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AXISYMMETRIC TOKAMAK SCRAPEOFF TRANSPORT

Clifford E. Singer and William D. Langer
Plasma Physlcs Laboratory, Princeton University

Princeton, New Jersery 08544

ABSTRACT

Ve present the first self-consistent estimate of the magnitude of each
term in a fluid treatment of plasma transport for a plasma lying in reglons of
open field lines 1in an axisymmetric tokamak. The fluid consists of a pure
hydrogen plasma with socurces which arise from its interaction with neutral
hydrogen atome. The analysis and results are limited to the high
collisionality regime, which is optimal for a gaseous neutralizer divertor, or
to a cold plasma mantle Iin a tokamak reactor. In thisz regime, both classical
and neoclassical transport processes are lmportant, and loss of particles and
energy by diamagnetic flow are also significant. The prospect of extending
the analysis to the lower collisionality rezimes encountered in many existing

experiments Is discussed.

DISCLAIMER

T



I. INTRODUCTION

Although the 1isolation of the plasma from material boundaries 1is
essential for magnetic confinement, relatively little progress has been made
in understanding the transport properties of plasma near material boundaries
in controlled fusion plasmas. Progress in understanding this regime has been
hampered by the difficulty of making extensive measurements 1in such regions
and to the formidable nature of the theoretical and computational problems in
modeling multidimensional flows. Here we find the dominant terms in the
simplest set of plasma transport equations relevant to modeling the plasma in
a region of open field lines under conditions relevant to tokamak operation.
The analysis 1s restricted to twr—dimensional axisymmetric flows. We 1include
all the relevant flows due to open field lines and analyze the contribution of
sources due to Interaction of plasma with neutrals. Our analysis shows that a
number of important physical processes have been neglected in earlier studies
of 2-d axisymmetric flow.

Previous work relevant to two-dimensional (Z-d) plasma flows 1In tokamaks
can be divided 1into fluld and kinetic approaches. One of the earlier

treatments of flow 1in 2-d planar geometry 1s that of Boozer .}

This work,
while neglecting sources, gradients in the direction of diamagnetic current
flow and finite ion temperature, showed that electrons and ions may leave the
plasma edge at different locations. Later, Auerbach and Boozer? showed that a
divertor plasma flow would concentrate on an X point in the magnetic fileld.
However, their neglect of sources, conduction, and other physical processes
precludes using this work as a basis for quantitative modeling. Emery et 31.3
studied 2-d axisymmetric plasma flow Iin a geometry with closed ffeld lines and

demonstrated that the problem 1s numerically tractable. However, the theory

they used is not sultable for quantitative mode  ing due to neglect of sources




and oversimplificstion of viscosity, Ohm's law, and thermal conductivity.
More recently, Petravic et al. published a treatment of flow in a 2-d
scrapeoff plasma,A coupled to a sophisticated computation of neutral gas
transport.5 The simplified transport equations presented by Petravic et al.
include an ad hoc treatment of cross-field transport, though the effects of
this transport were not 1included in their putlished applicatinns. There have
been uther similar treatments of plasma flow alcong field lines in a tokamak
scrapeoff.6’7 as well as several order~-of-magnitude estimates of the effects
of parallel losses on transport across magnetic flux surfaces.g’g’lo'11 Each
of these models glves some insight Into particular transport processes, but
since they are one-dimensional treatments they cannot, in general, give a
complete description of the plasma flows.

Steady-state kinetic models of the scrapeoff flow have been constructed
by several authors.l2,13,14 This kind of approach 1s motivated by the
observation rhat, In many existing tokamak plasmas, the mean free path of
particle motion along or across fleld lines can be comparable to the scale
heights for variation of plasma parameters. Since these wmodels are
susceptible to various instabilitles, such as loss—cone driven
1n5tab111t1e5,14 it seems unlikely that steady-state kinetic models will give
an adequate description of the tramsport in regimes of low collisionality.

We restrict our analysis to a fluid model valid in collision dominated
plasmas where the effects of such instabilities do not necessarily invalidate
a fluid treatment of plasma transport. With the exception of the Doublet-III
expanded boundary,15 results for this regime from existing tokamaks have not
yet been reported. However, Bince a high collisionality regime is probably
essential to minimize plasma contamination due to sputtering in tokamak

:eactots,15 we have concentrated our efforts on this reglme. It 1s possible
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that a simple generalization of our equations may, 1in the future, give an
adequate description of the turbulent, low-collisionality plasmas obtained in
many preseat tokamaks (provided that an enhanced effective electron-electron
frequency and/or electron—ion collision frequency gives an adequate
description of the effert of turbulence). Of course, there i{g alsc a
possibility that fluid insfabilities, such as teariang, rippling, and
resistive-g modes, may alter the plasma transport. With the exception of a

17

recent treatment of rippling modes, estimates of the magnitude of the

effects of fluid 1pstabilities on transport inm the scrapeoff region suggests
that they are nat dominant, at least 1in existing experiments 18
Unfortunately, thegse estlmates are not %ased on a self-consistent analysis of
the steady-state fluid equations and, thus, they do not represent
perturbations around a valid egquilibrium. Therefore, we perform here an
analysils of the fluid equations which describe such an equilibrium and
estimate the dominant terms in these equations.

Our approach 1is based on the methods outlined {in the reviews by Sigmar
and Hirshman,19 Hinton and Hazeltine,20 and Bl‘aginskii.21 We apply the
conservation equations of Sigmar and Hirshman (in a different notation) to a
pure hydrogen, deuterium, or tritium plasma containing sources due to the
interaction of the plasma with neutrals. After stating and juetifying the
approxlmstions used, we pgeneralize Hinton and Hazeltine's derivation of
Pfirsch-SchlSter transport to a flow in two dimensions with sources. We then
ugse Braginskii's expressions for the transport coefficients 1in order to
estimate the dominant terms in the conservation equations. This approach is
similar to that of Hinton and Hazeltine, except that here we cannot eliminate
the component of the total momentum balance which 1g directed along the

magnetic fleld, because flux surface averaging is not appropriate in systems



with open field lines. Therefore, we retain the parallel momentum balance in
addition to the usual requirements for conservation of particles and ion and
electron energy. The current parallel to the magnetic fleld 1s also retained
since hneating due to this current can be significant in an axisymmetric
scrapeoff. After reduction of these equations by ordering in the inverse
aspect ratlo, the significance of the various terms 1s discussed, iuncluding a

possible extension to scrapeoff plasmas with turbulence.

II. TRANSPORT EQUATIONS
IT.1. Fluid equations

Our analysis of the transport of a scrapeoff plasma rests on a reduction
of the hydromagnetic equations derived from moments of the Fokker-Planck
equation. The Fokker—-Planck equation describing the distribution function fa

%S

for each specles “a" 1is

where (bf /bt) represents collisions which take place 1r a time short
a c

compared to the times of interest for changes in the fluid.19

In general,
this term contains a Coulomb collision operator, C, and a non-Coulomb
collision operator, o. The fluid equations, analogous tn those in Braginskii

with the addition of the non—Coulomb collision term, are:

on
a >y L :
=t ¥ (naua] S8 (contionuity)
du ou a1l
u u
a + > af,a e i1
2= 2+ . = - -y __%B,8 + B
Tafa Tdr mana[ ot (ua 6)ua] ﬁPa L ox * eana[g “a X c]

p g



> > >
+R +F -mu S8 (force balance)

[) 1 2 3
L +
ot (Z'Hamaua f'nara)

+ 1 2 >
M V'{[f'manaua + ap,a"a,a + qa}

S >
7P Ju +Im
a’ a a

> > >
= e n Eu_ + W + R_cu
a a a

' + Qa (energy transport).

Most of the symbols have their standard definition, but, to avoid any 1

confusion, we list some of these below.

3

n, = f fad v (density) 7
* 1 > 3
u, = E—-j vfad v (fluid velocity)
s, = | & 1 :
a o,d v (particle source) :
1 > > 2 3
= _ - d g
Pa T, j lv ual fa v (pressure)
RR 1 R,2 3
ag,a = "a%a J [vavB 5'6aﬁlv ] )fad X (viscosity tensor)
where
Wa=3- Ka (random velocity)
£ +R 3
R =m [Cvdyv {Coulomb friction)
a a a
+R .3
Fa =m f a.v dv (non-Coulomb c-attering force) _



T =P /n (temperature)

a a a
> 1 > » ,2 > 3

= — A

q, =5 m, I 1lv ual vi d'v (reat flux)

W o= L J [;[20 v ’ (net energy source)

a 2 a a
Qa = %.ma f ]; - 38,2 Cad3v (collisional heating) .

These fluid equations must be augmented with the equations for the electric

field, E ,
+> > 4
VeE = =41 L e,
a
and current continufty N

+ >
VeJ = L &5

Equations for the magnetic field are dropped under the assumption that
eternal currents prescribe the magnetic field in the region of interest. For
the analysis below, it can be shown that this assumption follows from assuming

a limit on the pressure ratio,
2
g =p/(B"/Bn) <1,

where P = T Pa is the total plasma pressure.
a



In this paper, we consider only the equations which describe the ion and
electron fluids. The neutral source terms are probably best computed with &
Monte-Carlo algorithm which can follow a large number of neutral particles

22 Here we assume that such an algorithm exists

through a realistic geometry.
and can be used to sum over all plasma-neutral collisioms in order to compute
the source integrals in the plasma fluid equations. We also implicitly assume
rhat the expressions given by Braginsk1121 for plasma transport coefficients
are not significantly changed by the exlstence of neutral sources. For
special neutral distributiom functions this assumption is valid, but general

guantitative modeling studies which rely on this assumption should be =xamined

carefully for possible errors.

I[T.2., Geometry and restrictive assumptions

To carry out an analysis of the fluild equations, it is necessary to
define a convenient coordinate system relevant to an axisymmetric scrapeoff.
For this purpose, we use the flux coordinates defined by Hinton and Hazeltine,
{¢, 8, L) , where ¢ is copmstant on a magnetic flux surface and © and T are
the pcloidal and toroidal argles. We can write the magnetic field in terms of
the toroidal, ﬁT , and poloidal, ﬁp , components as

> + +-> ->+-v> -5
- = X
B BT Bp RBTVC (4 ¢,

as discussed on page 251 of Hinton and Hazeltine.l7

In this form, the major
radius R = IVCi-l and the metric determinant (f.e., the 1inverse of the
Jacoblan) is

-1/2
g / - l$¢'$9 x eCl .



We usually resolve vectors 1luto components along three orthonormal unit

- A - A
vectors y, = B = £/B parallel to the magnetic fleld, uy, = V¢ = 64,/134,} normal

to the magnetic flux surfaces (referred to here as the "radial” direction),

and ;d = :'I x Uy in the direction of the diamagnetic current. These vectol:

are 1llustrated im Fig. 1. Our analysis of the fluid equations for the
axisymmetric scrapeoff regiwe -will be carried out 1in terms of ordering
parameters which measure the scale lengths, velocities, and collisionality of

the plasma. The scale lengths for the plasma are L Ld' and L¢, where the

l'
subscripts denote the parallel, diamagnetic, and radial directions (thece

directions are mutually perpendicular as indicated im Fig. 1.). The length

of the region analyzed 1is Ly as measured along a field 1line, and Ly

= (e/q)Ll by definition of the safety factor, q. The Mach number 1s

M = /v
"1, en, 1 0
where Veh, 1 is the thermal velocity of the ious and uy is their fluid
H)
velocity in the direction parallel to the magnetic field. The toroidal and
poloidal gyroradii are assumed to be small compared to the perpendicular sgcale

length, so that

5§ =p /L K1,
i L ¢

1

B q
& =56 m=5 <<1,
Py BP i e 1

where the Ion Larmor radius is p = v
L th,1

safety factor, and € = afR 18 the inverse aspect ratio. Finally, the

/Q1 and Q1 = eB/(mic) , @ 1s the

symbol A denotes the mean free path compared to the parallel scale length for
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the ions and is given by

A= vth,i/(viLI) ’

where v,y = 4u1/22nA eazin /(3mi/2Ti/2), is the ion-ion collision frequency,

i
ln_I\i is the Coulomb logarithm,ZA and Zgy 1s the ion charge (which we take to be

unity).

In the analysis to follow, we assume steady state, toroidal symmetry, and

quasineutrality
3
at - 0,
5 _
af o,
n =n .
e i

As a result, we can wr..e B = —¥¢ , where ¢ is the electrostatic potential.

In addition, we adopt the following basic ovrdering assumptions:

= 1.
Ld/Ll e/q




-11-

Here L and L are che scale lengths for variation of ion and electron
e
> L]

A
plasma parameters in the V¢ direction.

For convenience, we choose the inverse aspect ratio as a fundamental

ordering parameter. (Here, the expression a <{ b means lim Enlb/al = 1 where
+

n 18 a number satisfying 1/2 » un » -1/2. The expressf;:)a ~ b means lim

gnlb/al = 1 where n » ~1/2. The symbols < and = have their usual algeb::?c

meaning: a < b means that either a <{ b or a ~ b.,) We assume

q~ /e,

1/2 4
(me/miJ ~& ,
which 1s a reasonable approximation for typical tokamak parameters. We shal®
comment further on the assumption € ~ (me/l'ni)l/8 after deriving our final

results.

We also assume that the parallel Mach number is small

since 1-d analyses of scrapeoff flows®,6,7 suggest that this is true for the

large region of plasma which is not near material boundaries. In addition, we
assume that the parallel Mach number is comparable to or larger than the

dimensionless poloidal gyroradius,

\
This coundition turns out to apply to the high collisionality regimes of
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interest here and it greatly simplifies the analysis of the fluid equatious.

We further assume that the plasma is "magnetized"21
v /@ ] K1
(v/e) <1,

which should be valid for any tokamak plasma.

In addition, there are restrictions related to the neutrals in the fluid

and the source function of ions, namely:

where the source function scale factor, 6 <1 ; and
g ~

+ +>
(“o - “1]| Sy

where § is the velocity of the neutrals. We also assume
[o]

g V ~ Lavd .
CX max eo

where Bex is the charge-exchange cross sectlon, Vmax' the maximum average
relative velocity between lons and neutrals fn any direction, and <cw>e_o the

rate of Jlonization of neutrals by electrone; this relation is valid for

T, > 10 ev.23 (Below about 10 eV, contributfons from electron impact

e

ionfzatfon should be deleted from our equations.) Furthermore, the difference

between the ion and electron sources 1s



-13-

which assumes thacr the difference results from particle drifts over at most &
banana orbit width.2d 1n addition, we assume that charge exchange 1is the
dominant non—~Coulomb source of friction on ions, and that electron impact
ionization of neutrals is the dominant source of 3ions; these conditions
restrict the electron temperature to T, £ 2 keV.23

Finally, since we are explicity interested in 2-d transport, we assume

that particle transport across flux surfaces is comparable to particle 1loss

along field lines

we also assume that neither of these terms 1s domlinated by dilamagnetic

fluxes. Thus, we have

ud u¢ a ui a
a8 2 DA g /g )
Ld ~ L¢ i a ‘'8 a

where we assume 6s £1 .

To summarize, we make four classes of assumptions. First, there are the
assumptions essential for the validity of & fluid theory; namely, A << 1 and
Bp < 1. Second, there are assumptions which (fortuitously) held for
ty;ical tokamak parametevs: q ~ 1/g; (me/mi) ~ gB; (“1/91) <1, and
Ld/Ll =gfq <K 1. Third, there are those which can be justified g
posteriori: Lw ~ L¢,e ~ L¢,1 and L¢ Kelg. The remaining assumptions are

made for convenience and are chosen to be sufficiently restrictive to make the

theory relatively simple but not so restrictive as to exclude the parameter

regimes Of wmost interest 1in tokamek reactors. The first three classes of
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assumptions should probably be retained in a future development of the
transport theory while those in the fourth class should be relaxed in order to

extend the regime of validity of the theory.

II.3. Reduced fluid equations

Using the basic assumptions listed above, we can form a set of equations
to describe the fluid. These consist of (1) the continuity equation; (2) the
parallel component of the total momentum transport; (3) an equation for the
radial particle fluxes; (4) the total heat balance equation; (5) the lon heat
balance equation, and (6) continuity of current dernrity.

Under the assumptions discussed above, the reduction of the fluid
equations to a fcrm where the dominant terms can be identified and their order
determined 15 a tedious algebraic problem. We will not present this procedure
in detatl, but sketch briefly how this was accomplished and give one gimple
example here and a more complicated example in the Appendiz. Each equation
was first cast in an appropriate dimensionless form. Next, the order of each
term was determined, and a term by term comparison was made to ildentify the

(potentially) leading terms. For example, the continuity equation for ioms,

> + >
Velnuy g tonug g tnu  ]=5,

when multiplied by Lll(n v ), yields the following term by term ordering,

th,1
u L u LS
[M q 4,1 LTS ] 5 11 ,
» ’ jo
€ Vin,i Ly Ven,1 Vin,

where M is the parallel Mach number defined above. (Here the ~ sign applies

if the neutral density is high enough for sources to be significant, i.e.,
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when 8§ ~ 1 in our terminology. The > sign applies when sources are
8

insignificant.) From an analysis of the radial ion momentum balance, it can
be showa that

+ +
(ud,i x B)¢/c ~ 9P

under the assumptions Ilisted above apd, hence, the second term in the
~ . rd

continuity equation is of the order {(q/€) “d,ilvth,i 6P1 According to the

assumptions at the end of Section II.2, the ordering for the continuity

equation becomes.

[M, 5 , M] ~M5 .
Py 8
Here the terms in square brackets give the relative size of the gradients of
the parallel, dlamagnetic, and radial fluxes, respectively. The parallel and
radial terms are always included because we are interested in 2-d flows. The
diamagnetic term makes no significant coatribution if BP << M.
Applying similar considerations to all the remaining e;ﬁations ylelded a

self-consistent ordering. The resulting equations are presented below, where

the ordering is written to the right of each term.

L
Total parallel momentum balance x _%,+ ordering
0= —VlP (pressure gradilent) A
P
- S d 2
myuy 351 (momentum 41lution) GBH

E
+ P {neutral friction) 65( ;O)I/ZMZ

| T
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et 1 2
- (-—%Elv) (viscosity) 6 M, o ¥
X ] P 1A
B € i
2 2
- ;-mivlui (ram pressure) M
> > > 2
- nmi[ui x {y x ui)]l (Corivlis Fforces) M, 6P1M .

where termg of order (me/mi) have been omitted, Ap = VIP/(P/LI), VIP = ﬁVIP,
and £4, is the average energy lost by the ilons per charge—exchange event.

The significance of the ordering denoted above for the parallel momentum
balance 18 as follows. First, the pressure gradient must be balanced by terms
which, under the assumptions adopted here, turn out to be of the order M2
where Mz << 1. This 18 consistent with detailed numericgl calculations of
parallel flow <iistant from a wmaterial boundary.4’3’7 Second, neutrai friction
and momentum dilutfion due :o electron impact ifonization of cold neutrals can
be significant unless the neutral density 1s small (1.e., unless 65 << 1).

Third, there are two viscous forces of order & M and one of order

Py
6§M/A. The only significant viscous forces 1in this equation are due to

shearing of the parallel ifon flow velocity, uy g- One term of Ufépiﬁ)

corresponds to the gradient in the diamagnetic directifon of the radial shear
of the parallel flow. The other term of OIBP M) corresponds to the radial
gradient of the diamagnetic shear of the péiallel flow. The familiar

("classical™) term ofdﬂéinz/A) corresponds to the radial gradient of the

9
1,1°
other forces in the total parallel momentum balance at very large

radial shear of u The viscous forces are never small compared to the

collisfonality where 6 < M.
Py ~

i
Finglly, the dimportant inertial terms include ram pressure and
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components of the vorticity &i =9 x ﬁi . These latter “"Coriolis forces”

arise from radial and diamagnetic gradients of the parallel flow velocity.

Like the viscous forces, the term involving Zb 1 -V x Gd 1 is ucgligible at
’ 14
very large collisionality where 6P << M.
i
Radial ion tramsport x 1 . ordering
nv
th,1
-1
nu (radial ion flux) 5 M
¢,1 Py
B n p
- ._ EI.[ﬁJ (Coulomb friction) Mrs (E";)l/2 —ul
1p, T * - i
1
>
+ Fi {neutral friction) 0
»>
~ myuy 8y (momentum dflution) 0
> > +
+ m ouy x[V x 1+ ) (Coriolis forces) 0
oIl L
-z ——Eﬁl—l (viscosity) 0
B s

where
T 1 e/ e/ ]) ’

and the poloidai gyrofrequency 1is Qp = eB /mic , and 0 in the last column
indicatee terms which do not contribute to highest order in €. Three
terms, §T-§P, §T.ﬁ¢' and ﬁT-ﬁ(uz/z) , are 1dentfcally =zero for toroidally
symmetric systems and, therefore, have been explicitly excluded above. The

dominant contributions omn the right-hand side are neoclassical terms and arise

from the parallel thermal and frictional forces. That is
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s > *+
'Ry ~ BBy g o
where
a3
E =B n$ T + m av 21
1,1 o le e e (en) ?

with v = 8[2n)1/2ne41nA w 1/2/(3m T3/2)1 24
e e e 1ie

@ = 0.5129 and g_ = 0.7110.2}
[0} [}

Heat balance for the ions

0~ [E-nu -VTi (advection
+ P, Veu k)
1Yy and wor]
+ 3-;1 (conduction)
A (heating by fast neutrals)
du 1
+ I _TE (viscous heating)
af,i Ox
af B
+ Q1 (Coulomb interchange)
> >
+ ui-Fi (neutral friction heating)
- l‘m uzs (ram energy dilution and work)
2 1474
+ 2-T S (energy dilution)
2 174

the electron collision frequency,

L
—~- + ordering

X
Pv..
Vin, 4

A,

5
8
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wvhere

>
m

v,T,/ ('r1 n, ) ,

>
m

3n(Te - Ti)/P.

As shown 1in the Appendix, the highest order contributions to v.ai involve the

classical and diamagretic fluxes, corresponding to the thermal forces:

discussed by Braginskii, wvhere x denotes conductivity. The collisicnal heat

exchange between electrons and iomns, is

3
Q =3 nve('re - 'ri) .

The significance of the ordering of the terma in the ion heat balance
equation 1is as follows. As in the continuity equation, the diamagnetic
contributfons to advection and work are mnegligible for very lai-z
collistonality, when 6p <{ M. The radial ("classical™) and diamagnetic
gradients of the {on ;eat flux make importent contributions to the heat
balance. When Bpi << H, ounly tixe clasgical term contributes. We have avoided
cases where the neutral energy 1s large compared to the ion energy, so the LA
term 1s only 1mportant for neutral densities sufficient to effect particle
continuity (69 ~1 ). Since the collisional energy interchange, Qi’ must be
balanced by other terms in this equation, a limit is set on th~ dimensionless

measure of the temperature difference by AT < (mi/me)lle M. Finally, the

dilution of ion energy by the creation of neutrals must be congidered whenever
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neutral sources are important in the particle balance.

L
Heat balance for the electronsg X m=———- + ordering
Pv
th,1i
0= (2 i1 (advecti Mh, & M
3 “e e a on LT, pikT’
> >
+ P Veu ) and work) M, 8 , M
e e P
i
®131/2
+ ?-E (divergence of heat flux) [6 , (—i] / A.A1,0,6
e P m T
i e i
- W, fonization and radiation) _%2.65 M
o A
-Q (Coulomb interchange? L~E)1/2 L
i m, A
3
+ E—Tese (energy dilution) M
a5
+R -3/(en) {(Joule and Thompson heating) (—EJIIZ 1 , & KT
e m, A Py

Here E_, 1s the energy loss per el.ctron impact fonization event. To evaluate

this equation, we wused Ge = Ei - 3/(en) , Where 1t can be siiown that

Y e = uﬂ,i » Uy e - U g’ d,e + ud,i <« ud,i . (The symbol » 18 defined

by @a *b=> a ~b and |a-b] << |a].) The dominant terms in the heat balance

and u

equations are as follows: (1) for 3 oV , the parallel and perpendicular heat
e =z

flows both contribute, where the terms are listed in the order 1 , d, and ¢ ;
(2) similarly, &all three components are important for the term P V-ﬁe 3 (3)
e

the divergence of the electron heat flux is dominated by the effects of

parallel currents and thermal conductivity, and by diamagnetic heat flow; and

{4) the ﬁe-j term is dominated by Joule heating and Thompson heating due to

-
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current flow in the parallel direction.

The ordering of the electron energy balance is similar to that in the ion
anergy balance except for thermal conductivity and frictional heating. In
contrast to fon conduction, a parallel gradient of electron temperature 1is
important, but a radisl gradient 18 Iinsignificant. When 6p1 ~ M, there are
also various contributions due to diamagnetic conductivity and the Pfirsch-
Schluter currents. In addition, there are significant contributions from
Joule heating Jdue to parallel currents and Thompson leating due to the
parallel temperature gradient ﬁlTe . These arise from thermoelectric forces
along open field lines even in the absence of an electromagnetically induced
electric field.

Continuity of current density

\

> > »>
Ve[, + 1

where the expression jd ~ %.ﬁ x V¢P , Blnce 3-3¢can be shown to be small.
The ejuations above summarize the terms which should be retained in a

numerical soluticn of the fluid equations (under the cestriction 6p S M,

discussed below). 1

ITI. DISCUSSION

The solutions to the ordering formulation of the fluid equations restrict
the parameter space over which the equations are valid. The radial ion
balance quation requires that the temperature gradient and mean free path

parameters are
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AT <1,
o 172 %
ey1/2 "1
LIS (;I) -

since we assume

M
5
Py

21 .

Using these results in the lon heat balance equation yields limits on the ion-

electron temperature difference

2
by $ api «1,

which {implies that :

Similarly, the electron heat balance equation limits the size of the source

function since, to avoid excess ionization and radiation losses, we require

Eeo
T %St .
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Finally, the parallel momentum balance equation leads to an estimate of the

pressure gradient

The density and temperature regime where these equations are valid is
determined by the machine parameters &, q, and B. The boundary of this regime

is given by M ~ 6p and A ~ (me/mi)l/2 6p and corresponds to small pressure

i i

gradients, A << 1, and 1large temperature gradients, AT ~ RT ~ 1, We have
P 1

evaluated the density and temperature space where these equations are valid

for typical conditions, such as those erpected in Tokamak Fusion Test Reactor

TFTR (see caption in Fig. 1). For any given temperature, we determine A and,

from cur upper limit on the dimens inless poloidal gyroradius 6§ ~ M, the

P
i
perpendicular scale height, L¢. At T = 10 eV and n = 1014 cm-3, we find

A = 1.73 x 1070 ,
§ = 0.105 ,
Py
L =1.2 cu
¢

For the case 6p ~ € (consistent with the limitation on 5p <M< ), the
limitation on n ind T 1s shown in Fig. 2 with valid solutioni restricted to n
and T helow the solid line. (Below T .= 10 eV, the reaction rate coefficient
for electron impact ifonizacion becomes much smaller than the rate coefficient
for charge exchange, and the sources due to electron impact ilonization becore
negligible.) Along the upper boundary of the regime of validity in Fig. 2

the perpendiculsr scale height is given by
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L o (0.12nA )L (cm)(n/L0™")
L =1.28x10 -3 Z 575
¢ € (p/10%) (T, (eV))

where B 1is 1in gauss, and RnAe 1s the Coulowb screening factar for
electrons.24 If there are sources present, then the solutions are further
restricted to T ? 65Eeo; this restriction is indicated in Fig. 2 for 6B =1, ¢

and 52

where Eg, ~ 40 eV for temperatures larger than a few eV.

It is instructive to compare our formulation of the fluid equations with
previous calculations anc wuieis 01 the axisymmetl.ic Scrapev.. region. We
will use the 2-d transport model of Petravic et al.A as an example. These
authors presented a simplified set of equations for axisymmetric plasma
flow. Their motivation fer using these equations was the need for a
numerically tractable system with sufficient physical content to give insight
into scrapeoff flows at reiatively low collisionality. Not surprisingly, some
modifications and additions to this simplified szt of equations are necessary
to give a complete description of collision dominated flows. To make a
comparf<on, it 1is necessary to rewrite our equaticas in the form of Petravic
et al. and replace their arbitrary cross—field diffusion term D(3n/3dy) by
(-nu¢,i), which can be determined from our radial ion transport equation.
Below, we discuss which terms in the equations of Petravic et al. have to be
modified and which terms must be added.

(1) In the continuity equation, the diamagnetic flow, V-ﬁd 1 should be

b

included in their equations.

(2) In the parallel momentum balance, the diamagnetic and radial
divergence of the viscosity terms, H! 4 and I, ¢ respectively, must be
* 3 i

included. Furthermore, Coriolis force terms proportional to (ﬁi x ¥ x 31) and

arising from the diamagnetic flows are missing from their equations.
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(3) An 1ion energy transport equation (i.e., & Bernoulli's equation
including mechanical energy) can be derived {rom ocur conservation equations,
and a comparison with that of Petravic et al. shows significant differences.

Our full equation is as follows.

L
Ion energy transport x ——— * ordering
Pv
th,1
+ >
0 = —Ye(~ T, nu } (thermal energy) M, 6 , M
- 11 Py
+ 1 2 +
- v-(i-miuinul] (ram energy) 0
> > 2
- Veq (conduction) 0,6 , 68./a
1 P,
E
+ Wi (heating by fast neutrals) —%E-H 65
- E ~9— (H u ) (viscous heating) 0
ox af,1 a,i
ap B
T 1/2
+Q (Coulomb interchange) ) I
1 m1 A
+
= ug VP, (work, and M, 6p , M
i
>
+ 3 9p dissipation 0
en e
+ E'E due to 5 e¢
Py Te
2
3R o %
- £ Coulomb friction) (—EJI/Z 1 , 6 A
en o, A Py
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where we have set ¥ = -V and again noted the order of each potentially
significant term. The correspondin, equation of Petravic et al. can be

written as

> + 1 2 on
- _— + = - adundi
Voleu(z Ty + g mgyy)] SE1 U1 ox,
vhere SE is an enerey source rate, the term D(2~/dy) + —nu¢ {0 Petravic et
i ’

al.'s coordinates § and y are replaced by 1 and ¢ , respectively, and we

define vo = Gl(a/axl) + G¢(a/ax¢). A number of significant differences are

apparent. First, thelr equation applies only if

where the electrostatic potential ¢ 1is chosen to be zero at some reference
pcant within the region of interest. Second, even within these limits, this
equation omits the electron—ion exchange term and the radfal component
of ﬁi-ﬁPe. Unfortunately, the assumptions required tc obtain the formulation
of Petravic et al. are not generally valid since diamagnetic terms may be
important, and KT may be ~ 1. 1In such cases, ion conductivity perpendicular
to the magnetic field has to be included as well.

A clos~ inspection of the lon energy transport equation suggests that the
solutlion for the plasma properties should be based on the ion heat balance;
the lon energy transport equation 1is useful and necessary only 1f one wants to

determine the electrostatic potential, ¢. The ordering equations yield an
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estimate for ¢ of

ed N M
T "%
e Py

which 18 > 1 for the conditione discussed here. Accordingly, the expression

[—ﬁi‘VPE + 3-(3Pe —enf - ie}l cannot be replaced by -uy

,1Tebn/bxl, as in the
formulation of Petravic et. al.

(4) The comparison of electron equations i{s essentially identical to the
comparison of ilon equations except for the thermal conductivity, V-ae , where
the diamagnetic term must again be included.

Finally, we note that, in general, the classical (radial) collisionsl
contributions (~ 6§/A) can be neglected in these transport equatioms only for

)1/3 1

very small aspect ratios where € >> (me/mi , assuming @ ~ € ~. (We have

not fnvestigated the consequences of orderings for the safety factor other

-1

than ¢ ~ € °, but this should require only another application of the

methodology outlined above.)

V. SUMMARY

We have determined the relative importance of the contributions to the
fluid transport equations for an axisymmetric scrapeoff region including
sources where diamagnetic flows contribute to, but do npot dominate, the
continuity equation. We discovered tiat a number of important physical
processes have previously been neglected. The physics which leads to these
results 1s as follows. The parameter regime of interest is dominated by end
logses in the open field line geometry. These losses are balanced by radial
transport only when the perpeadicular scale height, L¢, becomes B0 small that

sufficient radial transport can be drivem by the dominant neoclassical
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frictional forces (see Section II1). At large collisionality, classical fon
conduction and viscosity produced by 1large varistions across the radial
direction can dominate plasma transport (hatched region in Fig. 2). Unless
the collis’onality is extremely high, well within the hatched region in Fig.

2 the diamagnetic flows, driven by relatively large radial pressure

’
gradieats, can be as Important. as the flow along open field lines. In some
cases, where the fluld theory 1s still wvalid, diamagnetic flows can even
dominate the particle and energy balances ("diamagnetic flow™ region in Fig.
2). All of these physical processes must be considered to obtain a correct
plcture of plasma transport in scrapeoff plasmas where fhey make significant
contributions to the transport of particles, energy, and momentum.

The parameter space of density and temperature where these estimates are
valid 18 a function of the collisionality through the restriction A
< (me/mi)l/2 6p . Since A 1s 1inversely proportional to the collision rate,
any turbulent p:ocess not included in the transport coefficients as derived by
Braginskii,il which 1increases the effective collision frequency, should
decrease the effective value of A. Wth such a modification, our reduction of
the fluild equations might be valid for lower densities and higher temperatures
than indicated in Fig. 2. In the future, it will be important to extend our
analysis to regions of higher temperature and lower density where 6P1 >M .

It would also be desirable to look at larger parallel pressure gradients vhere

the parallel flow may approach the sound speed; i.e., M ~ 1.
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APPENDIX
Here we demonstrate the method of deriving the ordering equations by
evaluating, as an example, the conductivity term in the equation for heat

balance for ioms,
Veq. . . (A1)
The heat flux has the following three components defined by Braginsk1121

> 3
9 = "‘u,ﬁlTi - "1,1311'1 + "‘,1[5 x ¥ ], (42)

2
where Kl,i = 3.9 xo, Kl,i ~ 2 (vilgi) Ko, and K“,i = 2.5 (Vi/Qi) Koo and

Ky = nTi/(mivi). To begin the ordering procedure, each of the terms of Eq.

(Al) 18 evaluated by substituting explicitiy for the conductivity and

multiplying by LI/(Pv ) , which provides a convenient scale for the ion

th,{
heat balance equation. The divergences and gradients in Eqs. (Al) and (A2)

are replaced by the inverse of the characteristic lengths over which the
variables change, as follows:
(1) Parallel term
K nT
BLot vt () A (a3)

(55—
Pt Ly I LT .

2
where xTi = VlTi/(TilLl). We now replace P by ~ nTi’ and Ty by ~ mivth,i'

Using the definition of the Iinverse colligionallity, A, in Eq. (A3), then

yields
L v
1 th,i
(——)¥e(x, ¥,T,) ~-22Ln  ~mn . (A%)
Pvth,i 1,111 Luvi Ti l'i
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Simflarly, the remaining contributions cam s¢ writtem as a “perpendicular
term” and a "diamagnetic term.”

(2) Perpendicular term

PvLl SIAEN PvLI :T:a :1)2 Tii
hi th,t "1™t 101y
v v.2 L. 2 &
th,1 1 (45)

(3) Diamagnetic term

The diamagnetic contribution to the divergence operator 1is replaced
by L;l. Contributions to the action of this operator on the Ka g tern
in Hi can arise from gradients in both the parallel and radial direction;
however, only the latter 1is important because L¢ <« L, The diamagnetic

contribution becomes

2
I RS U L B R 5 46)
L¢Ld Qi le1 Ld QiL¢ Py

Therefore, the ordering terms for the ion conductivity term in the heat
balance equation are
Ly

.a 2
[PVEETIJ v 9, * [AKT1’5p1,51/A]- (A7)
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We will now show that the parallel contribution can be neglected in the
fon heat transport equation. This demonstration is made by evaluating A in
terms of 6p , a relationship which can be found from the ordering of the

1

radial ion transport equation. First, we project out the toroidal component

of the total momentum balance equationm,

> F 2 »> > +
mana(u-V)ua = Da“a[v(“alz) Tug X (V X “a)]

oll

= x4 B+l xR) 4R 4 F —mds, 48
a BxB a a c a a a aaa
using19
1/2
- & § . (a9)
e q T

Applying (A9) to (1/c);a x B , yields naﬁa-§¢ , and the resulting equation can

be written as

172 %
n;.m,_s_s__TTa, (A10)
aa €, q BT
where
> > +» ana a
2 =% +F -ols +mnu x [V xa)-¢ —afa (All)
a a a a aa aaa a B bxa

For a toroidallv gymmetric system, the terms involving WP, E, and V(uZ/Z) are
identically zero 1in (Al10) and have been explicitly omitted from Ks in Eq.

(All1). The ion transport form of Eq. (410) can be cast in a more convenient

form by dividing both sides by nv |$¢| and, according to the definition

th,1
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of B in Section 2, using [?¢| = RB and 31/2 = qR/BT s 19
P
+> >
7 S 1 Br [BT'Ai]
B B B ’
th,i th,i T p T
> >
- - 1 1 3_[BT.A1]
o ’
Qi mivth,i € BT
&5 L
py e Bk .
- T (A12)
m v2 BT
i th,1
To write an ordering equation for (Al2), we replace mivih 1 by ~ P and us . the
»

ordering for the continuity equation, Uy, i/L¢ ~u, 1/LI , in Eq. (Al2) which
» »

then yields
L, B %

M I T 1
Moo 13
5 B (A13)

Py
It can be shown that all the terms in gT.Ki on the right-hand side are small

compared to §T.§i , and only the parallel component of ii is important. This

parallel friction term is taken from page 249 of Braginskii21 and can be

written
L LI Jl
_F-Rl,i = _F-( - Bonvl‘e - aomuuve E;J
L m, 1/2 J
. - - I 1 Lk
Bo)‘T % n v2 me(me Y{ en
i th,1
m 1/21 I,
= _Bo)‘T - ao(m_ A env 4 (A14)
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where a = 0.5129 and ﬁo = 0.711. Tr evaluate this further, we need to
estimate J! . From the equation for current continuity, assuming as in the

main text that the Sy - S, term 1s swall, we have the ordering equation

o

J
,LLN Ld . (A15)
14

assuming as can be shown a posteriori from the difference between the ion and

electron radial flux equations, that

J J
T& << fl . (Al6)
¢ ]

The ordering equation for Eq. (Al3) then becomes

1/2 J
M (q/ d
s el () R it @)
Py 1 th,1

The diamagnetic current can be estimated by using the radial ilon momentum

balance to find ud . We will aot derive this result here but, as noted in
’

the text, a self-consistent analysis of all the terms in this equation (for

the assumptions adopted in this paper) yields the usual reault,19

3. ~S g e B
a~ % "V¢P| B L,
cnm, v
1%¢n, 1 )
~ 1 tht . A8
BL, &2V h,1°%1 (a18)

Substituting Eq. (Al8) into (Al7), we have the ordering for A in terms of

other parameters given in the text,
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It can be shown, again a posteriori, that
consistent with continuity and the totsl energy b:

62
n, 1/2 Py m, 1/2
a~ (=) —5 <) b, »
1 i i

~ 1
and lTi RT 5 (by which we mean either XT [<¢
into Eq. (A7) gives the ordering solution preser

heat flow,
Ll > 2
I,v____ii-qi ~ [o, 5, » 65/8) ,
th,1 i
m_1/2

since the parallel term Aj
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FIGURE CAPTIONS

Fig. 1. Field lines and coordinate systems used to describe the axisymmetric

Fig.

2.

scrapeoff region. The solid line indicates the reglme Iin which the
equations derived inm the text are valid. While the dashed 1line
indicates the reglon near the limiter where the parallel scale height
is too small for the validity of our assumptions. The geometry shown
.orresponds to TFTR parameters with R = 254 cm, a = 91 em, Ryypypar =
163 cm, and By = 4 x 10% Gauss. For a deuterium plasma (A; = 2) the
value of € = (me/llli)]‘/8 = 0-,358 and with ¢ = ¢l the coordinate
lengths are: 1, = 1390 cm and L; = 178 cm. Only a portion of the
axisymmetric limiter is shown.

The density and temperature range over which our solutions are valid

are shown here for the parameters listed in the caption for Figure

1. The boundary corresponds to § = M and thus g = (me/mi)l/2 5 ;
14 P
i i
within the shaded vegion &6 < M. The dashed 1lines indicate the lower
Py~
bounds on the temperature when sources are present corresponding to

different values of the source function scale factor, 63.
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