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AXISYMMETRIC TOKAMAK SCRAPEOFF TRANSPORT 

Clifford E. Singer and William D. hanger 

Plasma Physics Laboratory, Princeton University 

Princeton, New Jersery 08544 

ABSTRACT 

Ve present the first self-consistent estimate of the magnitude of each 

term in a fluid treatment of plasma transport for a plasma lying in regions of 

open field lines in an axisymmetric tokamak . The fluid consists of a pure 

hydrogen plasca with sources which arise from its interaction with neutral 

hydrogen atoms . The analysis and results are limited to the high 

collisionality regime, which is optimal for a gaseous neutralizer dlvertor, or 

to a cold plasma mantle in a tokamak reactor. In thits regime, both classical 

and neoclassical transport processes are important, and loss of particles and 

energy by diamagnetic flow are also significant. The prospect of extending 

the analysis to the lower collisionality regimes encountered in many existing 

experiments is discussed. 
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I . INTRODUCTION 

Although the isolation of the plasma from material boundaries is 

essential for magnetic confinement, relatively little progress has been made 

in understanding the transport properties of plasma near material boundaries 

in controlled fusion plasmas. Progress in understanding this regime has been 

hampered by the difficulty of making extensive measurements in such regions 

and to the formidable nature of the theoretical and computational problems in 

modeling multidimensional flows. Here we find the dominant terms in the 

simplest set of plasma transport equations relevant to modeling the plasma In 

a region of open field lines under conditions relevant to tokamak operation. 

The analysis is restricted to two-dimensional axisymmetric flows . We include 

all the relevant flows due to open field lines and analyze the contribution of 

sources due to interaction of plasma with neutrals. Our analysis shows that a 

number of important physical processes have been neglected in earlier studies 

of 2-d axisymmetric flow. 

Previous work relevant to two-dimensional (2-d) plasma flows in tokamaks 

can be divided into fluid and kinetic approaches . One of the earlier 

treatments of flow in 2-d planar geometry is that of Boozer. This work, 

while neglecting sources, gradients in the direction of dlamagnetic current 

flow and finite ion temperature, showed that electrons and ions may leave the 

plasma edge at different locations. Later, Auerbach and Boozer showed that a 

divertor plasma flow would concentrate on an X point in the magnetic field. 

However, their neglect of sources, conduction, and other physical processes 
3 precludes using this work as a basis for quantitative modeling. Emery et al. 

studied 2-d axisymmetric plasma flow in a geometry with closed field lines and 

demonstrated that the problem is numerically tractable. However, the theory 

they used is not suitable for quantitative mode' ing due to neglect of sources 
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and oversimplification of viscosity. Ohm's law, and thermal conductivity. 

More recently, Petravic et al. published a treatment of flow in a 2-d 

scrapeoff plasma, coupled to a sophisticated computation of neutral gas 

transport. The simplified transport equations presented by Petravic et al. 

Include an ad hoc treatment of cross-field transport, though the effects of 

this transport were not included in their published applications. There have 

been uther similar treatments of plasma flow along field lines in a tokamak 

scrapeoff, > as well as several order~of-magnitude estimates of the effects 

of parallel losses on transport across magnetic flux surfaces. ' ' ' Each 

of these models gives some insight into particular transport processes, but 

since they are one-dimensional treatments they cannot, In general, give a 

complete description of the plasma flows. 

Steady-state kinetic models of the scrapeoff flow have been constructed 

by several authors. > 1 J > 1 4 This kind of approach is motivated by the 

observation ;hat, In many existing tokamak plasmas, the mean free path of 

particle motion along or across field lines can be comparable to the scale 

heights for variation of plasma parameters. Since these models are 

susceptible to various instabilities, such as loss-cone driven 

instabilities, it seems unlikely that steady-state kinetic models will give 

an adequate description of the transport in regimes of low collisionality. 

We restrict our analysis to a fluid model valid in collision dominated 

plasmas where the effects of such instabilities do not necessarily invalidate 

a fluid treatment of plasma transport. With the exception of the Doublet-Ill 

expanded boundary, results for this regime from existing tokamaks have not 

yet been reported. However, since a high collisionality regime is probably 

essential to minimize plaBma contamination due to sputtering in tokamak 

reactors, we have concentrated our efforts on this regime. It is possible 
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that a simple generalization of our equations may, in the future, give an 

adequate description of the turbulent, low-collislonallty plasmas obtained in 

many present tokamaks (provided that an enhanced effective electron-electron 

frequency and/or electron-Ion collision frequency gives an adequate 

description of the effect of turbulence). Of course, there is also a 

possibility that fluid Instabilities, such as tearing, rippling, and 

resistlve-g modes, may alter the plasma transport. With the exception of a 

recent treatment of rippling modes, estimates of the magnitude of the 

effects of fluid instabilities on transport in the scrapeoff region suggests 

that they are not dominant, at least in existing experiments. 

Unfortunately, these estimates are not %ased on a self-consistent analysis of 

the steady-state fluid equations and, thus, they do not represent 

perturbations around a valid equilibrium. Therefore, we perform here an 

analysis of the fluid equations which describe such an equilibrium and 

estimate the dominant terms in these equations. 

Our approach is based on the methods outlined in the reviews by Slgmar 

and Hirshman,19 Hinton and Hazeltlne,20 and Braginskii.21 We apply the 

conservation equations of Sigmar and Hirshman (In a different notation) to a 

pure hydrogen, deuterium, or tritium plasma containing sources due to the 

interaction of the plasma with neutrals. After stating and justifying the 

approximations used, we generalize Hinton and Hazeltine's derivation of 

Pflrsch-Schluter transport to a flow in two dimensions with sources. We then 

use Braginskii's expressions for the transport coefficients in order to 

estimate the dominant terms in the conservation equations. This approach is 

similar to that of Hinton and Hazeltine, except that here we cannot eliminate 

the component of the total momentum balance which is directed along the 

magnetic field, because flux surface averaging is not appropriate in systems 
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with open field lines. Therefore, we retain the parallel momentum balance in 

addition to the usual requirements for conservation of particles and Ion and 

electron energy. The current parallel to the magnetic field is also retained 

since heating due to this current can be significant in an axisymmetric 

scrapeoff . After reduction of these equations by ordering in the inverse 

aspect ratio, the significance of the various terms Is discussed, including a 

possible extension to scrapeoff plasmas with turbulence. 

II. TRANSPORT EQUATIONS 

II .1 . Fluid equations 

Our analysis of the transport of a scrapeoff plasma rests on a reduction 

of the hydromagnetic equations derived from moments of the Fokker-Planck 

equation. The Fokker-Planck equation describing the distribution function f 

for each species "a" is 

°f„ °f„ e„(v x B ) R of df 
-&F r *VB c3T~ + 5i <5v~J ~ <W-'c ' 

p P a p 

where (of /5tl represents collisions which take place ID a time short a c 
IO 

compared to the times of interest for changes in the fluid. In general, 

this term cantains a Coulomb collision operator, C, and a non-Coulomb 

collision operator, o. The fluid equations, analogous to those in Braginskil 

with the addition of the non—Coulomb collision term, are: 

° n 

— — + $.fn u ) - S (continuity) 
ot a a a 

-*• + 

m n

 dJ± - a n [!?£ + ( u .$)u ] =. -h -Z^p3_+ e , [ f + J x I] 
a a df a a ot a a a „ ox„ a a L a c J 



- 6 -

+ R + F - m u S ( fo rce ba l ance ) 
a a a a a 

— T n « u + — n T J ot 2 a a a 2 a a 

* , A 2 5 , - * + , 
+ 7 ' { f T m n u + •*- P Ju + 1 1 1 . u + q } 

"•2 a a a 2 a' a ap,a a,a ^a J 

•* + + + e n E m + W + R »u + Q (energy transport) . a a a a a a a "•' r / 

Most of the symbols have their standard definition, but, to avoid any 

confusion, we list some of these below. 

3 
n = / f d v (density) 

* 1 r "*• 3 

u = — I vf d v (fluid velocity) a n a a 
3 

S = / ad v (particle source) 

1 , ,->• + , 2^ 3 
P - r < I v - u t d v ( p r e s s u r e ) a 3 a J a a 

R R 1 R 2 3 
II „ = n m f [ v v - T 6 . | v I If d v ( v i s c o s i t y t e n s o r ) 

<xp,a a a ' K a p 3 op 1 ' ' a ' 
where 

v = v - u (random v e l o c i t y ) 

•+ -H? 3 R = m f c v d v (Coulomb f r i c t i o n ) a a ' a 

+ -*R 3 F - m f o v d v (non-Coulomb chattering force) a a ^ a 
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(temperature) 

(reat flux) 

(net energy source) 

(collisional heating) . 

These fluid equations must be augmented with the equations for the electric 

field, £ , 

V-E = -4it Z e n , a a * a 

and current continuity ^ 

•+ -*• V-J = E e S a a a 

Equations for the magnetic field are dropped under the assumption that 

external currents prescribe the magnetic field in the region of interest. For 

the analysis below, it can be shown that this assumption follows from assuming 

a limit on the pressure ratio, 

P = P/(B2/8it) « 1 , 

where P = I P is the total plasma pressure, 
a 

T = P /n 
a a a 

+ 1 . .+ -v ,2 -• 3 
q = TT m J v - u v f d v 

W = — m / | v | a d 
a 2 a 

0 = r " J v - u C d v 
v a 2 a ' ' a 1 a 
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In this paper, we consider only the equations which describe the ion and 

electron fluids. The neutral source terms are probably best computed with a 

Monte-Carlo algorithm which can follow a large number of neutral particles 
22 through a realistic geometry." Here we assume that such an algorithm exists 

and can be used to sum over all plasma-neutral collisions In order to compute 

the source integrals in the plasma fluid equations. We also implicitly assume 
21 •hat rhe expressions given by Braginskli for plasma transport coefficients 

are not significantly changed by the existence of neutral sources. For 

special neutral distribution functions this assumption is valid, but general 

quantitative modeling studies which rely on this assumption should be examined 

carefully for possible errors. 

II.2. Geometry and restrictive assumptions 

To carry out an analysis of the fluid equations, it is necessary to 

define a convenient coordinate system relevant to an axisymmetric scrapeoff. 

For this purpose, we use the flux coordinates defined by Hinton and Hazeltine, 

(<P, 6, C) , where c|< is constant on a magnetic flux surface and 9 and £ are 

the pcloldal and toroidal ar.^les. Vfe can write the magnetic field in terms of 

the toroidal, 2 , and poloidal, £ , components as T p 

B - B T + B = RBTVC + ?C * % , 

as discussed on page 251 of Hinton and Hazeltine. In this form, the major 

radius R = |VC| a " d the metric determinant (i.e., the inverse of the 

Jacobian) is 

-1/2 .-»• -• + . 
g - |v<t,.ve x vc| . 
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We usually resolve vectors into components along three orthonormal unit 

vectors u, =* B "* S/B parallel to the magnetic field, u - v<(, - $<|,/|v<|i| normal 

to the magnetic flux surfaces (referred to here as the "radial" direction), 

and u = u. x u in the direction of the diamagnetlc current. These vectoi ; d I 4/ 
are illustrated in Fig. 1. Our analysis of the fluid equations for the 

axisymmetric scrapeoff regime will be carried out in terms of ordering 

parameters which measure the scale lengths, velocities, and collisionality of 

the plasma. The scale lengths for the plasma are L , L , and L , where the 
I d (p 

subscripts denote the parallel, diamagnetic, and radial directions (these 

directions are mutually perpendicular as indicated in Fig. 1.). The length 

of the region analyzed 1B L, as measured along a field line, and Lj 

= (e/q)L by definition of the safety factor, q. The Mach number is 

H = u. /v 
1,1 th,i 

where v.. , is the thermal velocity of the Ions and u. . is their fluid 
* ' i i 

velocity in the direction parallel to the magnetic field. The toroidal and 

poloidal gyroradii are assumed to be small compared to the perpendicular scale 

length, so that 

6 - p /L « 1 , 1 L ± <j> 

6 = i_ 6 » ! 6, « 1 , p. E 1 E 1 ' 1 P 

where the ion termor r a d i u s 1E p - v /Q and Q - eB/(m c) , q i s the 
L. th,l 1 i 1 

safety factor, and e 5 a/R is the inverse aspect ratio. Finally, the 

symbol A denotes the mean free path compared to the parallel scale length for 
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the ions and is given by 

A - v /(v L ) , th.i v i l ' 1 

where v = 4n 1 / , 2XnA e4Z*n /(3m* / 2T^ 2], is the ion-ion collision frequency, 

JlnAj is the Coulomb logarithm, * and Zj is the ion charge (which we take to be 

unity). 

In the analysis to follow, we assume steady state, toroidal symmetry, and 

quasineutrality 

k" 

k-« 
n = n e 1 

As a result, we can wi^.e 15 » -t$ , where <|> is the electrostatic potential. 

In addition, we adopt the following basic ordering assumptions: 

L ~ L ~ L , , 

L « EL , 
if d 

L/L « e/q « 1 . a I 
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Here L and L are the scale lengths for variation of ion and electron 
A 

plasma parameters in the V<|> direction. 

For convenience, we choose the Inverse aspect ratio as a fundamental 

ordering parameter. (Here, the expression a « b means lim en|b/a| - 1 where 
E+0 

n is a number satisfying 1/2 ? n > -1/2. The expression a ~ b means lim 
E+0 

cn|b/a| = 1 where n > -1/2. The symbols < and = have their usual algebraic 

meaning: a < b means that either a « b or a ~ b.) We assume 

q ~ 1/E , 

(n^/taj ~ £ , 

which is a reasonable approximation for typical tokamak parameters. We shall 

comment further on the assumption c ~ (me/mj)~' after deriving our final 

results . 

We also assume that the parallel Mach number is small 

M < E , 

since 1-d analyses of scrapeoff flows*»">' suggest that this is true for the 

Targe region of plasma which is not near material boundaries. In addition, we 

assume that the parallel tech number is comparable to or larger than the 

dimensionless poloidal gyroradius, 

6 < M . 
Pi ~ 

This condition turns out to apply to the high collisionality regimes of 
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interest here and It greatly simplifies the analysis of the fluid equations. 

He further assume that the plasma Is "magnetized "" 

(v i/0 1) « 1 , 

which should be vaJid for any tokamak plasma. 

In addition, there are restrictions related to the neutrals in the fluid 

and the source function of ions, namely: 

S ~ 6 
n u, a 1 ,a 

a s L„ 

where the source function scale factor, 6 < 1 ; and 

* • - * • - * • 

(«0
 _ u J l * ui,l 

where u is thfi velocity of the neutrals . We also assume 

a V ~ <ov> ex max eo 

where o is the charge-exchange cross section, V x' the maximum average 

relative velocity between ions and neutrals in any direction, and <ov> _ the 

rate of ionization of neutrals by electrons; this relation is valid for 
23 T g ;> 10 eV. (Below about 10 eV, contributions from electron Impact 

ionization should be deleted from our equations.) Furthermore, the difference 

between the ion and electron sources is 

1/2 
Si " S £ < e 6 S l . 
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which assumes thac the difference results from particle drifts over at most a 

banana orbit width.*' In addition, we assume that charge exchange Is the 

dominant non-Coulomb source of friction on Ions, and that electron impact 

ionization of neutrals is the dominant source of Ions; these conditions 
23 

restrict the electron temperature to T g < 2 keV. 
Finally, since we are expllcity Interested in 2-d transport, we assume 

that particle transport across flux surfaces is comparable to particle loss 

along field lines 

».a ~ ',a 

we also assume that neither of these terms is dominated by diamagnetlc 

fluxes . Thus, we have 

_£*- < -p± ~ JU£ ~ s /( 6 „ } 
a (|< I 

where we assume 6 < 1 . s ~ 
To summarize, we make four classes of assumptions. First, there are the 

assumptions essential for the validity of a fluid theory; namely, a « 1 and 

6 « 1. Second, there are assumptions which (fortuitously) hold for 
pi 
typical tokamak parameters: q - 1/e; {n^/^ ~ e

8 ; (v /Q ) « 1, and 

L ,/L = e/q « 1 . Third, there are those which can be justified a_ 

posteriori: L ~ L, ~ L . and L. « £ L,. The remaining assumptions are 

made for convenience and are chosen to be sufficiently restrictive to make the 
theory relatively simple but not so restrictive as to exclude the parameter 

regimes of most interest in tokamak reactors. The first three classes of 
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assumptions should probably be retained in a future development of the 

transport theory while those in the fourth clas6 should be relaxed in order to 

extend the regime of validity of the theory. 

II.3. Reduced fluid equations 

Using the basic assumptions listed above, we can form a set of equations 

to describe the fluid. These consist of (1) the continuity equation; (2) the 

parallel component of the total momentum transport; (3) an equation for the 

radial particle fluxes; (4) the total heat balance equation; (5) the ion heat 

balance equation, and (6) continuity of current deni-ity. 

Under the assumptions discussed above, the reduction of the fluid 

equations to a fcrm where the dominant terms can be Identified and their order 

determined is a tedious algebraic problem. We will not present this procedure 

in detail, but sketch briefly how this was accomplished and give one simple 

example here and a more complicated example in the Appendix. Each equation 

was first cast in an appropriate dimensionless form. Next, the order of each 

term was determined, and a term by term comparison was made to identify the 

(potentially) leading terms. For example, the continuity equation for ions, 

V-[n u | > ± + n u d > 1 + n u ^ J = S ± , 

when multiplied by 1, /(n v ), yields the following term by term ordering, I th, 1 

u L u L S 
[ „ ,* -***- , • JiA_] > _ L L _ , 

E v t h , i L * v t h , i ~ n v t h , i 

where M is the parallel Mach number defined above. (Here the ~ sign applies 

if the neutral density Is high enough for sources to be significant, i.e., 
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when 6 ~ 1 in our terminology. The > sign applies when sources are 
8 

insignificant.) From an analysis of clie radial ion momentum balance, it can 

be shown that 

under the assumptions listed above ajid, hence, the second term in the 

continuity equation is of the order (q/e) u d j/v,^ t ~ 6 • According to the 

assumptions at the end of Section II .2, the ordering for the continuity 

equation becomes. 

[M, 6 , M] ~ M6 
P^ 8 

Here the terms in square brackets give the relative size of the gradients of 

the parallel, dlamagnetic, and radial fluxes, respectively. The parallel and 

radial terms are always included because we are interested in 2-d flows. The 

diamagnetic term makes no significant contribution if 6 « M. 
Pi 

Applying similar considerations to all the remaining equations yielded a 

self-consistent ordering. The resulting equations are presented below, where 

the ordering is written to the right of each term. 

Total parallel momentum balance x - + ordering 

0 =» -V P (pressure gradient) \ 
1 P 

2 m.u. fS, (momentum dilution) 6 M 
1 1 , 1 1 ' 8 

E 
+ F, , (neutral friction) 6 f_i°) 1 / 2M 2 

I ,i B V T ' 
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P P 
(viscosity) 6 M, 

P i 
6 2 ^ i A 

n „ 2 

r V i u i 
(ram pressure) 2 M 

- nni^u. x [v x UjjJ. (Coriolis forces) M , 6 H , 

where terms of order (n^/mi) have been omitted, X = VjP/fP/L^, v1 P - BV P, 

and E j 0 is the average energy lost by the ions per charge-exchange event. 

The significance of the ordering denoted above for the parallel momentum 

balance is as follows. First, the pressure gradient must be balanced by terms 

which, under the assumptions adopted here, turn out to be of the order M 

where M « 1 • This is consistent with detailed numerical calculations of 

parallel flow distant from a material boundary. » J»' Second, neutral friction 

and momentum dilution due io electron Impact Ionization of cold neutrals can 

be significant unless the neutral density is small (i.e., unless 6 g « 1). 

Third, there are two viscous forces of order 6 M and one of order 
2 P ± 

6H/i. The only significant viscous forces in this equation are due to 
shearing of the parallel ion flow velocity, u. .. One term of C(6 M) 

corresponds to the gradient in the diaoagnetic direction of the radial shear 

of the parallel flow. The other term of &[& M) corresponds to the radial 
Pi 

gradient of the diamagnetic shear of the parallel flow. The familiar 

("classical") term of &[6 M /A) corresponds to the radial gradient of the 
9 radial shear of u . The viscous forces are never small compared to the * *̂-

other forces in the total parallel momentum balance at very large 

collisionallty where 6 < M. 
pi ~ 

Finally, the important inertial terms include ram pressure and 
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components of the vorticity 2> - $ x iJ . These latter "Coriolis forces" 

arise from radial and diamagnetic gradients of the parallel flow velocity. 

Like the viscous forces, the tera involving ti " $ * u. Is negligible at 

very large collisionality where 6 « M. 

Radial ion transport x + ordering 
th,i 

nu, . (radial ion flux) 6„ M 

B 6 

= TQ~ T"& (Coulomb friction) \ r , Q L ) 1 / Z - ^ 
i Pi T 1 

+ F. (neutral friction) 0 

m.u.Sj (momentum ailution) 

where 

+ m nu. x'vV x '. ) (Coriolis forces) 

an 
r "P' 1] (viscosity) 

X T S V./fl./L,) , 

and the poloidal gyrofrequency is Q = eb /m c , and 0 in the last column 
Pi P i 

indicates terms which do not contribute to highest order in e. Three 

terms, t •v'p, lL«v$, and 8 '$(u /2) , are identically zero for toroidally 

symmetric systems and, therefore, have been explicitly excluded above. The 

dominant contributions on the right-hand side are neoclassical terms and arise 

from the parallel thermal and frictional forces. That is 



-18-

V R i ~ V R i , i • 
where 

R. . - S nV.T + m nv 1,1 r o I e e e (en) * 

\l/2_ *.„» „ l / 2 , . , „ J / 2 , 24 with v = 8(21t)1/,ine AnA m ' /(3m T ' ), '* the electron colllBlon frequency 

a - 0.5129 and 6 - 0.7110.21 

o vo . 

Heat balance for the Ions x 5 •* ordering 
"Vn,i 

r 3 + •* 0 <- [j nu^V^ (advection V Pi V M 

and work) M, 6 , M V 
(conduction) °> v ^ + f .qj 

E 
- W (heating by fast neutrals) —=— 6 M 

3u 
+ Z n . . "> (viscous heating) 0 

m ^ 
+ Q, (Coulomb interchange) f—) — 

+ u.«F. (neutral friction heating) 

1 2 
y muS (ram energy dilution and work) 0 

3 + T T S (energy dilution) 6 M 
Z 1 1 s 
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where 

X H V T /(T l \ ) , 
T± M M V ' 

\ 5 3 n ( T
e " \)l*-

As shown In the Appendix, Che highest order contributions to $«q involve the 

classical and diamagnetic fluxes, corresponding to the thermal forces: 

'i"ViIi + t M [ f , f e i ] ' 

discussed by Braginskii , where K denotes conductivi ty. The col l l s lonal heat 

exchange between electrons and Ions, Is 

^ i = I n V e ( T e - T i ) " 

The significance of the ordering of the terns in the ion heat balance 

equation is as follows. As in the continuity equation, the diamagnetic 

contributions to advection and work are negligible for very lai;3 

collisionality, when 6 « M. The radial ("classical") and diamagnetic 
P i 

gradients of the ion heat flux make importpnt contributions to the heat 

balance. When 6 « H, only the classical term contributes. We have avoided 
pi 

cases where the neutral energy is large compared to the ion energy, so the W, 

term is only important for neutral densities sufficient to effect particle 

continuity (fi ~ 1 ) . Since the colllsional energy interchange, Q., muBt be 

balanced by other terms in this equation, a limit is set on tb~ dimensionless 

measure of the temperature difference by A < (m /m ) A M . Finally, the 

dilution of ion energy by the creation of neutrals must be considered whenever 
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neutral Bources are important in the particle balance. 

Heat balance for the electrons x = -> ordering Pv vth,l 

0 = [j nu »$T (advection MX,, 6 X , M 
P i 

+ P V«u 1 and work) M, 6 , M 
e e ' P, ri 

m 
+ v»q (divergence of heat flux) [6 , ( — ] 1 / 2 \ A1,0,6 

e L p 1' t m e
; T •" ' P ; l 

E 
- W (ionization and radiation) -££. 6 M 

'- T B 

Q 
m . A 

(Coulomb interchanged (——) — 
i Sn^ A 

3 
+ -5- T S (energy di lut ion) M 

6 2 

P4 + R «J/(en) (Joule and Thompson heating) (—) — — , 6 K, 

Here E e o is the energy loss per electron impact ionization event. To evaluate 

this equation, we used u = u. _ J/(en) , where it can be shown that 
e i 

u. » u, . , u. « u, . , and u. + u. . « u, , . (The symbol » is defined I,e 1,1 ' ^>,e q>,i d,e d,i d,i J 

b y a « ' b = > a ~ b and | a—b| « |a| .) The dominant terms in the heat balance 

equations are as follows: (1) for u "$T , the parallel and perpendicular heat 
e a 

flows both contribute, where the terms are listed in the order I , d, and ty ; 

(2) similarly, all three components are important for the term P v^u ; (3) 
e e 

the divergence of the electron heat flux is dominated by the effects of 

parallel currents and thermal conductivity, and by diamagnetic heat flow; and 
(4) the i •} term is dominated by Joule heating and Thompson heating due to 

e 
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current flow In the parallel direction. 

The ordering of the electron energy balance is similar to that in the ion 

energy balance except for thermal conductivity and frlctional heating. In 

contrast to ion conduction, a parallel gradient of electron temperature is 

important, but a radial gradient is insignificant. When 6 ~ M, there are 
Pi 

also various contributions due to dlamagnetic conductivity and the Pfirsch— 

Schluter currents. In addition, there are significant contributions from 

Joule heating due to parallel currents and Thompson beating due to the 

parallel temperature gradient ? I . These arise from thermoelectric forces 
I e 

along open field lines even in the absence of an electromagnetically induced 

electric field. 

Continuity of current density 

V.J - e(Se - S±) 

where the expression J * — B x v P . since $•? can be shown to be small, d B <|> <(, 
The equations above summarize the terms which should be retained in a 

numerical solution of the fluid equations (under the restriction 6 < M , 
Pi ~ 

discussed below). 

III. DISCUSSION 

The solutions to the ordering formulation of the fluid equations restrict 

the parameter space over which the equations are valid. The radial Ion 

balance equation requires that the temperature gradient and mean free path 

parameters are 
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\ < l ' 

6 2 

e,l/2 pi * <~ &" -f 

since we assume 

F^' 
Pi 

Using these results in the ion heat balance equation yields limits on the ion-

electron temperature difference 

A T < 6 p « 1 . 

which implies that 

T, » T i e 

Therefore, the ion and electron temperature gradients are comparable; 

X_ ~ V. 7± T 

Similarly, the electron heat balance equation limits the size of the source 

function since, to avoid excess ionization and radiation losses, we require 

-£2.6 < 1 T s ~ 
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Finally, the parallel momentum balance equation leads to an estimate of the 

pressure gradient 

X ~ M 2 

P 

The density and temperature regime where these equations are valid is 

determined by the machine parameters c, q, and B. The boundary of this regime 

la given by M ~ 6 and A ~ (m e/m 1) ' 6 and corresponds to 6mall pressure 
pi • pi 

gradients, \ « 1, and large temperature gradients, \ ~ l ~ 1. Vfe have 

evaluated the density and temperatuie space where these equations are valid 

for typical conditions, such as those expected in Tokamak Fusion Test Reactor 

TFTR (see caption in Fig. 1). For any given temperature, we determine A and, 

from our upper limit on the dimens jnless poloidal gyroradius 6 ~ M, the 
pi 1 A — 3 perpendicular scale height, L . At I = 10 eV and n = 10 1 cm , we find 

-3 
A = 1 .73 x 10 , 
6 = 0.105 , 

pi 
L = 1.2 cm . <P 

For the case 6 ~ e (consistent with the limitation on 5 < M « 1 ). the 
Pi Pi ~ 

limitation on n and T is shown in Fig. 2 with valid solutions restricted to n 

and T below the solid line. (Below T ~ 10 eV, the reaction rate coefficient 

for electron impact ionization becomes much smaller than the rate coefficient 

for charge exchange, and the sources due to electron impact ionization become 

negligible.) Along the upper boundary of the regime of validity in Fig. 2, 

the perpendicular scale height is given by 
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14 _, (O.UnA )L.(cm)(n/10 ) 
L, - 1.28 x 10 3. 1 — _ - , 
*• E (B/10*) [T (eV)]-*'/ 

where B is in gauss, and XxiK is the Coulomb screening factor for 

electrons. If there are sources present, then the solutions are further 

restricted to T > 6 E
 0; t!lia restriction Is indicated in Fig. 2 for 6 " I, e 

and e where S e o ~ 40 eV for temperatures larger than a few eV. 

It Is Instructive to compare our formulation of the fluid equations with 

previous calculations am. * J E I S OI tfit antisymmetric scrapeui. region. We 

will use the 2-d transport model of Petravic et al. as an example. These 

authors presented a simplified set of equations for axisymmetric plasma 

flow. Their motivation for using these equations was the need for a 

numerically tractable system with sufficient physical content fo give insight 

Into scrapeoff flows at relatively low colllslonality. Not surprisingly, some 

modifications and additions to this simplified sst of equations are necessary 

to give a complete description of collision dominated flows. To make a 

comparison, it is necessary to rewrite our equations in the form of Petravic 

et al. and replace their arbitrary cross-field diffusion terra D(dn/5y) by 

(-nu,. j:), which can be determined from our radial Ion transport equation. 

Below, we discuss which terms In the equations of Petravic et al. have to be 

modified and which terms must be added. 

(1) In the continuity equation, the diamagnetic flow, $«u. should be 
d,i 

included in their equations. 
(2) In the parallel momentum balance, the diamagnetic and radial 

divergence of the viscosity terms, n and n, A •> respectively, must be 
I, d 1, 4> 

included. Furthermore, Coriolis force terms proportional to (u x V x u ) and 

arising from the diamagnetic flows are missing from their equations. 
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(3) An ion energy transport equation (I.e., a Bernoulli's equation 

Including mechanical energy) can be derived from our conservation equations, 

and a comparison with that of Petravlc et al. shows significant differences. 

Our full equation is as follows. 
Ll 

Ion energy transport x = + ordering 
P vth,i 

0 » -V»|V T nu ) (thermal energy) M, 6 , M 
<•<. i 1 ' p t 

A 2 ?.(-nanti J (ram energy) 

2, 7>q (conduction) 0, 6 , 6./A 
Pi 

+ VT (heating by fast neutrals) „ M 6 
I i s 

Z - fn „ .u ,] (viscous heating) 

+ Q (Coulomb Interchange) (—) ' -r-?-

- uj'VPg (work, and M, 6 , M 

+ £_.^p dissipation 

i 

en e 

+ J-E due to 6 _ 
Pi Te 

M a2 

Coulomb friction) (jf")1'2 -fT • 6 K 
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where we have set $ = -?$ and again noted the order of each potentially 

significant term. The correspond!^ equation of Petravic et al. can be 

written as 

t r + r 5 ~ . ! 2 M o m
 o n V 0 « [ n u ( I T 1 + - V l ) ] = - S E i - u | > i r e — , 

where S i s in energy source r i t e , the term D(ci/By) + -nu , Petravic et 
E j V>i 

al.'s coordinates t, and y are replaced by 1 and 4> , respectively, and we 

define 7 = u.fb/dx ) + u fd/ox ). A number of significant differences are o l v I' <JA <K 
apparent. First, their equation applies only if 

K « 1 • 
T 
6 « M , 

P i 
and 

e 

where the electrostatic potential $ is chosen to be zero at some reference 

peine within the region of Interest. Second, even within these limits, this 

equation omits the electron-ion exchange term and the radial component 

of u • Unfortunately, the assumptions required tc obtain the formulation I e 
of Petravic et al. are not generally valid since diamagnetic terms may be 

important, and X. may be ~ 1 . In such cases, ion conductivity perpendicular 

to the magnetic field has to be included as well. 

\ clos^ inspection of the ion energy transport equation suggests that the 

solution for the plasma properties should be based on the ion heat balance; 

the ion energy transport equation is useful and necessary only if one wants to 

determine the electrostatic potential, $. The ordering equations yield an 
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estlmate for 41 of 

e<)> M 
Pi 

which Is > 1 for the conditions discussed here. Accordingly, the expression 

f-u *$P + 3»($P — en2 - t. }] cannot be replaced by - u T on/Bx,. as in the L 1 e e e I , l e i 
formulation of Petravic et. al. 

(4) The comparison of electron equations is essentially identical to the 

comparison of ion equations except for the thermal conductivity, v-q , where 

the diamagnetlc term must again be included. 

Finally, we note that, in general, the classical (radial) colllsionsl 

contributions (~ 6 /A) can be neglected in these transport equations only for 

very small aspect ratios where E » (m /m ) , assuming q ~ c~ . (We have 

not investigated the consequences of orderings for the safety factor other 

than q ~ e , but this should require only another application of the 

methodology outlined above.) 

IV. SUMMARY 

We have determined the relative importance of the contributions to the 

fluid transport equations for an axisymmetric scrapeoff region Including 

sources where dlamagnetlc flows contribute to, but do not dominate, the 

continuity equation. We discovered t lat a number of important physical 

processes have previously been neglected. The physics which leads to these 

results is as follows. The parameter regime of Interest is dominated by end 

losses In the open field line geometry. These losses are balanced by radial 

transport onty when the perpendicular scale height, L , becomes so small that 

sufficient radial transport can be driven by the dominant neoclassical 
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frictional forces (see Section 111) . At large collisionality, classical ion 

conduction and viscosity produced by large variations across the radial 

direction can dominate plasma transport (hatched region in Fig. 2). Unless 

the collis'onality is extremely high, well within the hatched region in Fig. 

2, the diamagnetic flows, driven by relatively large radial pressure 

gradients, can be as important as the flow along open field lines. In some 

cases, where the fluid theory is still valid, diamagnetic flows can even 

dominate the particle and energy balances ("diamagnetic flow" region in Fig. 

2). All of these physical processes must be considered to obtain a correct 

picture of plasma transport in scrapeoff plasmas where they make significant 

contributions to the transport of particles, energy, and momentum. 

The parameter space of density and temperature where these estimates are 

valid is a function of the collisionality through the restriction A 
1/2 < (me/m^) ' 6 . Since A is inversely proportional to the collision rate, 

Pi 
any turbulent process not included in the transport coefficients as derived by 

Braginskii, which increases the effective collision frequency, should 

decrease the effective value of A. With such a modification, our reduction of 
the fluid equations might be valid for lower densities and higher temperatures 

than indicated in Fig. 2. In the future, it will be important to extend our 

analysis to regions of higher temperature and lower density where 6 > M . 
Pi 

It would also be desirable to look at larger parallel pressure gradients where 

the parallel flow may approach the sound speed; i.e., M ~ 1. 
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APPENDIX 

Here we demonstrate the method of deriving the ordering equations by 

evaluating, as an example, the conductivity term in the equation for heat 

balance for ions, 

•qx • (Ai) 

The heat flux has the following three components defined by Braginskii 

*i - - s . iVi - K I , A T I + «*,Ax ' T J > < A 2 ) 

where K , ^ - 3 .9 K Q , K^± - 2 (vj/flj KQ, and K „ ± -2.5 (VJ/QJ) KQ, and 

K •= nT./(m, v. ) . To begin the ordering procedure, each of the terms of Eq. 

(Al) is evaluated by substituting explicit jly for the conductivity and 

multiplying by L /(Pv ) , which provides a convenient scale for the ion I th,i 
heat balance equation. The divergences and gradients in Eqs. (Al) and (A2) 

are replaced by the Inverse of the characteristic lengths over which the 

variables change, as follows: 

(1) Parallel term 

L. K. . . nT. 
[^] ^r V'T* ~ 5%h M r ( V L , ) \ • (A3) 

th,i I th,i 1 1 1 
2 

where X.T = V T . / ( T , / L . ) . We now r e p l a c e P by ~ n T . , and Ti by ~ n^v . 

Using the d e f i n i t i o n of t h e I n v e r s e c o l l i s i o a a l l i t y , A, In Eq. (A3), then 

y i e l d s 

P v t h , i ' - 1 ' * V i T i T i 
(A4) 
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Slmilarly, the remaining contributions can JO written as a "perpendicular 

term" and a "diamagnetic term." 

(2) Perpendicular term 

L L. nT. v. 2 T. 
Pv 1 , 1 1 1 P v L , v m . l C L J 72^ 

t h , i t h , i 1 i i L. 

v . , v . 2 L. 2 6* 

(3) Diamagnetic term 

The diamagnetic contribution to the divergence operator is replaced 

by L~ . Contributions to the action of this operator on the K. . term 
d ,1 

in q can arise from gradients in both the parallel and radial direction; 

however, only the latter is important because L. « L, The diamagnetic 

contribution becomes 

L . , K A . i L - " T i v i T i 
P v t h , i »* \ V P v t h , i m i v i c i V 

which can be rewritten after replacing P and Tj as 

~ \H °i V i ~ Ld Q t S ~ \ * ( A 6 ) 

Therefore, the ordering terms for th* ion conductivity term in the heat 
balance equation are 

( l ^nTT ) H i + [ A \ , 6 P i , 6 ' M ] - ( A 7 ) 
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We will now show that the parallel contribution can h° neglected in the 

ion heat transport equation. This demonstration is made by evaluating A in 

terms of 6 , a relationship which can he found from the ordering of the 
Pi 

radial ion transport equation. First, we project out the toroidal component 

of the total momentum balance equation, 

m an a(u-V)u g - n au a[v(u a/2) - ufl x (v x u j ] 

-h - T ° g f i' a + e n ( £ + i u " » J) + ! + ? - m 5 S , (A8) a ox_ a a v c a a a a a a 

using 

0 

^ ^ - S T • CA9) 
e q 1 

Applying (A9) to (l/c)u x $ , yields n u •v:i|> , and the resulting equation can a a a 
be written as 

1/2 1,4 
n ; . ? t . - L ! _ B , -I_i . (AlO) 
a a e n q T B„ ' 

where 

an B 
X s 5 + 1 - m S s + m n £ x (v x „" ) - £ . g P f a . (Al l ) 

a a a a a a a a a a _ ox„ 
P P 

For a toroidallr symmetric system, the terms involving VP, ?, and v(u /2) are 

identically zero In (AlO) and have been explicitly omitted from A in Eq. 
a 

(All). The ion transport form of Eq. (AlO) can be cast in a more convenient 

form by dividing both sides by nv |v4>| and, according to the definition 
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of t in Section 2, using |̂(J,| - RB and g 1^ 2 - qR/B , 1 9 

\ , i . c 1 B T r V A l 1 

v e v B~ T~ L B" J > 
th,i th.i T p T 

-V A n H ^ l . Qi mi vth,i E BT 

i th,i 
(A12) 

2 To write an ordering equation for (Al2), we replace m.v by ~ P and ut= - the 1 tn, i 
ordering for the continuity equation, u /L. ~ u_ ,/L. , in Eq. (A12) which 

<y, l (p 1,1 I 
then yields 

(A13) 

It can be shown that all the terms in B* •£ on the right-hand side are small 
T i & 

compared to B *R , and only the parallel component of R is important. This 

parallel friction term is taken from page 249 of Braginskli and can be 

written 

L. B • £ , 
M II T i 

6 P B„ 
h T 

L 
~P 
1 Ll Jl rR, , = — f - B nV.T - a m nv — ) P I,i P l *o I e o <i e en' 

L, m ± 1/2 J | 

= " Po^T ~ °o 2 m e ^ vl m 
Vth.i 
"> 1/2, J, 

Ko T o^m.; A env , , ' ' 
l tn, 1 
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where a - 0.5129 and 6 « 0.711. Tc evaluate this further, we need to o o 
estimate J, . From the equation for current continuity, assuming as in the 

main text that the S^ - S term is small, we have the ordering equation 

J-~T± . (A15) 
I d 

assuming as can be shown a posteriori from the difference between the ion and 

electron radial flux equations, that 

J, J, 

The ordering equation for Eq. (A13) then becomes 

in 1/2 , , . J, 
JL~ M a x {> (_£) M £ l _ i } . ( A 1 7 ) 6 l T' km ' A env ' P t i th.l 

The diamagnetic current can be estimated by using the radial ion momentum 

balance to find u . Vfe will not derive this result here but, as noted in d,i 
the text, a self-consistent analysis of all the terms in this equation (for 

1 o the assumptions adopted in this paper) yields the usual result, 

J d ~ B l B X V 1 ~B I " 
2 cnm v 

3. t n » - ~ env u 6 . (A18) 
BL^ th.i i 

Substituting Eq. (A18) into (A17), we have the ordering for A in terms of 

other parameters given in the text, 
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6 m 1/2 V 
pi i 

It can be shown, again a posteriori, that « 

consistent with continuity and the total energy b; 

m 1/2 V m 1/2 
A ~ (-£) ~h< {—) 6 , 

and X ~ X < 1 (by which we mean either X_ « 

into Eq. (A7) gives the ordering solution preset 

haat flow, 

th.i i 

m 1/2 
8ince the parallel term AX < f—1 6 X_ « 

Ti ~ mi Pi \ 
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FIGURE CAPTIONS 

Fig. 1. Field lines and coordinate systems used to describe the axisymmetric 

scrapeoff region. The solid line indicates the regime in which the 

equations derived in the text are valid. While the dashed line 

indicates the region near the limiter where the parallel scale height 

is too small for the validity of our assumptions. The geometry shown 

:orresponds to TFTR parameters with R - 254 cm, a - 91 cm, R i i m i t e r
 = 

163 cm, and B T = 4 x 10 Gauss. For a deuterium plasma (Aj = 2) the 

value of e - (mg/m^)1' = 0O58 and with q - e - 1 the coordinate 

lengths are: L, = 139° c m a n ^ L d - 178 cm. Only a portion of the 

axisymmetric limiter is shown. 

Fig. 2. The density and temperature range over which our solutions are valid 

are shown here for the parameters listed in the caption for Figure 

1. The boundary corresponds to 6 = M and thus A " (m./m.)1'* 6 ; 
Pi Pi 

within the shaded region 6 < M. The dashed lines indicate the lower 
pi ~ 

bounds on the temperature when Bourees are present corresponding to 

different values of the source function scale factor, 6 . 



#82P0079 

Figure 1 



00 

0.01 0.03 0.1 0.3 

n ( I0 l 4 cir f 3 ) 
Figure 2 

# 82P0083 


