is

K @

- [Z f 0, ;(E) @ (7,E)dE + f op;(E) @ (T,EJdE T N, (1)dr
0

k#i 0

and the decrease from spontaneous decay is - Ai Ny dt . These
relations may be combined to give the total change in the population of

species i in time dt, namely

an, (‘r) . Z(f (LEDO(T, EIE + a A1 N (1) (1)

In Eg. Oy is defined as
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i is the branching ratio lij/lj for species j with

a;; defined as -1. Equation 1 may be written in matrix notation

and a;

=]

—_

dN = [ [g(E) o (LEME+g -2 )N (3)
a-; (o]

where N is a vector whose elements are the instantaneous populations of
the members of set K and g(E) is & matrix whose off-diagonal e€lements
are the energy-dependent caoupiing cross sections cij(EJ and whose

diagonal elements are defined in Eg. 2 above. is a diagonal matrix

A
whose elements are the total decay constants of each species and g is a
matrix of branching ratios with diagonal elements equal to -1. Far 2
given set K, a given set of cross sections, branching ratios and decay
constants, the problem is to solve Eq. 3 in each zone for the neutron

flux in that zone. We will axamine Eq. 3 in various limits and with

diferent assumptions.

PROBLEM SOLUTION
1. Formal Solution by Matrix Diagonalization
In Eq. 3 the quantity in brackets may be considered to be a
matrix operating on N. This matrix has a time-dependent part and
a time-independent part. The solution by diagonalization is
appropriate if this operator is not a function of the independent
variable. We will examine some circumstances for which this is

the case approximately or exactly and write Eq. 3 as

=g N (4)

i,

where x is the independent variable (T in Eq. 3) and B i$ not a

function of x.
-6-
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let A be a matrix which diagonalizes™ B, i.e.

L

-1
+B-A

x=4 “8-4

where Yij = 71.6”.. Consequently, for"f\v;l&(x), we may

multiply Eq. 4 on the left hy,a:] and using

. —a~l e
LA A A= l} rewrite it as
-1 df -1 -1 -
"A .a—— a;A "‘B’.A-A.N
which becomes
dy —
Xy (5)

where N =A- ?'and vy is diagonal. The set of coupled
equations (4) are now uncoupled, the individual elements have
solutions Y; = e¥i*, and the desired populations .

are given simply by

K X
Np= 2. Ageld
L SRR

where the A1j are determined by diagonalizing B and v, are
the eigenvalues. The normalization of A is determined by the

K
initial conditions N,(0) = 3. A.. .
1 J=] 1)

A. Example - radioactive chain: Figure 1 iTlustrates a
typical radicactive chain, with one nuclide feeding the next.
ﬁe assume that only N] is present at t=0 and desire the
number of any of the species at time t later. In the absence
of a neutron flux, the operator B =a-)is independent of
1. For the case illustrated, and further assuming that the
decays do not branch to any other states, the matrix a has the
form

.7-



=1 0 0 eee 0 0
1 4 0 «ea 0 0
0 1 -1 e 0 0
0 g 1 o 0 0
8= . . . . .
0 0 0 e 1 -1

The eigenvalues of a - ) are simply the negative of
the decay constants A; and the solution for any Ni is

simply

where the Aij are determined from

-AjkAk = z la:d)ishjk - (6)

J
Using the structure of a, Eq. 6 leads to the recurrence
relation,

A (7)

Az ——— A,
ik A= i-1,k

from which it follovs that Aik=0 for i<k and Aii is

undetermined (Ao = 0). Equation 7 then yields the set

A= M oo M,
k1 7\2-}\] }\3-)«] )\k-}\-, 1
A A A
k2° X = X -J? -t xk:; Aoz (8)
372 252 k™22
A A X
I 4 k-1,

ALs « v e ———
k3 14-}\3 )\5-13 Xk—)‘3 33
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The coefficients Aii are derived from the normalization
conditions
K Yﬁﬂ
N'I(O) = NO=Z A'IJ' and D =L A.ij L] 1 ;!-; (9)
j=1 i=1

<y

Using the fact that A1<j = O and Egs. 8 and 9, it follows

that

(10)

3 3y
Azz = -Rgprhgy = 5,50 Mo

etc.
Hence, it follows that the amount of any species k at time

T is simply
_ =Xy T “A,T =AsT
Nk(T] = N, { by @ 1"+ hoe"2" + he3® 3

=2, T
L hkke k* ]

where from Eqs. 8 and 10 and with a 1ittTe rewriting the
coefficients hki can be written in the following systematic

way:
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These relations are just the Bateman equationsd. The above
technique may also be applied to activation in a neutron
field as is demonstrated in the following example.

Example - simple model for (n,2n) activation.
Thermonuclear device performance is often diagnosed by
measuring the ratio of second-order (n,2n) product to the
first-prder product for some lraded material., The processes
are illustrated in Fig. 2, where the 3 nuclides may also be
depleted by various neutron-induced destruction
cross-sections, %p4 (i=1,2,3). In a more realistic
situation there are many more isotopes and isomers involved
and also additional cross sectians, such as (n,y) which
connect the species in the opposite direction to that shown
in Fig. 2 for the (n,2n) reactions. Nevertheless, it has
proved useful to develop a simple model! which can be treated
by the techniques develaoped here and which can be easily
applied to understanding the general features of the

diagnostics problems.

-10-
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In a nuclear explosion, the time scale is such that the

second term in Eq. 3 is small relative to the first.

this simple model, we will drop the second term and,

For

furthermore, we will assume that the neutron flux spectrum

doas not change its energy distribution in time.

consequences of this latter assumption will be examined 1ater.

It 1s equivalent mathematically to assuming that g is

inlependent of energy, solving .q. 3 under that assumption,

an¢ then replacing g & (t) in the so]ution5 by

o

<ge>= f&(ﬁ)@(t,E)dE

o
where &(t} and ¢{t,E}) have been defined earlier. Hence,

we write

o

d - ~
at =gﬁp(r,E]dE + K= go{ty - N

[¢]

and, recognizing that o{r)d1=d®, where
t

(1) =fqa(1)d'r

o

as defined previously, Eq. 11 becomes

N -
‘a‘&;:g-N

1=

(1)

(12)



For the case illustrated in Fig. 2, the matrix g is

o” 0 0
L=f 9y 0y 0
0 93 033

where Oy9 = =Opy ~O2ps with 99 equal to the

{n,2n) cross sec.ion connecting specias 1 and 2. We assume
that only species 1 is present at t=0. Applying the
technigues of the last example, to which this is very

similar, the results are:

<. 0>
= 11
N] = Noe
<O, B> <0, 0>
‘e NO <02]d>> [e n -e 22 ]
2 <q] ]¢> - <022¢>
<0, 0> <0,0>
: 11 33
_ Ngeop®> <o | e - e -
3 <o”¢> - <c122<b> <U”¢> - <c33¢>
<0y <ogP>
e - e
- (12')
<022¢> <033<I>>

where NO is the amount of loaded material i=1 at t=0.
Expansion Methods

The matrix method of the preceding section is easily adapted
to a computer or can be used to generate analytic solutions for a
few simple cases <uch as the examples illustrated above. [t is
particularly useful for cases where the fluence is great enough or

the time long enough so that many multiple steps are involved.

=12~



The technique tends to mask the underilying structure of the problem and
a development based on an expansion in, say, powers of the total

f luence may be more transparent, although it may have convergence

problems for very large fluences. A series solution for Eg. 3 is

t t T
Nt) = E,L+f Dirlar + fp_(r)-f DE)dedr +
0 ° o

t £

T
f,,Q,(T) f L) - f,Q,(n]dndEd'r + .o 1. N,
0 o 0

@

whereB(‘r) =f ﬁg(E)m(T,E)dE : 3 - A
0

This so-called time-ordered ser‘ies6 is exact, as can be seen by

! direct substitution into the differential equation. For the case
=
i

where the second term, g = A, of Eq. 3 is small compared to the

first, the above sol»tion reduces to

@ t

; N(t) = l+f E(E),[ o7, E)dTdE +

0 0

‘. @ @ t T

f f_g(E) +9E) [ elrE) [ o(£.E )dEdTdE o
i 0 0 (] ‘%

PR }IO . (13)

R
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Equation 13 is not very useful in this form; however, we note
that the second term is just <g &> as defined for the simple
model in Part 1.B above. This term arose because of the
assumption that the flux spectral shape was independent of time.
It followed that the final result depended only on the total
fluence spectrum to time t, ®{t,E) and not on its time history.
For the exact solution, Eq. 13, we see that this statement is true
only to first order. The second order term correlates energies E
and E' as a function cf time and depends not just on the total
fluence spectrum, but on the flux time history. Because, however,
this correlation first enters in second order, it is Jess
important for some reactions than for others. The importance of
these correlations will be examined later.

If, again, we assume that the flux spectral shape is
independent of time, i.g., that g(T,E} = g{t)f(E), then
€q. 13 reduces to

N = e<'g ¢>- ﬁb =1 +<g > + '%:gg ¢>2 +'%Jﬁg ¢>3

+eee 10 Np

(14)

where the matrix exponential is defined by the series expansion in
brackets. The expression <g ¢>3 stands for <g &> » <g &> - <g ¢>,
etc. and <g ¢> is as previously defined.

The various activation processes taking place in a strong
neutron flux can be understood on the basis of the varjous terms
in Eq. 14. This is illustrated in Fig. 3, in which we consider

the irradiation of 9OZr. The unit matrix in Eq. 14 connects

-14-
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only to loaded material, so that the Jeading term for production
of 8%2r (by the (n,2n) reaction) is the First-order term
<g ¢>, Production of 882r, on the other hand, proceeds
through two successive (n,2n} reactions as shown in the top part
of Fig. 3 and depends therefore on <g ¢>2 in Teading
order. Similarly, depletion of 8ng by neutron-induced
reactions (shown schematically in the lower part of Fig., 3) is
a1s0 second order, <g ¢>2. In order to produce 852r
from gOZr by successive (n,2n) reactions the leading term is
<c ¢>4. Consequently, because of the strong dependence
of such high-order products on neutron fluence. they are
candidates for diagnosing regions of very high fluence. However,
the actual amount of fourth-order product depends not only on the
fluence as indicatcd above, but on many different combinations of
cross sections through the matrix product é;4. In addition,
recalling that Eq. 14 is only an approximation, the result will
also depend on the flux time-history. We need, therefore, to
examine both the sensitivity to cross-section values and to the
evolution of the fluence spectrum with time.
Expansion of Exact Sclution

The expansion shown in Eq. 13 is exact, but it is not in a
very useful form. Equation 14, on the other hand, is no. very
exact, but is quite useful for making simple interpretations (see

Sec. IV). We wish now to develop the connection between these two

equations. Refeirring to Eg. 3, again without the second term, namely

-15-~
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dN = SE) (T, E)dE-N {15)

e
T
o

we define g(1) according to

f,g_(E) o{1,E)0E
[¢}

glt) =

(16)

o{T,E}dE

o ~—s

This "energy-averaged cross section® should have only a weak
time-dependence; it is, in fact, independent of time if ol1,E)
is factorable. We may write Eq. 15 then as

-

dN = gl1) * N1) g{t)dT (17)

where
o
olt) = fw(T,E)dE
0

as previously defipned. Recognizing that dé{1) = e(t)d7,

Eq. 17 becomes

—

di -
® =.9() - N(e) (18)

where ¢ is the total fluence and g(¢) is g(t) evaluated at a
time T for which the total fluence to that time is ¢. Because of
the structure of Eg. 16 the dependence of g(¢) on ¢ will be weak

and a series expansion in powers of ¢ will be reasonable, namely

=16~




2(0) Z:q,k¢k s 9 = L0, g = 9% , etc.
k

(¢}

We assume a solution for N,

N(e) 3, 0", W)

n
=
1

n
Substituting these series into Eq. 18 yields a recurrence relation

for the expansion vectors —a'n,

n

(nH)ﬂabn;‘ = Z Zn K Ek (19)
k=0

Using Eq. 19 to evaluate the first few terms in ﬁ((b) Gne may

write the solution in such a way as to compare £qs. 13 and 14,

<g $> 3
— -~ P ¢ —
N{e) = e * No + T2 [a1, a0l o

o* 2.

+728  2[op 2ol #Me1s 20] - No+ - * (20)
where ﬁrepresents the exact solution, Eq. 13, and the leading
term on the right hand side is just the approximate solution, Eq.
14, The square brackets in Eg. 20 are commutators, i.e.,
[A,8B] =A- BB+ A, and are a measure of the importance of
the flux time history for each order. For example, suppose that
because of the cross sections involved, the eiements of the
commutator [,,‘}] , 30] which contribute to a given product

Nj are negligible. Then, to second order, the production of

-17-



Nj will depend only on the total time-integrated fluence and not
its history. This result may not obtain for some other species

Ni because of differences in the cross sections. This would

mean, then, that the product Nj is less sensitive to the details
of the neutron production and therefore the particular
computational modeling that went into generating the neutron flux,
whereas Ni may be very sensitiva,

In the above development the key factor was changing from
time as the independent variable to fluence ¢. In fact, one may
follow exactly the same procedure and change the independent
variable to any special fluence; e.g. the "14-MeV fluence” may be
particularly usefu) for fusion reactors or thermonuclear weapons.
As a result certain products, e.g. those with (n,2n) thresholds
< 14 MaV, correiate most strongly with the total 14-MeV fluence
and are very insensitive to the time-development of other parts of
the spectrum. Consequently, the above formalism may be used to
took for and uncover important correlations -- for some
applications one may desire sensitivity to details, for others
lack of sensitivity may be important. In the companion paperz,
this approach is applied to some specific thermonuclear diagnostic
problems. Here we will continue to develop general technigues.
Spatial Dependence

The equations developed above apply to a zone within which
the neutron fluence was considered to be spatially uniform, We
write for the production vector in this zone dN = gjdﬁo s

where dﬁb represents the initial population in the zone and D,

-18-
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represents a matrix operator such as the square brackets in

Eqs. 13 or 14. The fluxes appearing in the various expressions
for ) are just for the given zone. Consider now a region composed
of many zones in which the loaded material s disiributed
uniformly. Let ﬁo be the total initial populaiion in the loaded
region and M the total mass. It follows that

M
o

dN0 = NO

where d4 is he mass of a zone. (We construct zones and regions

so that M and dM are constant in time.} Consequently,

- — M| -
N = dN = Dl Ng (21)

region region

The leading term in the bracket in Eq. 21 is just the unit magrix

and the second term is

f<'g_¢>9%=<gd7> s where

region

® is the average fluence spect.um in the region

$=?]ﬁ f@(t,E]dM

region

Recalling that the first-order term is the same in either Eq. 13

or 74 (see Eq. 20) it is important to notice that to first-order

in ¢, one-step processes are independent of the flux time-history
and depend only on the zonal average of the fluence spectrum.

Using approximate Eq. 14 for the next term in U, we have

-18-
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12 ./:.8 > d_{:‘l’ =% j f,g(E) » g(E) [fttl(t,E) #{t,E ) —K] dEDE
[o] [2)

region region

where the quantity in brackets is again a correlation function

1
correlating energies E and £ as a function of spatial
coordinate, i.e., zone, If, however, the fluence spectral shape

is spatially uniform, then the correlation is destroyed and the

1 2 -
second order term reduces to 3 <g ¢RMS> » wherc

2 (t,E)aM] /2

region

ams = w

In general, however, one finds that spectral shape changes across
a region may be substantial so that products of 2-step processes,
2.9., 88Zr, may be affected by spectral correlations induced not
only by the flux time history, but also as a result of spatial
non-uniformities. Such is not the case for the first order
products, such as 89zr. By appropriate loading of materials

into spetially restricted vegions, the sensitivity will be Yimited

to gross features of the fluence distributions, @, Opygs EEC

1v. APPLICATION TO RADIOCHEMICAL DETECTORS: SENSITIVITY TO CROSS SECTIONS.
As mentioned earlier, certain materials, often those with high
(n,2n) thresholds, are loaded into thermonuclear devices and their

activation products which result after detonation are recovered and

-20-
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used to diagnose device performance. Typically, from the debris of an
underground nuclear test one measures the ratio of one residual
activity to another. The measured ratios are compared to calculations
performed with activation codes, such as NATUSI7, which employ
neutron fluences generated from explosion codes. In order to make the
activation calculations as realistic as possible, the set K of isotopes
and isomers employed is often very large so that the number of cross
sections required may approach a hundred or more, Most of these cross
sections are for the unstable products created in the neutron flux and
therefore are not measured directTy. Instead, it is necessary to rely
on calculations based on the appropriate nuclear mode]s.8 Depending
on energy, type of reaction and nuclear structure information the
reliability of these calculations can vary enormousiy. The
interpretation of a certain measured detector ratioc may be suspect
unless the sensitivity of the result to cross section uncertanties is
known., Some cross sections may be more important than others and it is
important to establish a framework which allows attention to be focused
on the most sensitive reactions. The formalism developed above allows
this to be done.

Let ng = Nk/Nz be the desired jsotope ratio at time t
(or after fluence ¢) -- the ratio of the second order (n,2n) product

882r to the first order product, 892r, for Toaded natural Zr (51.5%

90, 11,2 M2r, 17.1% 9220, 17.8% %7r, and 2.8 %02v) is a

realistic example. The sensitivity of this ratio to any particular

cross section Tij» may be defined as the fractional change in Rkl
resuTting from a given fractional change in cij’ or

-2i-
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iJj RkB Baij ij ij

£ _ o,. 3N

Bi; = N_Tlaol (22)
2 i

Because we are interested in general guidelines rather than high
precision (which may be accomplished by a computer) we will assume that
spatial gradients and time history are unimportant for the purposes of
cross section sensitivity calculations. Consequently, for a given

loaded isotope Nno’ it follows that

2
m

- 1 2
N, =[8 +om¢+20 CI>+...]Nmo {23}

2 &m

where Eq. 23 follows from Eq. 14, ¢ is the total fluence, Slm is
the Kronecker §-function, and %om is the cross section for the
reaction m + ¢ averaged over the assumed constant spectral shape nf
the neutron flux. The quantity crsm means matrix multiplication

-
Z 04y Oy » €FC. From Eq. 23 it follows that

k
oN - - .
L _ 13 1 ij L2 1 a3
%, (e & * 3 Tgn & 5 Mg ¥ N, (29
‘s ag
13 :_"Q—m_
where Eﬂ,m acr”

s s a0 . ..

ij _ am ij 1]

Cam ac_ij z [Uﬂ.k Ekm * Ell.k Ckm ]
k

i 305, Z ij . i)
and gm = acrij = " [oﬂ.k ckm +Cﬂ.k Ukm]' etc.

=22~
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Using these relations and the definition, Eq. 2, for the diagonal

eilements O30 it follows that

L L L (25)
Gl = -0t O0i85m = Tam [S5mi1%85p) * 859 (1484001
nl% = U?m Gil + Uiiﬁjm - Gim [5jm(1+§im)+ﬁj1(]+ﬁig)]

* O (095 = ogy (146,5)]

From the relatiens in Eg. 25 it is straightiorward to
calculate the sensitivities B%_ for any assumed set of cross sections
and total fluence 9. A partiéﬂ]ar?y useful example is that for
threshold (n,2n) detectors where one loaded isotope {or a natural
material with one predominant isotope) produces first, second and
higher order praducts by multiple {n,2n) reactions, but {n,3n)
reactions are not allowed energetically. Figure 4 illustrates this
example where m labels the loaded isotope, m + 1 the first-aorder
product and m + 2 the second. In addition to the (n,2n) reactions
shown, there are (n,y} reactions coupling in the opposite direction
and there may be several isomeric states (i,j,k..) coupled by (n,2n),
(nyy), (n,nl) reactions to the states shown and to each other. The
processes for which sensitivities are calculated are shown in Fig. 5
where i labels one of the isomeric states, the arraw represents the
particular reaction whose cross section is heing examined and the heavy
horizontal line is the state being measured. Simple formulas for the

processes shown in Fig. 5 are given in Table I. These formulas are
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given only to leading order (or first order in &) and apply to any
case which satisfies the above conditions for a threshold (n,2n)
detector. They have been compared against explosion code calculations
and have been found to be very close to the computer ca]culati0n52
and therefore may serve a useful guide. They apply to as large a cross
section set as desired, and for certain restricted sets many of the
formulas reduce considerably. (For the formulas given, i may be set

equal to D and UDj will represent {n, dest) on j, UjD is

defined to be zero. Furthermore, it is to be stressed that

2

o,
1

stands for}E: Gikckj')
K

Several points are evident from examining Table I. For example,
the leading term in the sensitivity of the first order product to the
primary {n,2n) cross section is unity, independent of fluence. A first
order correction term tends to reuuce the sensitivity at high fluences,
nevertheless this cross section is the most sensitive. At low fluences
a 10% change in the primary (n,2n) cross section means a 10% change in
the results. Corisequently, this cross section requires the best
accuracy of any in the set if the final results are to be reliable.
Fortunately, because it is a cross section on a stable isotope, it can
be measured. Other sensitivities which are independent of fluence in
m:g,i and BT;Z for the population of the second-

order product for any 2-step process connecting the loaded isctope with

leading order are B

the detected second-order products. These processes involve cross
sections on unstable nuclides, e.g., (n,2n) on the first order product,
or isomers which unlike the primary (n,2n) cross section are difficult

or often impossible to measure. Consequently, uncertainties in the
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modeling of these cross sections may put severe 1imits on the accyracy
of the NZ/N? ratio which persist even at very low fluences. {The
first-order term in ® for these sensitivities is straightforward to
calculate, but for simplicity is not included in Table I.)

A1l other sensitivities illustrated in Fig. 5 are proportioral to
the total fluence in leading order. Conseguently, they become more
important to overall accuracy as fluence is increased. Nevertheless,
there are some general observations which can be made. For example,
the sensitivities of either firs:-order or second-order nraducts +~ ~ny
reaction depleting those pbroducts B?j;+,, B?:£+2 are simply
proportional to the cross section for the particular depletion reaction
regardless of the complexity of the cross section set. CLonsequently,
the importance of neuiron capture on the second-order product, for
example, may be quickly estimated. The formulas given in Table I allow
the sign of the the sensitivity to be determined, regardless of cross
section, in all but a few cases. For correlated errors in the
calcylated cross sections, knowledge of the algebraic sign may pinpoint
cancellations or enhancements which can affect the overall error.
Lastly, some reactions only affect a given product in second-or higher
pawers of the fluence, 1.8. 8 = Q in Table [. Cross sections for
such reactions will be considerably less impartant and can probably be
ignored.

The formulas in Table I are approximate, hut have been found to be
reasonably accurate even at high fluence when compared to exaci
compﬁter activation calculations using neutron fluence files from

explosion code calculations for actual devices. Specific comparison
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will be given in the companion paper.2 These formulas, therefore,
may be used to make quick estimates or to serve as simple guides teo

direct more complicated computer calculations.

CONCLUSION

This paper has developed the general formalism for the

multiple-step activation and decay of nuclides in a neutron flux.

Exact, general results have been derived in terms of a series expansion
and various 1limits have been studied. Techniques for handling spatial
gradients and flux time-history have been developed. Specialized
solutions in terms of average quantities have been presented.

These general techniques were applied to a simple example of
determining the sensitivity of the production of first or second order
(n,2n) nroducts to various of the many cross sections. Such
sensitivity results have direct application to radiochemical
thermonuclear detectors and to determining the relative importance and
required accuracy of the many different cross sections.

In a companion classified paperz, many of the techniques and
results developed here will be applied to specific thermonuclear weapon
problems and direct comparisons to computer-generated results will be

made.
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TABLE 1. Sensitivity for processes illustrated in

Sensitivity
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Figure 5.

Comments

Depletion of loaded

isptope.

Primary production

cross section {n,7n)

Any reaction that
depletes first-

order product,

Any reaction other
than primary produc-
tion (n,2n) popula-
ting first-order

product

Any reaction other
than primary produc-
tion (n,2n) depleting

lToaded jsotope.
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Table I - Continued
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Any reaction popula-
ting loaded other
than (n,y) from

first-order product.

Any reaction
connecting naither
loaded isgtope nor

first-order product.

Production of second
order product by any
2-step process from

loaded isotope.

Reactions depleting
Touded Ssoiope and
connected to second-

order product.

Any reaction
depleting second-

order product.
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L]

Table I - Continued
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Any reaction which
is part of a 3-step
process populating
second-order product

(i.e. if O D).

Any reaction
depleting first-
order product not
connected to second-

order.

Any reaction
populating first
order, but not from
loaded isotope or

second order.

Any reaction which
is part of a 3-step
process ta second-
order which depletes
Yoaded isotope (i.e.

Te2, i°0)
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Table I - Continued ’15
:

im °m+2,1' - all ifm,m+2 Any reaction popula-

m+2,m ting loaded isotope. '
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure Captions

Simple radjoactive decay chain with parent N,. For this example
Aij = Ai the total decay constant of nuclide Ni .

Simple (n,2n) activation chair which ignores decay and {n,¥)
reactions back down the chain. Any process other than (n,2n)

which depletes a given nuclide is included in "Destruction.”

Examples of 2-step procasses: BBZr production {top)} and Bglr

dastruction {bottom),

Realistic activation chain where loaded isotope m connects to
first-order {n,2n) product m+1, which conrects to second-order
product m+2, etc. Feedback by (n,y) is included as well as
(n,n‘) to isomeric states, i,j,k etc. Coupling through isomers
is allowed as well as neutron-induced processes, (n, dest), which
lead to nuclides not included in the set. Actual problems can be

considerably more complicated than this.

Schematic diagrams illustrating the meaning of yarious

cross-section sensitivity functions, Bk . The horizonta)

ij
Yines 1abled m,m*1 and m+2 stand for the loaded jsotope, first-
order (n,2n) product and second-order product, respectively--i

stands for any other state or isomer (for i=D, the corresponding

cross section, e.g. Opm would represent {n, dest.) processes.
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Figure Captions - Continued

The heavy horizontal line represents the nuclide k being measured

and the arrow stands for the cross section 53 with respect to

which the sensitivity Bﬁj is determined.

!
5.
!
l
I
i
!
i
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