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We analy.e the fluctuation properties of nuclear energy levels and widths with new spectrally ave~-
raged measures. A remarkably close agreement betuzen the predictions of random-ma.rix theories and

experiment is found.

[Fluctuation properties of energy levels, width fluctuations, level repulsion, rsndom matrices,

neutvon resonarcazs)

1. Introduction

This paper deals with the current status of the ran-
dom matrix theories with regard mainly to the nuclear
energy level flucctuations i.e. departures from spec~
tral uniformity, and also to widths fluctuations.
Specifically the question is how well the ensemble
results agree with experiment. And if the agreement
is good, then : what is the source of this agreement
and what limits can one impose on the mechsnisas
vhich affect the fluctuations., We are mainly concer-
ned here with the first question for which we rely
for the most part on our recent work'. We refer only
briefly to the latter two questions for which also
the answers are emerging.

The nuclear datas relevant for fluctuation studies
consists of slow-neutron resonances of medium and
heavy nuclei and also of proton resonances of some
light nuclei. Most of the neutron data come from
systematic measurements of total neutron cross-sec-
tions performed at Columbia during the sixties and
early seventies, There are also measurements in which
the spin of the levels are measured directly. These
include mainly (n,y) measurements performed at Geel,
Livermore and Oak Ridge. Besides the neutron messu-
rements, detsiled nuclear resonance parameters have
been extractes from high resoluvtion inelastic proton
scattering experiments performed at Duke.

The principsl random matrix model, valid for space
rotation and time reversal invariant systems, is
Wigner's Caussian Orthogonal Ensemble (GOE), consis~
ting of asymptotically large real symmetric matrices,
in which the distinct matrix elements are distribuced
independently with essentially the same zero-centered
Gaussian law. For energy levels the main predictions
ate due to Dyson and Mehta’, The close-lying levels
behave as if they are repelling each other and the
distant ones display a long range order, the resulcant
spectral rigidicy being then akin to a crystalline
structure. For widthr the model predicts a . -dis-
tribution known after the names of Porter and Thomas'
The earlz_:heoretical work in the subject is reviewed

in Refs « For later developments as well as upto-~
dste references see Ref.’ .

The GOE predictions are very sensitive to spurious
and missing levels, especiaily for energy level fluc-
tuations, imposing stringent conditions on the qua-
fity of data. Ideally the observed level sequence
should he pure (all levels should have the same spin
and prrity) and complete (no missing level). Because
of this, while the main GOE predictions have been
known for almost two decades, good quality data re-
quired to test the model have come relatively recent-
ly. Earlier snalyses of individual level sequences
indicate "overall good agreement” between theory and

experimeant ; see Ch.V1 of Ref.” for a review.

The prerent anslysis makes such sharper comoarisons
between theory and experiment than the previous ones.
The main reason for this isprovement is not due to
the additional data of the last few years, but rather
to making better use of the theory when compared with
experiment. Indeed, there are two disconcerting fea-
tures in the previous analyses : the predictions of
the theory have not been tested in a systematic wvay
nor much attention has been paid to sample size
effects. We resolve these difficulties here. We ask :
wvhat features of the theory are observed in the data
and with what sccuracy. We attespt to test directly
the (fundamental) k-level correlation functions which
are essentislly the joint probability functions and
of which the two ievel propsrties are the most signi-
ficant, We go on to other fluctustion messures (vhich
in fact derive from the correlation functions) so aa
to improve the statistical significance of the tesking
procedure. Moreover, since the theory is paramater -
free, we combine all the data into a nuclear dats
ensemble (NDE) of approximately 1700 lLevels, this
improving the statistics even more drsmatically. Our
main conclusion is that the agreement between theory
and experiment is remarkably good.

Some comparisor betieen theory snd experisent is also
made for widths, slthough in this case conclusions
are less significant because the theoretical distri-
bution itself has been used to s large extent to make
spin and parity assignment of the levels.

In the next section we review the GOE predictions for
the energy levels and in section 3 we present the
results of comparison with the NDE. Section 4 desls
with wideh fluctuations. The concluding section dis-
cusses the implications of the sgreement.

2.GOE Predictions for the Energy Levels

Dyson's' k-level cluster functions® Y (k>I;YlEI) pro-
vide a natural hierarchy for energy l}vcf fluctustion
studies. Essentially these sre the k-level correlation
functions, viz the joint=probability densities of
observing k levels at given positions, from which the
lower order correlstion effects have been subtracted
out, In particular (I-Y,(r))dr gives the probability
of observing a level in an infinitesisal interval dr

‘For 8 randoa variable W, we denote its ensemble

average by W and its ensemble variance (W-W)° by var W,
Note, moreover, that we are considering spectra norma-
lized to unit local average spacing.




at a distance r from a given level. These functions
are designed in such a2 way that for thePoisson en-
semble, in which the energy levels are chosen ran-

domly in a giver interval, the Y, are all zero for
k>1.

For GOES*?®
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wvhich is normalized to a total unit integral. It has
the value unity at r*0 implying level repulsion and
goes ta zera as (wr)~? for large r(>l) implying spec~
tral rigidity. The latter upcct is more apparent
from the number variance®[? (n), namely the variance
of the number statistic n, the number of levels in a
given interval of length n :
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Note that its value is % unity for n=100 and even
for o~ 10° cthe fluctuation is not more than a couple
of levels. This should be compared with I!(n)=n for
the Poisson ensemble.

Another measure of the -pectral rigidity is the & -
statistic of Dyson and Mehta’. It measutres, for s
fixed interval fx,x+n], the least square deviation of
the staircase N(E), the number of levels with energy
less than or equal to E, from the best straight line
ficting it :
xen 2

B4(m;x) = (1/m) min [ (N(E)-AE-B)*dE . 3

A,B x

Its ensemble average is related to :z' and hence to
Y,, by?

5,6 - @) ;“ @-20%eee?) 14 dr )
wvhich nay be mugnted numerically, or for T>i5 one
may use? A 2”2 ga §-0.007 with good_acguracy Again,
in co-parison with the Poisson value 4 =n/15, the
spectrum is seen to exhibit a long range order. (Note
that because of stationarity 19 the ensemble proper-
ties are independent of x, the position of the inter-
val).

Usually the most one can hupe for is to test the
theory for the two level functions and its integrals
such as L? and A,. However from a very long sequence
of levels or from a collection of many short sequences
as is the case for nuclear spectra, it iay be possible
to observe some higher~than-two level effects as well,
Moreover the higher order functions are needed for
the calculation of the sample errors of the testing
procedure ; thus for example for testing two-point
measures one needs to know the k-level functions

for k<4. Althougt all cluster functions have been
evaluated for ¢ E'* , very few analytic results are
available for higher-than-two-point measures, for
properties related to Y, with k>2, we rely mostly on
Monte Csrlo results that we have obtained from a
sample, adequate for our purpose, of 100 GOE matrices
of dimensionalicy 3J0.

Sowe exasples of higher-than-two-level measures are
provided by the distributions and correlation proper-
ties of the &; as well as the number (n) statistics.
In this paper some results for A, are considered

(see Fig.2c for Var &. and Figs.la,3b for the ) dis-
tridbution for m=10, 20) For very large n,Var 4; ap-
proaches’ the value .01l which should be compared
with the Poisson result Var ', = (1+11n/30)0/210. Once

again it is seen that the fluctuations are small for
GOE.
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Iv order to make optimal use of an observed spectrum,
ve introduce spectral averaged quantities. Consider a
sequence containing (p+1) levels. For a statistic
W(n;x) defined in an interval of length n at x, the
spectral average

x+(p-0)

<H(E)> . (p-my! I

W(a,y) dy (5)

is an estiutor of W(n). The variance of <W>,, which

is the square of the sample error, is also given by
the theory : 2

Var <H(E')>p =z <H(F)>P - <H(E)>p

M ,'(p m(p-n—r)c(r in)dr
(p-n)

e z.v_“:i-)_! COm:mdr
(o/n)

where C(r;n) is the autocorrelation function of W :

» (6)

C(r;®) = (Var u(ﬁ))"{u(i;x)u(i;xor)-(i(i))2} . (M

The last step of Eq.(6), valid for p>>n, follows irom
the fact that the sutocorrelation functions for mea-
sures discussed in this paper fall off rapid'v, being
close to zero for r2n for a’l. Notice that as p+=,
Var <W>p goes to zero, whica is nothing but the er-

godic propcrty : the spectral average coincides with
the ensemble average.

It is seen from (6) that for the sample errors we
need Var W as vell as the integral / C(An;n)di both
of which we estimate from our Monte Carlo ssmple.
The detsils will be published elsewhere. In practice
instead of (5) we use a less smooth average in which
the integral is replaced by s summation.

3.Comparison with Experiment for Energy Levels

In the conventional sanalysis one treats the data from
each nucleus, containing about 50-100 levels, seps-
rately and consequently the statistical significance
is poor. As seen from (5) the testing procedure im~
proves as the sample size increases. Moreover since
the correlation functions, Eq.(7), fsll off rapidly

it is not necessary to have one long sequence but a
collection of many relatively short sequences could
also be used,

Since one expects that the resonance epergies of every
compound nucleus will share the same fluctuation pro-
perties, it seems natursl, and in the spirit of random
matrix theory, to trest the set (NDE) of nuclear re-
sonance energy data of different nuclei as a u.plm;
of eigenvalues of GOE matrices ; see Ref.'? for a si-
milar notion for complex stowic spectra. As an example
of this procedure, the nearest neighbor spacing dis-
tribution is shown in Fig.l. It is clear that a his-
togram containing v 1700 spacings corresponding to

the NDE (Fig.lb) is statisticslly such more signi-
ficant, when cospared to a theoreticsl prediction,
than a histogram containing only ~ 100 spacings cor-
responding to a single nucleus (Fig.la).

Our NDE consists of 1762 resonance energies corres-
ponding to 36 sequences of 32 different nuclei :

i) Slow-neutron ruomnce data on $"'%c 88,
(103,65,45 le.'els ’) Vivcd (17 lavelg!®y,'s2risvgy
(70, 27 levels' ‘“"“"""”cd (19,67,21,54
levels"’), ‘“"“""’ny (18,46,20 levels'’)
Aha-uqunozr “09 148 31 levels 0) l72:|7hphl¥b
(55,19,23 levelsi?®), ‘”’"“""u(u 30,16 levelsi®),
Peeaindgg (56,17 levcll“), 23y (178 levels??) and
200 (146 levels®?),

ii) (n,y) reaction data on ''7HE (34'Je3' levels,
234" levels®'), '"PHE(25' 4" levels, 22'J=5'
levels?’) and 7’°U(58'J=3' levels, 68'J=4' levels’®),

iii) proton resonance data on ““Ca(52' |/2 o levell.
39°1/2%" levels’®), *3Ti(66'1/2*' levels®’) and **Pe
(56'1/2"" levels’®).
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?i!.l. Nearest neighbor spacing bistogram for : (a)
*¢%er, (b) Nuclear Data Enseamble (NDE).

»
The criterion for inclusion in the NDE is that the
individusl sequences be in general sgreement with GOE.

We have made an extensive test of the theory by stu- .
dying the aforementioned functions Y,(r), L*(m),

A,(n) as wall as others. A complete sccount will be
given elsewhere. Here we restrict ourselves to a few K v v v
typical examples for the NDE. var by

s
-

Consider first the two-level measures I‘(n) and Z:(m).
The procedure for calcilations is to evaluate for
each of the 36 sequences the spectral-averaged measure,
say <A;(n)> for Aj3;(n), end then take their average,
weighted according t. the size of sach sequence. We
have considered the range 0<n<100. The results for
n<25 are shown in Figs.2a, 2b. They are in a remarka-
bly good agreement with GOE. We emphasize thl7 typi-
cally the "figure of merit”, e.g. (Var <4,>)'/ /L,
for 4;, is of the order of a few percent in the pre-
sent analysis, whereas in the conventional analysis
it is * 20% or more. The values corresponding to the
Poisson case as well as the Gaussian Unitarity En-
semble (CUE ; see section 5 below) are also shown for
comparison,

To explore higher-than-two level effects we consider
the ensemble variance of A,(n), which is sensitive to _
Y, upto k=4, and the distribution function of ., for Fig.2. (a) £2,(» 3,,(c) Var A; as functions of n .
various values of N (which involves in principle all Dashed lines correspond, for GOE, to one standard
order cffccz.)._Thc results are presented in Fig.2c deviation from the average.

for Var 4; for n<25 and two examples (n=i0,20) of che
distribution function of A, are shown in Fig.3. The

agreement between the COE predictions and data is ¢. didch FPluctuations
sgain very good, The main question is whether the transition widehs
(via which the resonance levels are detected and

__________ identified) have a xi (Porter-Thomas’) listributiop :

. p(x) = (27x) 172 exp(~x/2) ; x = riclric , (8)
In the previous paper' our NDE consisted of 1407

resonance energies ccrresponding to 30 sequences of where the width [, . measures the rate of transition

28 different nuclei. In the present NDE we have added from an initial (statistical) state i to & channel

8 nev sequences. Moreover, we have not included the state c. Or, equivalently the question is whether the

modifications suggested by the authors of the Columbia transition amplitudes, whose squares (to within a

data to account for some missing levels, Instead, we penetrability factor) are the widths,are Gaussian

have considered shorter sequences in a few cases and crandom variables. This prediction follows directly

have dropped from the list the ''“''!‘Cd-spectra which from the orthogonal invarisnce of the random matrix

involved large modifications. OQur conclusions, as ensenbles as is the case with GOE ; see Ch.VII of

exemplified by Figs.2,3 are still the same as in Ref.’. Ref,’.
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Fig.3. Distribution function of &) : (a) n=i0, (b)
T=20. Dashed lines correspond, for GOE, to one standard
deviation from the average.

The amount of data that can be used to test the theory
is much larger than in the case of energy levels. This
is because even if some of the resonances are not de-
tected due to very small widths, Eq.(8) can be tested
for x>a, an experimentsl threshold. In this section
wve present the results for some of the neutron-widths.
A more detsiled analysis will be taken up later. For
s similar anslysis of much older data, see Ref.

We consider an NDE containing 1182 widths corresponding
to 21 level sequences of the previous section :
Sesbéreay ll'Cd. Is2aisvgy 8913691589169 , "?Dy.
xaz:xn-u' 432pp and T30,
The transition asplitude distributions are shown in
Fig.%4 for an individual sequence as well as the NDE.
The agreement between theory and data is seen Co be very
good.
For further tests we calculate ., the number of de-
grees of freedom, assuming that the width distribution
itself is x| with v not necessarily an integer. A sta-
tistically significant departure from v=i would then
be an indication of a failure of the Pcrter-Thomas
@odel. A commonly-used procedure is to construct fhe
likelihood function which is the product of the g =
densities of the observed (renormalized) widths and
then to maximize this function with respect to .. The
sample errors associated with this estimation procedure
dre obtained by studying the deviations from the
maxioum. The result would however show departure if
some small widths are missing. For a better procedure
ve may assuge & (relative) cut-off i below which the
widths are likely to be missed and then do the above
analysis for all widths of values -x with a truncated
* The widths in each sequence are renormalized to
unit average,

“"""‘755r "1"""’“Yb'
1] s

3
i ' wVi7a> 1

Fig.4. Histogram for the sbsolu”e values of tramsition
amplitudes : (a) '““Er, (b) NDE. The theory predicts
P(x)=(2/m) '/ texp(-x112).

xg-dilzrihuzion;for details see Refs.’*?’. We have
studied v as a function of a and a plot is given in
Fig.5. The departures from theory for a<l0~’ may be
due to the missing small wvidths. For larger values of
a the agreement is agsin very good,

7Y * — v —_
. Py Ll
‘-ﬁ l
!
N i
T NG A
= - - - e

Fig.5. The degree of freedom v &8s s function of cut~
off 1. The error bars correspond to one standard de-
viation from the estimated v,

Finally we turn to Cthe question of correlations between
the width and energy level fluctuations. The theory
predicts the two to be statistically independent. To
test this we calculate the correlation coefficient

N [, =<l> E,~<E.>
fal : [ e ) ( i i ) (%)
N\ o %

for each sequence. Here N is the number of levels in
the sequence and j. the width associated with the
level Ei. <[> and 7. are the mean and standard devia-
tion of the Ti.. anE

. -1
<> = AivB, ol izlmi -<r:i>)2 , (10)
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where A and 3 are fixed by minimizing the expression
for <f . For the NDE we take the average of the corre~
lation coefficients for each sequence, weighted ac-
cording to the size of the sequence. We obtain r(NDE)=
0.017 as - pared to the theoretical value 0:0.029
confirming again the predictions.

5. Conclusion

We have established an astonishingly good agreement
between a parameter-free theory (COE) and rhe dacta.
We emphasize that, apart from rotation and time-
reversal invariance resulting in the real symmetric
nature of the mattices, GOE takes no account of thne
specific properties of the nuclear Hamiltonian, e.g.
its (l+2)-bodv nature, its large pairing and quadru-
pole components, ectc , We also recall that the
eigenvalues and eigenvector components of realistic
(non~random) nuclear sheli model matrices show the
same fluctuation patterns’'’”. How can this be under-
stood theoretically ?

To answer this we recall firs* that there are other
classical ensembles in which, like COE, the orthogo-
nal invariance plays a kex role and which also give
the same fluctuacions''*?’, But more significantly
for the nuclear Hamiltonian, there are Monte Carlo
results?®*’® uhich indicate that ensembles of two-
body operators acting in many-particie (shell model)
spaces also yield fluctuations characteristic of GOE.
More recently'' it has been demonstrated that adding
a COE mactrix H to aiv real symmetric matrix K,(KeaH),
leads very quickly, as o increases, to the same fluc-
tustions. Interwediate fluctuation pacterns are to be
expected only when the random matrix elements are not
such larger than the local average spacing of the gi-
ven (non-random) matrix K. The good agreeme: : with
experiment, coupled with the theoretical understanding
which is now emerging, reinforces the belief that COE
fluctuations are to be found in 1ature under very ge-
neral conditions.

We mention finally that one can use the close agree-
ment to impose testrictions on mechanisms which would
change the fluctuations. In particular if time rever-
sal is not an exact symmetry, the appropriate model
would be an ensemble of complex Hermitian matrices in
which the real and imaginary parts are sampled inde-
pendently, The Gaussian Unitary Ensemble (GUE) in
which the two parts have the same norm is one such
exasple, It gives very different fluctuation proper-
ties than GOE"~’. For example, Y;(r)=(sinmnr/vr)
implying stronger_level repulsion than GOE (see Figs.
2a,2b for [? and B,) and widths follow a X; distri-
bution, Analytic resulcs for ensembles in which the
real and imaginary gdru have unequal weights have
recently been given’'”’’, It is shown for energy level
fluctuations (and is erpected to be valid for width
fluctuations as well) that even a small magnitude of
the imaginary part induces major changes in fluctua-
tion properties, leading very rapidly from GOE to GLE
type fluctuations. The results are being used’'? to

derive an upper bound on the time reversal non-inva-
riant part of thenuclear Hamiltonian.
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