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Abstract

L2t H= -4 + V be defined on L2(R"), n > 3. Let V = ViV,
v, € LP( ®"), for some p > 2n/3, vV, € L (R") and |x|av/3|x| relatively
form bounded with respect to - A with relative bound < 2. It is proven
that there exists an a > O such that ¥ a > a , ealxlw(x) ¢ L2(R"),
where y denotes an LZ-eigenfunction of H. Related results are also shown

to hold for many body Schridinger operators including atoms and molecules.

+) Supported by "Fonds zur Fbrderung der wissenschaftlichen Forschung in
Usterreich', Project Nr. 4240,



I. Introduction and Results

In this paper we consider eigenfunctions of Schrodinger operaters
H=-A+V, (1.1)

defined on L2(R™), n > 3, with V a real valued multiplication cperator.

We will deal with potentials which satisfy the following conditions:

(a) V= vl + V2 (1.2)
with
v, e’ (®Y), p=20/34+5,6>0, (1.3)
v, € L (R™). (1.4)
(b) Letx-(xl.xz,...,xn), x. € R, i=1,2,...,n, T = Ix].

Let o, = (xer™: r> Ro} where Ro is arbitrarily large but
()
finite. We require that for every ¢ € (!::(ﬂR ) the distributional
o

derivative raV/ar satisfies
ro*|rav/or |¢dx < a ||ve]I2 + b |le]2 . (1.5)

with a < 2, b < =, That is to say rov/ar is relatively form

bounded with respect to - A with relative bound < 2.

Remark 1.1

Condition (a) implies that H is essentially selfadjoint on C:(]Rn)
and that it is selfadjoint on the domain of the Laplacian, D(~ A) =
= W22 2(R™) (1], where W2:2 denotes the usual Sobolev space [2]. Further-
more condition (a) implies via Theorem X.20 of reference [1] that V is

relatively bounded with respect to - 4 with relative bound zero.

fvull2 < e llaull2 + k(e) [lull? (1.6)
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for all u € W2>2(R") and ¢ > O with
k(e) < pe 31 | Y = 68/(n+ 68) . (1.7

D is a suitable constant in which the L.-norp of Vz has been absorbed.
We notice that the proof of Theorem X.20 of ref. [1] extends ton = 3
for p > 2.

Our main result is the following

Theorem 1.1

Suppose y satisfies Hy = Ey, with E the corresponding real eigenvalue,
H given by (1.]) and V satisfying the conditions (a) and (b). Then there
exists an a, > 0 such that for

a>a e“"‘l‘, ¢ L2(RY) .

o »
We shall state also an analogous result for n-body Schrddinger operators

with 2-body potentials including the case of atomic and molecular Hamiltonians.
Let

L=- J a. v v (1.8)
i,j=l

where Vi, Vj denote the 3-dimensional gradient operators and aij € R,
1 <i,j < N. We assume that the matrix AN - (aij) is positiye definite.

We consider the following eigenvalue problem

(L+W-=-E) $(x) =0 (1.9)

with x, € R}, 1 <i<N, x= (x(').xu).---.x(u)) e ¥

N . . .
W = 5 vy . Vv o) - )y (1.10)
isl i<j
E denotes the eigenvalue with y(x) the corresponding eigenfunction.
Conditions (a) and (b) on the potential are now replaced by

(a’) Vi(y), Vij(y) € LP(IR3) + L“(lns) for some p > 2, for all | £ 1,\j < N.




") Let V(y) denote the multiplication operators Vi respectively
V;; on R3. We require that |y|av/a|y| (the distributional
derivative) is relatively form bounded with respect to the
3-dimensional Laplacian with relative bound zero, that is to

say for all ¢ > O there exists C(e) < = so that

rei2lylaviy)/alyldy < e ||[vell2 + c(e) [loll2 (1.11)
for all ¢ € Wls2(R3).

Theorem 1.Z

Suppose y satisfies (1.9) and W obeys condition (a') and (b'). Then

there exists an 3,20 such that for a > L eulxlv ¢ Lz(ltm) .

Remark 1.2

By removing the center of mass motion from a Hamiltonian describing
an atom or a molecule consisting of N+] particles one arrives at Hamil-
tonians as given in (1.9). The restriction to 3-dimensional particles 1is
meaningless. Theorem 1.2 holds also in the case of Hamiltonians describing

N-particle syscems consisting of n-dimensional particles (n > 3).

Unfortunately Theorem 1.1 and Theorem 1.2 are not very strong. They
simply tell us that an eigenfunction of a Hamiltonian as given in (1.1)
and (1.9) decays in an averaged sense not faster than exponentially.

The situation is a lot more transparent for the case of upper bounds
to subcontinuum wave functions and lower bounds to groundstates. For the
atomic case upper bounds have been (to cite-only the most recent results)
derived by T. Hoffmann-Ostenhof et al. [3], Deift et al. {4] and Ahlrichs
et al. [5]). The most general result is due to Agmon [6] who considers
general many particle systems where condition (a) respectively (a') is
replaced by V € P+ (L’)e, P > n/2 which means that V can be split into
two parts, V, and v, with HVZIIL’ arbitrarily small. Even exponentially
decreasing upper bounds to eigenfunctions of pseudodifferential operators
have been recently obtained by Sigal [7]. Lower bounds for groundstates
of two electron atoms have been obtained by T. Hoffmann-Ostenhof [8] and

in ref., [5] exhibiting the same exponential decay as the upper bounds.




Recently Carmona and Simon [9] showed that the Agmon result is in some
sense optimal. The Agmon Carmona Simon results [6,9] tell us that any
mathematical groundstate y(x) (positive) of a Hamiltonian with potentials

satisfying the conditions indicated above obeys lim <~[1ln $(x)]J/p(x) =1,
x|+

where p(x) is an explicitly computable function depending on the spectral
properties of the considered Hamiltonian. Lieb and Simon [10) (general

many particle systems) and Combes et al. [11] (Helium groundstate) obtained
even more detailed results for groundstates.

No such results are available for excitéd states, because excited
states have nodes and the methods to obtain lower bounds (Maximum principle
+ Harnack inequality [5,7,12], path integral ideas [9]) do mot work in these
cases. There is even a class of potentials for which the Agmon Carmona
Simon result holds for groundstates but for which in the case of excited
states eigenfunctions of compact support have not been ruled out yet.
However, for special cases the strong results of Mercuriev [13] (three-
particle systems with short range potentials) and Bardos and Merigot [!4]
(one—particle systems) are available.

Our approach is somewhat related to the methods used recently by
various authers to prove unique continuation theorems for elliptic partial
differential operators [15-18). In fact our LP-condition (1.3) on v, is
the same as the condition required by Saut and Scheurer []8].

To conclude this section we sketch the main ideas of the proof of
Theorem 1.1. Theorem 1.2 follows from Theorem 1.l quite easily.

First we note that any LZ-eigenfunction of (1.1) is uniformly continuous.
Thigs follows from the fact that for eigenfunctions of a Hamiltonian whose
potential satisfies (a) Harnack~type inequalities hold [19,20] which imply
continuity and for our case even Hbolder continuity (19].

As a consequence we have

r e*Ty € W%ég(lp) (1.12)

for differentiation introduces only %N-terms. We shall assume that r earw €

€ W2»2(R"M for arbitrarily large o and derive a contradiction,




The starting point for the proof is the identity
lIr e® ap]|2 = |Ir e*"(v-E)p||2 . (1.13)

In section II we derive a lower bound to ||r e®Faf|| for £ € W2,2(R") n
n Co(ll“) which may be interesting for itself - we do not claim originality
since there is a rich literature on inequalities relating weighted Sobolev
spaces. Combining this bound with an upper bound to the r.h.s. of (1.13)
leads to a lower bound to ||r e®"y]|2 with an exp (a"*®)) behaviour for
large o, and some § > 0.

In section III the basic identity is

7029 r24® (-E)r %1: dx = e r2yy*(r '%:v' + 2(V-E))wdx (1.14)

where x is some positive C“(lln) function with support in ﬂR . From (1.14)
o

ve derive an upper bound to ||/x r e®Fy|| which behaves for large a like
e®® for some ¢ > 0. In section IV we complete the proof of Theorem |.] and

show how Theorem 1.2 follows via Theorem 1.1.

II. A Lower Bound to ||r e®Ty||

We start with the following

Lemma 2.1

Let £ be continuous and f € w2-2(m“). Suppose e r af € L2(m“)
and e*F /L £ € Lz(ln), then

e €St (|2 > 4a3 |[c}/? £ |2 + 202 [|e®FE]j2 . (2.1)

Proof of Lemma 2.1

Suppose first that f € C”(Rn) and that the integrals in (2.1) exist.
We consider f in spherical coordinates f = f(rg), ¢ = x/r. Following

Schechter and Simon [15] we expand f




2
rf o) = O£ (Y, (D)
L,m
where the {Yl lll} are surface harmonics which form a complete orthogonal

set in Lz(Sn'i) with S“-'l the unit sphere le =1 in R". The fl n(r) are

given by
n-l
£, () =r? ;1  fGxp Y (g
gu(®) =T (rg) Y, L(R)dC .
n-|
S
Denoting
" -2 ' 1
Ls f(r) := £" - g(s+l)r °f , s = 5{2: +n-13)

where the prime denotes differentiation with respect to r we have

n-l
M(rr) =x 2 J oL £, (DY, (D).
: L,m ’ '

Using the orthonormality of the surface harmonics we obtain

llr e*Fa£)j2 = 22 I!Ls flhmlz 2% r24r «
o .

»

- w  |2,2,20r 2 2 2.=2 2ar
l?ﬂ{flfl’ml r2e” dr + s%(s+1) IIfl,m' r “e” dr

_ * " 2ar
2 Re s(s+l) Ifl,m fl,m e

dr} .

Partial integration leads to

||r e*Fag]|2 = zj{lf: Izrzezardr + 28(s+l) J|f! lzezcrdr
s l,m

L,m
~ 48(s+1)a? flf2 |2e2°tdr + 82(s+1)2 J|f |2e20rr-2dr} . (2.2)
’n l’m
By the Cauchy-Schwarz inequality
v (2,207 2 2.2ar
I'fl,m' e“dr > a flfz,ml e” dr (2.3)
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and by applying Cauchy-Schwarz twice we get
Ty [zezarrzdr > a" [ |2r2e2°rdr +4a3 s|f, |2r 2% ar
2,m - L,m 2,m
+ a2 fE, |2e%Tar . (2.4)
L,m

Combining (2.2) with (2.3) and (2.4) we get

e e®Faff|2 > § (rat-s(s+1)e H)2r2e? % g, _|2r
L,m ’

+

2ar| 2ar!

3 2 2 2
4a’ [r e fn,mI dr + 2a% fe fz,ml dr} >

| v

4ad ||r'72 X g]2 4 202 [T 2

Hence (2.1) holds for f € d”(m“) provided the occurring %ntegrals exist.
Now we have to show that inequality (2.1) holds also for f € W2:2(R") n

n ¢®(R™). For this we regularize f. Let J(x) € C:(Ffw, J(x) >0, J(x) =0

for |x| > | and fJ(x)dx = 1. For ¢ > O let Je(x) =¢ ® J(x/e) and for

u€ L{oc(m“) let u_.= fJ_(x=y)u(y)dy = J_#u. We have u_ € c*(R").

Suppose e r™ € LZ(]Rn) for some m > 0 and a > 0. Then, by Cauchy-Schwarz's

inequality

lu_(x) |2 i]IR“ J_(x=y)|uly) |23y

and further we get

2ar_2m 2ar 2m
J et e r

R0 ue(x)|2dx < Irn f' J(z) |u(x-ez) |2dxdz <
z,<l
< sup s 2 rzmlu(x-ez)lzdx <

Tzl R?

< sup [ _ ezu(Iyl+e|z’)(|Y|+S|z|)2mIU(Y)|2dY b3

T lzla BT
2ae, . 2ar_2m 2 o, k. 2ar_2m-k
< e s ™ u(x) |2dx + (=) ) (k ) e Jetr lu(x) |2dx] .
o ksl |

(2.5)




This implies
lim sup ey anu |2dx < se2o%y z‘lu(x)lzdx . (2.6)
0
Since f € C°(Rn) we have
lim e2¢F rznlfe(x)lz-ezqr 2 | £(x) |2
€0

pointwise and by Fatou's lemma

fe2ar 2m |£(x) |2dx = / lim inf e 2ar rhlfc(x)lzdx <
e*0
< lim inf fe2F ¢®® |£ (x)|24x . (2.7)
€0 €
Hence (2.6) with u = f and (2.7) imply
lim /2% (2 |¢ |2ax = 7e?*F ¢®® | |2x | (2.8)

e+0

Now we choose u = Af and m = 1 in (2.5)., Since f € Hz'z(lp). Afe(x) =
= (Af)s(x) and

lim sup fe2%F r2|pf |2dx < selor r?|af|2dx . (2,9)

€0 €
The L2-conditions on f and Af imply with (2.5) that (2.!) holds for £ .
(2.8) with m = 0 respectively 1/2 and (2.9) imply that if we replace £
by ft in (2.1) and take the limit ¢ > 0 on both sides that (2,1) holds

also for f. O

Remark 2.1

We also tried to obtain related inequalities for ||r v/20% I}, but
only for y = 2 our procedure was successful, Lemma 2,] appears to be related
to a family of inequalities of HSrmander [2}] which have been used for
instance by Georgescu [16) and Saut and Scheurer [18) to prove unique con-
tinuation. Note however the different powers of r occurring on both sides
of (2.1).
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Next we shall derive an upper bound to Hr earAwll from which together
with Lemma 2.1 the desired lower bound to ||r e y|| will follow.

Lemma 2.2
Let Hy = Ey, with H given by (1,1) and V obeying condition (a). Suppose

earrw € UZ'Z(EP) for finite a > 0. Then for sufficiently large a and
I > >0

le%Feall? < cleea*sk(e)) Ilr eFwl|2 + ca? lr'/2 Ty[12 »

+ ea? |le*Ty 2} (2.10)

with k(e) given as in (1.7) and C a suitable constant.

Proof of Lemma 2.2

Since W = V - E obeys condition (a) we have by Remark 1.1 for e > 0
”earrtw”2 = |l earrwu2 i_eIIAearr¢H2 + k(e) Hearrwﬂz . (2.11)
Obviously
lloe® rpl|2 < 30l rawll2 + 4 I (7™ ew) |2+ flvae™r)|2] (2.12)

and we proceed by estimating the second term on the r.h.s, of (2.12). For

a sufficiently well behaved real valued function f we get by partial inte-
gration

IEve(l2 = [|vEw||? + slv|2fafdx . (2.13)
Since ¢ is an eigenfunction of H it is easily seen that
Hoep||2 + |Ep|2dx = ||yof |2 . (2.14)

The e-boundedness of W with respect to - A also implies e-formboundedness
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with respect to - A. That means for any 8§ > O there is a constant C(4)
such that for fy € WI*2(R™)

I MY 260012 < 6 lluewll2 + co) gl . (2.15)
(2.14) and (2.15) lead to

lotellz < 75 Clvoell2 + cco) ligell2) (2.16)
for § < 1 and we get with (2,13)

I £9y))2 iTl'a‘ ClloEll2 + c(8) |lgwll2) + f|v]2£atax . (2.17)
Identifying f with %;(r ;ar) « (1 + ar)e®" we have
e (or 12 < [llvellor ™ |12 <
< 7h Ullve™ armad) |12+ (o) lle™Fylj2 ) +

+ a2f]p]2e2% (222 4 30 + (n+3)a?r2 + adr2)dx . (2.18)

2n~2
r
Working out HWAearrll and combining the inequalities (2.11), (2.12)
and (2.18) we arrive at

(1-¢) ||e®*Trav||? ccle fl#lzezar(a"r2 sadr+aZ+ 1 vart e rlx

+ k(e) ||e®Frv ]2} . (2.19)

Thereby the é-dependence has been absorbed into c| and since we are inter-
ested in large o we estimated every power of r by that term which contains
the largest power of a.

To bound the r—' and t-z

terms in (2.19) we use (2,.16) and get

2
llve®Fy||2 < S8R 10Ty )2, (2.20)




L ket

P

1
Cauchy-Schwarz implies the well-known estimate
[19e°Twl12 2 |I3=(e"" W) |12 :_S'—‘:%ﬁllr'l e™vl]2
and hence
I 2 < cpa? le™wll2 (2.21)

for sufficiently large a and suitable C2. Analogously using the well-known

estimate
-1
mwwnzﬁ'hrfww
1e® wll
we obtain
172 2512 < cqa fle™ ]2 (2.22)

for sufficiently large a and suitable 03.
Inserting (2.21) and (2.22) in (2.19) yields (2.10) for € < 1. g

Finally we shall obtain the desired lower bound:

Lemma 2.3

Suppose ¢ satisfies the conditions of Lemma 2.2, then for a sufficient-

ly large

IIr e* 9|2 > m IIr”2 e® 4]l a® > m, o° &* (2.23)

1

where m, and m, are suitable positive constants and o > O depends on the

]
§ in (1.3).

Proof of Lemma 2.3

As we already noted in the introduction ¢ € Wz’z(lkn)n Co(lln). Hence
by Lemma 2.1 and 2.2 ve see that '
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ba |[r'/2e2%p )12 + 2 [|e®Fy]12 < Cl(ea? + !‘%’-)llr e"Fyll2 +
a
+ ea ||r"2e°"¢”2 + e |le® )21 . (2.24)

By (1.7), k(e) < D'e_3(l_ﬂ for suitable D'. Hence we get for sufficiently

small ¢

||rl/2e"'rw||2 < 4_cce(eo + 0303 llr e® |2 .

(1+

Choosing ¢ = a °) yith 0 < o 14—3-:1,;- we obtain

Ie'2 2Ty l12 < ma™ ||r Ty |2 (2.25)

for a > o, o  sufficiently large and suitable M. We regard Hrllze"":wll2

as a function of o and denote it by J(a). Then (2 25) can be written as

.J_}%)lléf , (2.26)

Integration of this differential inequality from a to o gives

(1+0)
J(a) > d e°

for a > a  and suitable d, from which together with (2.25) inequality
(2.23) follows. O

II1. The Upper Bound to ||r e*Tyll

Let x € C’(]R“), x radially symmetric, x > 0, ':'5 >0, supp X C QR
(o)
and x = | for r _>_R' > Ro. Here Rn and 9

is as in condiction (b).
o .

Lemma 3.:!

Let y satisfy the Schridinger equation Hy = Ey with H given by (1.1)
and suppose V satisfies condition (a) and (b)., Suppose r earw € w2.2(m“)



I
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' for finite a, then for a suitable coristant C and sufficiently large a
20R

e & xM2yl12 <ce . : (3.1)

Proof of Lemma 3.1

First we consider (1.11) and derive it formally, We have
(1) .
(H-E)xi¢=-23x‘ . i=1,2,...,n.
i
Partial differentiation leads to

3y . (uep)e Q0 BV 22
&—i(ﬂ E)xirp (H l"I)xi %, + X, ¢ 2y

3xi ! ax2
i
and since Z x; g_x— = xV = r%;,
i
Eyr ¥ . - - vV
(H-E)r T 20 - r AT v . (3.2)

It is easy to see that (3.2) holds in the quadratic form sense since by

assumption ry € W2'2(1Rn) N Co(an), r -g-%’- € wl-z(m“) the form domain of H,

We shall also use the following relation
(H-E)fy = - pAf - 2VEVY , (3.3)

which holds in the form sense for sufficiently well behaved f. Choosing

r

f = r2xe2° we have

- f(wi*)(H-B)ezarrzxdx-4![%|2e2°r(6r3+r2)xdx +

" .
+2 [y %tL ezarx[202r3 + (3+n)ar? + nrldx + Fl(a) v (3.4)
Thereby F’l and later on 1’2, F3, F4 will denote sums of integrals with

integrands containing derivatives of yx, Partial integration together
with (3.2) and (3.4) leads to
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»
72924 1y |2(2(V-E) + ¢ %‘é)dx - e Mg 22 iy =

= 207|322 (2ar3 + 2r2)ydx - 2a? fr3e?® |y|2yax - (3.5)
2
- (s+2n)a? fr2e®®Tx|y|2ax - B0 o yr|y 2% yax - O 2 /191229 ax) + F

Now by Cauchy-Schwarz's inequality and partial integration

fl%g'zezcrrmxdr X [Re f"_*__ 2ar "xdr}z(f!wlzez‘“ mxdr) (3.6)
° 0

where we used x > O, -:% > 0. For m = n+2, n+] (3.6) combined with (3.5)

leads to

2ar 2 2y .l_ 9!
Je T r2yx [y 2(v E+z £ 30)dx >

> a2 sr2e?%y|y|2dx - -;-(u2 -1+ 20)a Jr €2y |y|2dx -

Hﬁlzdx +F

_2_’! 2§r 2ar (3.7)

2 .

Since V obeys condition (a) it is e—formboundéd with respect to - 4, so
for all ¢ > 0

e/ £ wlv-e 212 < e llv A x Il v cle) 1Yk e¥ylI2 .3.8)
By conditic;n (b).we have

ar oV 1/2 ar ar_ 2
16" Aeole 172 ca o e 2 eb A E 2 (3.9)

with a < 2 by (1.5), In order to bound ||/ r e®Ty|| from above we use
inequality (2.16) and obtain for O < § < |

lv/x e y])2 1—-!-6-[(a2 + €(8)) [I/x v e® w12 + 2a ||/rx ™ yl2 +

I/x e® o2 + P50 . (3.10)

9 *
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For € and 6§ sufficiently small (3.8), (3.9) and (3.10) imply the following
upper bound to the l.h.s. of (3,7)

fezarr2x]wlzlv - E +-% 1 %%]dx < (Cla2+CZ)I'J§.earr¢H2 +

+ ¢ (20 |[Vox e®Tpl12 + (I e®yl2 + F,) (3.11)

for suitable 0 < Cl <1, C, > 0. Next we combing (3.7) with (3.11) and take

2
into account that supp x RP with Ro arbitrarily large. Then it is easily
"o

seen that for sufficiently large o
a? [}k ™ rvli2 < F(a) . (3.12)
Since all integrals occurring in Fé contain derivatives of x which have

support in {x € R": Rb :_lxl j_R'} it follows by L™ -estimates that for
some suitable k (not depending on a)
2aRl
_F4(a) <ke for a > 1 .

This together with (3.12) proves inequality (3.1). O

IV. Proof of Theorem ).) and Theorem 1,2

First we complete the proof of Theorem !,1; Since !-x has compact

support we conclude by Lemma 2,3 that for suitable d > 0, 7 > 0

1+1

N/ e®rell2 = |Ir e®p|l2 - |I/Tx r ™ yI2 > de®

for sufficiently large a, But this is a contradiction to Lemma 3.1 for
sufficiently large a. Hence /)? r e“rw ¢ Wz'ziltn) for a > a, a sufficiently
large, and consequently r eurw ¢ wz'ztm“) for o > ;, Using (2.12) and

(2.16) it is easy to see that
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I B I
(R

<cC ]l + Je® Vel + el

where C = C(a) is bounded for finite a. Since the 1l.h.s. of this inequality
is monotomcally mcreasmg in a and d1verges for a -+ a, e” ’4' ¢ L2(1R ) for

a>a for suitable uo'. o’

Remark 4.1

We note that in the proof of Theorem 1.l we actually needed (!.6),

(1.7), a consequence of cond’_ition (a), rather than condition (a) itself.

Remark 4.2

Our proof of Theorem ).! differs in several steps from the proofs of
unique continuation theorems [15-18]. There usually a contradiction is
already achieved by considering upper and lower bounds to ||/fay{l for
suitably chogsen f We could not achieve such a contradiction because of
the different powers of r in Lemma 2,1, and the subsequent estimates in
Lemma 2.2, namely (2,10)., However, if we replace conditions (a) and (b) by
the requirements that V € LP(Rn) for some p > max (2,n/2) and rv? is
relatively formbounded with respect to - A, then it is also not difficult
to show that e“w ¢ Lz(an) for sufficiently large a.

We sketch now the proof of Theorem 1.2. Denoting

O (¥,

X m (X' 75.00,X

(x,.xz,.....xm) » X ER
equation (1.9) can be written 2as

(- Z A .
i,j=1

1 Bx 3x +W-E) ¥¢(x) =0 (46.1)

with A = AN®I3 symmetric and positive definite, Let P denote an ortho-

-1/2

gonal matrix with P> A P = (3;8;) and let D = (A7/"6, ). Then the non

singular transformation y = xQ thh Q =PD transforms equation (4.1) into
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[- & +W(y) -E) (y) =0 (4.2)

where P(x) > W(y), W(x) ~» ﬁ(y) under the transformation. Obviously it
suffices to show that a(y) satisfies condition (a) (or rather (1.6), (1.7))
and (b). Then Theorem !.] implies that eulY!t(y) ¢ LZ(R;N), for sufficiently
large a.

Since Vi, Vij (1 £1i,j < N) obey condition (a') we conclude following
Theorem X.20 of ref. [1] that Vij» V; obey (1.6) and (1.7) in R3. Again
following arguments of ref. [1] (p. 166) it is easily shown that W(x)
satisfies (1.6) and (1.7). Since (Aij) is positive definite standard argu-
ments (Fourier transforms) show that W(x) is e-bounded with respect to - A
onill:m with k(e) as in (1.7). In a similar way it is easily seen that
condition (b') implies e-formboundedness of |y|3“(y)/3|y! relarive to - A

on ]R3N. 0

Remark 4.3

Actually condition (b') can be weakened. e-formboundedness of
ly|av(y)/3ly| can be replaced by the requirement that |y|av(y)/aly]| is
formbounded with relative bound C where C depends on the number of

particles.
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