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Abstract 

Lat H - - A + V be defined on L 2( lR n), n >_ 3. Let V - Vj + V 2 > 

V, 6 L p(lR n), for some p > 2n/3, V 2 6 L*(K
n) and |x|3V/3|x| relatively 

form bounded with respect to - A with relative bound < 2. It is proven 

that there exists an o > 0 such that V o >. a , e a' x'*(x) £ L 2(IR n), 

where ty denotes an L2-eigenfunction of H. Related results are also shown 

to hold for many body Schrödinger operators including atoms and molecules. 
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I. Introduction and Results 

In this paper we consider eigenfunctions of Schrödinger operators 

H « - A • V , (1.1) 

defined on L 2 ( lR n ) , n ^ 3, with V a real valued mult ip l icat ion operator. 
We w i l l deal with potent ia ls which sat i s fy the following condit ions: 

(a) V - V, + V 2 (1 .2 ) 

with 

V, 6 L P ( * n ) , p - 2n/3 • 6, 6 > 0 , (1 .3) 

V 2 6 L " ( I n ) . (1 .4) 

(b) Let x • ( X j , x 2 , . . . , x n ) , x i 6 R, i « 1 , 2 , . . . , n , r - | x | . 

Let JL. - {x 6 lRn: r > R } where R i s arbi trar i ly large but 
o 

f i n i t e . We require that for every + 6 C (Q-. ) the dis tr ibut ional 
o 

derivative r3V/3r s a t i s f i e s 

/•* |r3V/3r|*dx <. a | | v> | | 2 + b | | * | | 2 . (1 .5) 

with a < 2, b < • . That i s to say r3V/3r i s r e la t i ve ly form 

bounded with respect to - A with re la t ive bound < 2 . 

Remark 1.1 
flD f| 

Condition (a) implies that H is essentially selfadjoint on C (1R ) 
and that it is selfadjoint on the domain of the Laplacian, D(- A) • 
« W 2 , 2(]R n) [1], where W 2 » 2 denotes the usual Sobolev space [2]. Further
more condition (a) implies via Theorem X.20 of reference [I] that V is 
relatively bounded with respect to - A with relative bound zero. 

||Vu||2 i€||Au||2 +k(c)||u||2 (1.6) 



for all u 6 W 2» 2(Ä n) and e > 0 with 

k(e) I D E ~ 3 ( , " Y ) , Y - Win* 6«) . (1.7) 

OD 

D is a suitable constant in which the L -norm of V- has been absorbed. 

We notice that the proof of Theorem X.20 of ref. [1] extends to n * 3 

for p > 2. 

Our main result is the following 

Theorem 1.1 

Suppose 4» satisfies H> • E^, with E the corresponding real eigenvalue, 

H given by (1.1) and V satisfying the conditions (a) and (b). Then there 

exists an a > 0 such that for o 

•» «o . e ° l X l M L 2 ( * n ) . 

We shall state also an analogous result for n-body Schrödinger operators 

with 2-body potentials including the case of atomic and molecular Hamiltonians. 

Let 

N 
L - - y a.. 7. v. (1.8) 

where V., 7. denote the 3-dimensional gradient operators and a.. G R, 

1 <. i,j £ N. We assume that the matrix iL. • (a..) is positive definite. 

We consider the following eigenvalue problem 

(L + W - E) *(x) - 0 (1.9) 

.(1) J2) „(NK a -3M 
wi th x. € I

3, l < i < I , « - ( x u \ x v / ; x w ) e Ä J 

W(x ) - I V(x ( i )) • 1 V..(x ( i ) - x ( j ) ) . (1.10) 
i-1 i<j 1 J 

E denotes the eigenvalue with i|>(x) the corresponding eigenfunction. 

Conditions (a) and (b) on the potential are now replaced by 

(a') V i (y) , V (y) G LP(R3) + L"OR3) for son» p > 2, for a l l 1 < i , j < N. 
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(b') Let V(y) denote the multiplication operators V. respectively 
V.. on JR3. We require that |y|dV/3|y| (the distributional 
derivative) is relatively form bounded with respect to the 
3-dimensional Laplacian with relative bound zero, that is to 
say for all e > 0 there exists C(e) < » so that 

/|*i2|y|av(y)/a|y|dy < E ||v*||2 + c(e) ||*||2 ( i .n ) 

for all + € W 1 » 2 ( » 3 ) . 

Theorem 1.2 
Suppose ty satisfies (1.9) and W obeys condition (a') and (b')> Then 

there exists an o > 0 such that for a > a_, e ' '* g L (R ). O - — o 

Remark I.2 

By removing the center of mass motion from a Hamiltonian describing 
an atom or a molecule consisting of N+l particles one arrives at Hamil
tonians as given in (1.9). The restriction to 3-dimensional particles is 
meaningless. Theorem 1.2 holds also in the case of Hamiltonians describing 
N-particle systems consisting of n-dimensional particles (n ̂  3). 

Unfortunately Theorem 1.1 and Theorem 1.2 are not very strong. They 
simply tell us that an eigenfunction of a Hamiltonian as given in (1.1) 
and (1.9) decays in an averaged sense not faster than exponentially. 

The situation is a lot more transparent for the case of upper bounds 
to subcontinuum wave functions and lower bounds to groundstates. For the 
atomic case upper bounds have been (to cite-only the most recent results) 
derived by T. Hoffmann-Ostenhof et al. [3], Deift et al. [4] and Ahlrichs 
et al. [5]. The most general result is due to Agmon [6] who considers 
general many particle systems where condition (a) respectively (a 1) is 

n OD 

replaced by V 6 I/+ (L ) , p > n/2 which means that V can be split into 
two parts, V. and V» with ||V2|La> arbitrarily small. Even exponentially 
decreasing upper bounds to eigenfunctions of pseudodifferential operators 
have been recently obtained by Sigal [7]. Lower bounds for groundstates 
of two electron atoms have been obtained by T. Hoffmann-Ostenhof [8] and 
in ref. [5] exhibiting the same exponential decay as the upper bounds. 
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Recently Carnona and Simon [9] showed that the Agaon result is in some « 
sense optimal. The Agaon Carmona Simon results [6,9] tell us that any 
mathematical groundstate +(x) (positive) of a Hamiltonian with potentials 
satisfying the conditions indicated above obeys lim -[In •(x)]/p(x) • I, 

1*1-*-
where p(x) is an explicitly computable function depending on the spectral 
properties of the considered Hamiltonian. Lieb and Simon [10] (general 
many particle systems) and Combes et al. [11] (Heliun groundstate) obtained 
even more detailed results for groundstates. 

No such results are available for excited states, because excited 
states have nodes and the methods to obtain lower bounds (Maximum principle 
+ Harnack inequality [5,7,12], path integral ideas [9]) do not work in these 
cases. There is even a class of potentials for which the Agmon Carmona 
Simon result holds for groundstates but for which in the case of excited 
states eigenfunctions of compact support have not been ruled out yet. 
However, for special cases the strong results of Mercuriev [13] (three-
particle systems with short range potentials) and Bardos and Merigot [14] 
(one-particle systems) are available. 

Our approach is somewhat related to the methods used recently by 
various authors to prove unique continuation theorems for elliptic partial 
differential operators [15-18]. In fact our 1/-condition (1.3) on V. is 
the same as the condition required by Saut and Scheurer [18]. 

To conclude this section we sketch the main ideas of the proof of 
Theorem 1.1. Theorem 1.2 follows from Theorem 1.1 quite easily. 

First we note that any L2-eigenfunction of (1.1) is uniformly continuous. 
This follows from the fact that for eigenfunctions of a Hamiltonian whose 
potential satisfies (a) Harnack-type inequalities hold [19,20] which imply 
continuity and for our case even Holder continuity [19]. 

As a consequence we have 

r e o r * e W ^ 2 ( i e ) (1.12) 

for differentiation introduces only — t e r m s . We shall assume that r e 4> € 
6 W 2' 2(lR n) for arbitrarily large o and derive a contradiction. 
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The start ing point for the proof i s the ident i ty 

| | r e a r A * | | 2 - ||r e a r (V-E)* | | 2 . (1 .13) 

In sect ion II we derive a lower bound to ||r e a t A f || for f € W 2 » 2 ( » n ) n 
(1 C (K ) which may be interest ing for i t s e l f - we do not claim o r i g i n a l i t y 
since there i s a rich l i t erature on inequa l i t i e s re lat ing weighted Sobolev 
spaces. Combining th is bound with an upper bound to the r . h . s . of (1.13) 
leads to a lower bound to ||r e } \ \ 2 with an exp (a 0 behaviour for 
large a, and some 6 > 0 . 

In sect ion I I I the basic ident i ty i s 

I< e 2 o r

x r 2 * * ( H - E ) r | * dx « / e 2 a r r 2

X * * ( r - ^ • 2(V-E))*dx (1 .14) 

_» ,_n x where x i s some pos i t i ve C (R ) function with support in n_ . From (1 .14) 
o 

we derive an upper bound to ||^x r e o r ^ | | which behaves for large a l ike 
e a for some c > 0 . In sect ion IV we complete the proof of Theorem 1.1 and 

show how Theorem 1.2 follows via Theorem 1.1. 

I I . A Lower Bound to ||r e ij<|| 

We s t a r t with the following 

Lemma 2.1 

Let f be continuous and f 6 W 2 ' 2 ( m n ) . Suppose e a r r Af 6 L 2 (lR n ) 
and e o r / r f € L 2 ( * n ) , then 

| | r e o r A f | | 2 > .4a 3 | | r I / 2 e o t f | | 2 + 2 o 2 | | e o r f | | 2 . (2 .1 ) 

Proof of Lemma 2.1 

Suppose f i r s t that f 6 c"(Ä n ) and that the integrals in (2 .1) e x i s t . 
We consider f in spherical coordinates f * f ( r ( ) f ( " x /r . Following 
Schechter and Simon [ I5j we expand f 



n-1 
2 

r f<«> " I fA,m ( r ) Y i . » ( ° 

where the {Y. } are surface harmonics which form a complete orthogonal K.m . 
s e t i n L 2 ( S n " ' ) with S the uni t sphere | x | « 1 in R . The f (r) are 

X 9 UK 

given by 
n-1 

f • m<r> * r 2 ' £ < r C> Y I m<*)<lC • 
s n ' 

Denoting 

L f(r) : - f" - s(s+l)r~ 2 f , s » Uli + n - 3) 
s L 

where the prime denotes d i f f e r e n t i a t i o n with respect to r we have 

n-1 

V L f. (r> Y % A f ( r t ) - r 2 J L s f ( r ) Y ( O . 
fc.m ' 

Using the orthonormality of the surface harmonics we obtain 

| | r e a r

Ä f | | 2 - I / | L £ |2 e 2 o r r*dr -
I, m 

• I C/ |f J J 2 r 2 e 2 a r d r • s^s+l )* / | f £ J ^ ' V ^ d r 
t,m ' ' 

- 2 Re s(s+l) It* m £" m e 2 a r d r } . 

Partial integration leads to 

||r e a r Af || 2 - J / { | f j J 2 r 2 e 2 o r d r • 2s ( s + l ) / | f j n l 2 e 2 o r d r 
l,m ' ' 

- 4s(s+l)a 2 / | £ , J 2 e 2 o r d r • s 2 ( s + l ) 2 / | f , J 2 e 2 ° V 2 d r } . (2.2) 

By the Cauchy-Schwarz inequality 

f\i>ltJ**2ar*r >_a* f\fltJ2e2°'6v ( 2 . 3 ) 
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and by applying Cauchy-Schwarz twice we get 

/ | f » > m | 2 e 2 a V d r > . * / | f 1 > m | 2 r 2 e 2 a r d r • 4a* / | f ^ J 2 r e 2 a r d r 

+ a 2 / | f ^ m | 2 e 2 o t r d r . (2 .4) 

Combining (2.2) with (2.3) and (2 .4 ) we get 

| | r e a r A f | | 2 > V { / ( a 2 - s ( s + l ) r ~ 2 ) 2 r 2 e

2 a r I f . | 2 d r 
" l l m *•" 

+ 4ct3 / r e 2 a r | f 0 | 2 d r + 2a 2 / e 2 a r | f f f l |2dr} > 1 Ä.,m' ' £.,m' — 

Lt*a* | | r l / 2 e a r f | | 2 + 2a 2 ( | e a r f | | 2 . 

Hence (2.1) holds for f 6 C (K ) provided the occurring integrals e x i s t . 

Now we have to show that inequality (2 .1) holds also for f 6 W2»2(1R ) D 

n C°(lR n). For this we regularize f. Let J(x) e C°°(]Rn), J(x) > 0, J(x) = 0 
o _ — 

for |x| >_ 1 and /J(x)dx « 1. For E > 0 let J (x) * e~ n J(x/e) and for 

u e L{ o c(]R
n) let u .-•• fj (x-y)u(y)dy = J *u. We have u € c'dt"). 

Suppose e r u 6 L2(]R ) for some m ^ 0 and o ^ 0 . Then, by Cauchy-Schwarz' s 

inequality 

|u (x ) |2 <_/ J ( x - y ) ! u ( y ) | 2 j y 
K n e 

and further we get 

/ e 2 o t r r 2 m | u ( x ) | 2 d x <_! / e 2 a r r 2 m J(z) |u(x-ez) | 2dxdz 1 

K n e m n \z\<\ 

< sup / e r |u(x-ez) | 2 dx < 
[z|<_l lRn 

<_ sup / . e 2 a ( l y l + e l z l ) ( | y | + 8 | z | ) 2 m | u ( y ) | 2 d y <_ 
\z\<\ K n . 

2 a e r , 2ar 2m • , » u , . / , . , . . r /2m. k , 2ar 2m-ki , x i 5 . i <_ e t /e r |u(x) | 2 dx + ( l - 6 _ ) \ ( ) e /e r | u ( x ) | z d x ] . 
k»l * 
k (2 .5 ) 



This implies 

lim sup / e ^ r ^ l u | 2 dx <. / e ^ ' r ^ u C x ) | 2 dx . (2.6) 
e-K) E 

Since f G C°(* n ) we have 

l i m e 2 t r r ^ l f ( x ) | 2 - e 2 o r r 2 " | f ( x ) | 2 

e-O e 

pointwise and by Fatou's lemma 

/ e 2 o r r2m | f ( x ) | 2 d x . , l i m i n f e 2 « r 2 « | f ( x ) ) 2 d j t ^ 

e-K) E 

< lim inf / e 2 a r r 2 * If (x) | 2 dx . (2.7) 
£-»0 C 

Hence (2.6) with u • f and (2.7) imply 

lim / e 2 o r r 2 " |f | 2dx - / e 2 o r r 2™ |f | 2dx . (2.8) 
e-K) E 

Now we choose u - Af and m » I in (2.5). Since f € W 2 » 2 ( » n ) , Af (x) -
e 

- (Af) (x) and 

l im sup / e 2 o r r 2 | A f | 2 d x £ / e 2 a r r 2 | A f l 2 d x . ( 2 . 9 ) 
e-K) e 

The L 2-conditions on f and Af imply with (2.5) that (2.1) holds for f . 

(2,8) with m • 0 respectively 1/2 and (2.9) imply that if we replace i 

by f in (2.1) and take the limit e -*• 0 on both sides that (2.1) holds 

also for f. D 

Remark 2.1 

We also tried to obtain related inequalities for ||r Y / e a r A f || , but 

only for Y • 2 our procedure was successful. Lemma 2*1 appears to be related 

to a family of inequalities of Hörmander [21] which have been used for 

instance by Georgescu [16] and Saut and Scheurer [18] to prove unique con

tinuation. Note however the different powers of r occurring on both sides 

of (2.J). 
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Next we shal l derive an upper bound to ||r e AiJ»|| from which together 

with Lemma 2.1 the desired lower bound to | |r e 4ij| w i l l follow. 

Lemma 2.2 

Let H* » E î, with H given by (1 ,1) and V obeying condition ( a ) . Suppose 
e a r r > € W 2 , 2 ( ]R n ) for f i n i t e a ^ 0 . Then for su f f i c i ent ly large o and 
1 > e > 0 

| | e 0 r rA«| |2 <_ C{(ea-+k(e)) ||r e ° r * ! | 2 * ca3 | | r ' / 2 e ° r * | | 2 • 

+ eci2 | | e a r * | | 2 ) (2 .10) 

with k(e) given as in (1 .7 ) and C a suitable constant. 

Proof of Lemma 2.2 

Since W = V - E obeys condition (a) we have by Remark 1.1 for e > 0 

| | e a r r A * | | 2 - liw e a r r>H| 2 1 e | |Ae a r r* I!2 + k(e) | | e a r r * | | 2 . (2.11) 

Obviously 

| |Ae o r r ,H| 2 £ 3 [ | | e 0 r r A , H | 2 .+ 4 | | (V*)(ve a r r, | ,) | | 2 • | | * A e a r r | | 2 ] (2.12) 

and we proceed by estimating the second term on the r . h . s , of (2 .12) . For 
a su f f i c i en t ly well behaved real valued function f we get by partial i n t e 
gration 

| |fV*[| 2 » | |7f*| | 2 • / | * | 2 f A f d x . (2.13) 

Since if> i s an eigenfunction of H i t i s eas i ly seen that 

||7f(|/|| 2 + /W|f* | 2 dx - |kVf | | 2 . (2.14) 

The c-boundedness of W with respect to - A also implies e-formboundedness 
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with respect to - a. That means for any 6 > 0 there i s a constant C(6) 
such that for f* 6 W 1 » 2 (» n ) 

|| | w | , / 2 f + | | 2 <.« ||vf*||2 + C(6) | | f# | | 2 . (2.15) 

(2.14) and (2.15) lead to 

ll^+ll2 i-j4fi< ll*^H2 • C(«) | |f#|| 2) (2.16) 

for 6 < 1 and we get with (2.13) 

l!^*!l 2 ± 7 ^ ( l l * ' f l l 2 • C<«> | | f t | | 2 ) + / |*l 2«Afdx . (2.17) 

Identifying f with -|-(r e a r ) • (1 + o r ) e o r we have 

| | ( v * ) ( V r e o r ) | | 2 l [ [ | v * | | V r e o r | | | 2 <. 

i-j-Zj I | |+e° r (2a+ra 2 ) | | 2 • C(6) | | e o r * | | 2 ] • 

• a 2 / | * | 2 e 2 a r t-2—2- + 3na + (n+3)a 2r 2 • o 3 r 2 }dx . (2.18) 

Working out ||i|>Aearr|| and combining the inequalities (2.11), (2.12) 
and (2.18) we arrive at 

(1-e) | | e o r rA*| | 2 i C , { e / | « | 2 e 2 o r ( o , » r 2 • a 3 r • a 2 • 1 • ar"1 + r"2)dx 

* k(e) | | e o r r * | | 2 } . (2.19) 

Thereby the 6-dependence has been absorbed into C. and since we are inter
ested in large a we estimated every power of r by that term which contains 
the largest power of a. 

-I —1 
To bound the r and r terms in (2.19) we use (2.16) and get 
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Cauchy-Schwaiz implies the well-known estimate 

l |Ve a r *| |2 > l i ^ e ^ l P L^f^\\r~l ea%\\* 

and hence 

| | r _ l e ° r * | | 2 l C 2 a 2 | | e ° r * | | 2 (2 .21) 

for su f f i c i en t ly large a and suitable C«. Analogously using the well-known 
estimate 

| |V.«%|| >nzl | |r"' e a r » H 2 

1 1 " — 2 |, o r . if I!« • I I 

we obtain 

| | r " , / 2 e a r * | | 2 i C 3 a | | e a r * | | 2 (2.22) 

for su f f i c i en t ly large a and suitable C„. 
Inserting (2.21) and (2.22) in (2.19) y i e l d s (2.10) for e < 1. a 
Finally we shall obtain the desired lower bound: 

Lemma 2.3 

Suppose t|i s a t i s f i e s the conditions of Lemma 2 .2 , then for a suf f ic ient 
ly large 

||r e ° r * | | 2 i m , | | r , / 2 • € , % | | a 0 >_ » 2 o° e ° ^ (2 .23) 

where m. and ro» are suitable pos i t ive constants and o > 0 depends on the 

5 in ( 1 . 3 ) . 

Proof of Lemma 2.3 

As we already noted in the introduction ty 6 W 2 » 2 ( R n ) n C 0 ( » n ) . Hence 
by Lemma 2.1 and 2.2 we see that 
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4 a l | r , / 2 e o r * ! | 2 • 2 | | e a r *| |2 < c[( Ea2 + ^ . ) | | r e ° r * | | 2 + 
a 2 

+ e a | | r , / 2 e a r

< ( | | 2 • e | | e a r * | |2 ] . (2.24) 

By (1.7), k(e) _< D'e ' for suitable D'. Hence we get for sufficiently 
small e 

l | r , / 2 e°%| |2 1 ^ ( e o + D . E - 3 < , - ^ a - 3 ) | | r e % | | 2 . 

Choosing e « a with 0 < a <̂  , T we obtain 

| | r ' / 2 e o r *| |2 1Ma""°||r e a r * | | 2 (2.25) 

1 /9 rtT* 

for a ̂ a , a sufficiently large and suitable M. We regard ||r e i|>||2 

as a function of a and denote it by J(o). Then (2 25) can be written as 

Integration of this differential inequality from a to a gives 

„(l+o) 
J(a) > d e° 

for a > a and suitable d, from which together with (2.25) inequality — o 
(2.23) follows, o 

III . The Upper Bound to Hr e o r » | | 

Let x 6 c"(lRn), x radially symmetric, x 1 0, T ^ ^ O , supp X C ß R 

c 
and x " 1 -or r ^ R > R . Here R and fl_ i s as in condition (b). 

o 
Lemma 3.1 

Let t(> satisfy the SchrÖdinger equation H<> • Ê > with H given by (I.I) 
and suppose V satisfies condition (a) and (b). Suppose r e°"> € W 2 » 2 ( H n ) 
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for finite a, then for a suitable constant C and sufficiently large a 

i / o 2oR, 
llr e " x , / 2 +II2 i C e ' . (3 .1) 

Proof of Lemma 3.1 

First we consider (I.II) and derive it formallyT We have 

(H - E)x.* - - 2 |i- . i - 1,2 n . 
i 

Partial differentiation leads to 

f-(H-E)x.* - (H-E)x. |4- • |SL x.* - - Ä 
3x. i T * i 3x. 3x. i T . o 

i l l 3xt 
l 

and since 7 x. -r— • xV • r -r-, L l 3x. 3r 
l 

(H-E)r|£- - 2A« - r U # . (3.2) 

It is easy to see that (3.2) hold:; in the quadratic form sense since by 

assumption ri|» € W 2» 2(lR n) fl C°(lRn), r |^ 6 W 1 ' 2 ( m n ) the form domain of 
dr 

We shall also use the following relation 

(H-E)fi(i - - *Af - 27f7i|» (3.3) 

which holds in the form sense for sufficiently well behaved f. Choosing 
c 2 2ar . 
f • xc%e we have 
- /(xV^)(H-E)e 2 o rr2 x d x. 4 /||ife|2 e2ar ( c ( r3 + r2 ) x d x + 

+ 2 j> |i- e 2 o r

X [ 2 a
2 r 3 + (3+n)ar2 + nr]dx + F ((a) , (3.4) 

Thereby F and later on F 2, F«, F, will denote sums of integrals with 

integrands containing derivatives of x- Partial integration together 

with (3.2) and (3.4) leads to 
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/ e 2 a V X | * | 2 ( 2 ( V - E ) • r |J)dx - / r |£ (H-E)e 2 a r r2 X *dx -

« 2 { / | ! * | 2 e

2 o r ( 2 a r 3 • 2r2) xdx - 2a 3 / r 3 e 2 a r | * | 2 x d x - (3.5) 
dir 

- (5 +2n)Q2 / r 2 e 2 o r

x | * | 2 d x - ü ^ 3 - a / r | * | 2 e 2 a r

X d x - ^ / | * | 2 e

2 a r

x d x } + F 2 . 

Now by Cauchy-Schwarz's inequality and partial integration 

; | | 4 | 2 e 2 « r r » x d r > [ R e 7 # | £ e2orrm

xdr]2 J^Pe^Adr) - ' (3.6) 
0 0 0 

where we used x > 0, -r̂  > 0. For m * n+2, n+1 (3.6) combined with (3.5) 

lead8 to 

/ e 2 a r r 2 X | * | 2 ( V - E 4 r | £ ) d x > 

i a 2 / r 2 e

2 o r

x | < , | 2 d x - y ( n 2 - I • 2n)o ft e 2 o r

X | * ! 2 d x -

- l £ / e 2 a r e 2 a r

X | * | 2 d x * F 2 . (3.7) 

Since V obeys condition (a) i t is e-formbounded with respect to - A, so 

for all e > 0 

| | e o r ^ r * | V - E | , / 2 | | 2 i c | | V 4 r e ° r * | | 2 • C(e) \\/x r e a l >| |2 .(3.8) 

By condition (b) we have 

l |e° r ^ x r f l r j j l 1 % | | 2 < a | | v £ r e o r * | | 2 • b | | ^ r e ° % | | 2 (3.9) 

with a < 2 by (1 .5) . In order to bound \\v/x r e° <H| f r o m above we use 

inequality (2.16) and obtain for 0 < 6 < I 

| | 7 ^ e o r r *||2 <.-^j[(a2 + C(5)) | | ^ r e o r*.| |2 t 2o | | ^ e a i > | | 2 + 

• ĤX e ° M l 2 • F,] . (3.10) 
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For £ and 6 sufficiently small (3.8)„ (3.9) and (3.10) imply the following 
upper bound to the l.h.s. of (3.7) 

/ e 2 a V X M 2 | V - E t j i f j f |dx <. (C,a2 +C 2) | | £ « ° r r * | | 2 + 

+ C,[2a i | ^ T e a r * f ! 2 • | | ^ e o r * | | 2 • F3] (3.11) 

for suitable 0 < C. < 1, C_ > 0 . Next we combine (3 .7) with (3.11) and take 
into account that supp x Ap with R arbi trar i ly large. Then i t i s ea s i l y 

"o 
seen that for su f f i c i en t ly large a 

a 2 | i ^ e a r r « H | 2 <. F 4 (o ) . (3 .12) 

Since a l l integrals occurring in F, contain derivat ives of x which have 
support in (x € H n : R <. |x| i . R , ) i t follows by L -est imates that for 
some suitable k (not depending on a) 

2aR{ 

F, (a) ^ k e for a >_ 1 , 

This together with (3,12) proves inequality (3 . 1) . D 

IV. Proof of Theorem 1.1 and Theorem 1,2 

First we complete the proof of Theorem 1.1; Since \-\ has compact 
support we conclude by Lemma 2*3 that for suitable d > 0, T > 0 

! | ^ e o r r * | | 2 - | | r e % | | 2 - || / R r e ° r * | | 2 > d e 0 ' * ' 

for su f f i c i en t ly large a. But this i s a contradiction to Lemma 3.1 for 
suf f i c i ent ly large o. Hence Jy r e ° % I W 2 » 2 i lR n ) for a > a, a su f f i c i en t ly 
large, and consequently r e°r<|» I W 2 , 2 ( K n ) for a >_ a, Using (2.12) and 
(2.16) i t i s easy to see that 
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l |e° r r*tl n - | | e a r r * | l • l l ^ ° r r * | | • | | A e % | | <, 

« C ( ! | e a r r * | | •• | | e o r 6 *\\ + | | e a r * | | ) 

where C - C(a) i s bounded for f i n i t e a . Since the l . h . s . of th is inequality 

i s monotonically increasing in a and diverges for a -*• a, e i|» fc L2(1R ) for 

a > a for sui table a . • ' 
— o o 

Remark A. I 

We note that in the proof of Theorem 1.1 we actually needed (1.6), 

(1.7), a consequence of condition (a), rather than condition (a) itself. 

Remark 4.2 

Our proof of Theorem 1.1 differs in several steps from the proofs of 

unique continuation theorems [15-18]. There usually a contradiction is 

already achieved by considering upper and lower bounds to ||fAi|>[| for 

suitably chosen f We could not achieve such a contradiction because of 

the different powers of r in Lemma 2,1, and the subsequent estimates in 

Lemma 2.2, namely (2.10). However, if we replace conditions (a) and (b) by 

the requirements that V £ L P(lR n) for some p > max (2,n/2) and rV 2 is 

relatively formbounded with respect to - A, then it is also not difficult 

to show that e°"> I L 2(lR n) for sufficiently large a. 

We sketch now the proof of Theorem 1.2. Denoting 

x - (x( ',...,x\ '•) = (xI,x2#....,x3|() , xi € K 

equat ion ( 1 . 9 ) can be w r i t t e n as 

3N ft2 

<" . .1 A i j !x-äx7 + W - E > *<*> ' ° < 4 ' ' > 

with A = A>.(x)l-, symmetric and positive definite. Let P denote an ortho-
T -1/2 

gonal matrix with P A P « (>£*£:) and let D - (A ' 6..). Then the non 
singular transformation y • xQ with Q • PD transforms equation (4.1) into 
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[- A + W(y) - E] Hy) = 0 (4.2) 

where ifi<x) •+ ty(y), W(x) -»• W(y) under the transformation. Obviously it 
suffices to show that W(y) satisfies condition (a) (or rather (1.6), (1.7)) 
and (b). Then Theorem I.I implies that ea'y'i|»(y) fc L 2(R ), for sufficiently 
large a. 

Since V., V.. (I ̂  i,j f. N) obey condition (a') we conclude following 
Theorem X.20 of ref. [1] that V ^ , V { obey (1.6) and (1.7) in 1R3. Again 
following arguments of ref. [l] (p. 166) it is easily shown that W(x) 
satisfies (1.6) and (1.7). Since (A..) is positive definite standard argu
ments (Fourier transforms) show that W(x) is e-bounded with respect to - A 

3N on 1R with k(e) as in (1.7). In a similar way it.is easily seen that 
condition (b') implies e-formboundedness of |y|w(y)/3|y| relative to - A 
on m3**. ü 

Remark 4.3 

Actually condition ( b 1 ) can be weakened, e-formboundedness of 

|y |3V(y) /3 |y | can be replaced by the requirement that | y |3V(y) /3 |y | i s 

formbounded with re lat ive bound C where C depends on the number of 

p a r t i c l e s . 
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