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We analyse che fluctuation properties of nuclear energy levels and widens with new spectrally ave­
raged measures. A remarkably close agreeoent between the predictions of random-ma'-rix theories and 
experiment is found. 
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I. Introduction 

This paper deals with the current status of the ran­
dom matrix theories with regard mainly Co the nuclear 
energy level fluctuations i.e. departures from spec­
tral uniformity, and also to widths fluctuations. 
Specifically the question is how well the ensemble 
results agree with experiment. And if Che agreement 
is good, Chen : whac is the source of this agreement 
and what limits can one impose on the mechanisms 
which affect the fluccuacions. We are mainly concer­
ned here with the first question for which we rely 
for the most part on our recenc work'. We refer only 
briefly to the latter two questions for which also 
the answers are emerging. 

The nuclear data relevant for fluctuation studies 
consists of slow-neutron resonances of medium and 
heavy nuclei and also of proton resonances of some 
light nuclei. Most of the neutron data come from 
systematic measurements of total neutron cross-sec­
tions performed at Columbia during the sixties and 
early seventies. There are also measurements in which 
the spin of the levels are measured directly. These 
include mainly (n,y) measurements performed at Geel, 
Livermorc and Oak Ridge. Besides the neutron measu­
rements, decriled nuclear resonance parameters have 
been txtracteo from high resolution inelastic proton 
scattering experiments performed at Duke. 

The principal random matrix model, valid for space 
rotation and time reversal invariant systems, is 
Wigner's Gaussian Orthogonal Ensemble (GOE), consis­
ting of asymptotically large real symmetric matrices, 
in which the distinct matrix elements are distributed 
independently with essentially the same zero-centered 
Caussian law. For energy levels the sain predictions 
arc due to Dyson and Mehta'. The close-lying levels 
behave as if they are repelling each other and the 
distant ones display a long range order, the resultant 
spectral rigidity being then akin to a crystalline 
structure. For widthf the model predicts a •' -dis­
tribution known after the names of Porter and Thomas'. 
The early theoretical work in the subject is reviewed 
in Refs *. For later developments as well as upto-
date references see Ref.'. 

experiment ; see Ch.VI of Ref. for a review. 

The present analysis makes much sharper comoarisons 
between theory and experiment than the previous ones. 
The main reaaon for this improvement ia not due to 
the additional data of the last few years, but rather 
to making better uae of the theory when compared with 
experiment. Indeed, there arc two disconcerting fea­
tures in the previous analyses : the predictions of 
the theory have not been tested in a systematic way 
nor much attention has been paid to sample size 
effects. We resolve these difficulties here. We ask -. 
what features of the cheory are observed ia the data 
and with what accuracy. We attempt to test directly 
the (fundamental) k-level correlation functions which 
are essentially the joint probability functions and 
of which the two level properties are the most signi-
ficsnt. We go on to other fluctuation measures (which 
in fact derive from the correlation functions) so aa 
co improve che scatistical significance of the tasking 
procedure. Moreover, since the theory is parameter -
free, we combine all the data into a nuclear data 
ensemble (NDE) of approximately 1790 levels, this 
improving the statistics even more dramatically. Our 
main conclusion is that the agreement between theory 
and experiment is remarkably good. 

Some comparison between theory and experiment is also 
made for widths, although in this case conclusions 
are less significant because the theoretical distri­
bution itself has been used to a large extent to make 
spin and parity assignment of Che level*. 

In the next section we review the GOE predictions for 
the energy levels and in section Î wa present the 
results of comparison with the NDE. Section 4 deals 
with width fluctuations. The concluding section dis­
cusses the implications of the agreement. 

2. GOE Predict ions for Che Energy Levels 

Dyson's' k-level cluster functions* T. (k>l;Y,ïl) pro­
vide a natural hierarchy for energy level fluctuation 
studies. Essentially these «re che k-level correlation 
functions, viz the joint-probability densities of 
observing k levels at given positions, from which the 
lower order correlation effects have been subtracted 
out. In particular (l-Y2(r))dr givea the probability 
of observing a level in an infinitesimal interval dr 

For a random variable W, we denote its ensemble 

- T̂ 
average by W and its ensemble variance (W-W) by Var W. 
Note, moreover, that we are considering spectra norma­
lized to unit local average spacing. 

The GOE predictions are very sensitive to spurious 
and missing levels, especially for energy level fluc­
tuations, imposing stringent conditions on che qua­
lity of data. Ideally che observed level sequence 
should be pure (all levels should have the same spin 
and pericy) and complete (no missing level). Because 
of chis, while the main GOE predictions have been 
known for almost two decades, good quality data re­
quired Co cest the model have come relatively recent­
ly. Earlier analyses of individual level sequences 
indicate "overall good agreeoent" between theory and 



at a distance r from a given level. These functions 
are designed in such a way that for the Poisson en­
semble, in which the energy levels are chosen ran­
domly in a giver interval, the Y^ are all zero for 
k>l. 

For GOE5'' 

v 2 ( r ) . l l i n i r ) 2 + ^ s i n ^ d r , ^ ( s ^ L r ) > ( ; ) 

which is normalized to a total unit integral. It has 
the value unity at r*0 implying level repulsion and 
goes to zero At (irr)"2 for large r(>l) implying spec­
tral rigidity. The latter aspect is more apparent 
from the number variance2"'!2 (n), namely the variance 
of the number statistic n, the number of levels in a 
given interval of length n : 

£2(ïï) - ÏÏ-2/"1 (n"-r)Y,(r)dr 

0 i 

• -^ |ln(2im)*Y*l*Y [Si(nn)]2 -~ Si(irii)-cos(2TTn") 

- Ci(2im) *n 2n[l- \ Si(2!m)]j 

'^M> in(2im) • y • 1 •i) (2) 

Note that its value is "<• unity for n-100 and even 
for n "o to' the fluctuation is not more than a couple 
of levels. This should be compared with Zi(n)>n for 
the Poisson ensemble. 

Another measure of the spectral rigidity is the A ;-
statistic of Dyson and Mehta2. It measures, for a 
fixed interval fc,x*n], the least square deviation of 
the staircase N(E), the number of levels with energy 
less than or equal to E, from the best straight line 
fitting it : 

_ _ x*n , 
A..(n;x) - (l/n) rain / (N(E)-AE-B) d£ . (3) 

A.B x 

Its ensemble average is related to Z , and hence to 
Y 2, by' 

Â,(n) . (2 / Ï Ï 4 ) J" ( n " 3 - 2 Ï Ï 2 f r 3 ) £*(,-) dr , (4) 
J 0 

which may_be integrated numerical ly , or for H>I5 one 
may u s e 2 û,- ir" ! In n - 0 . 0 0 7 with good_accuracy. Again, 
in comparison with the Poisson value A - n / 1 5 , the 
spectrum i s seen t o exh ib i t a long range order . (Note 
that because of s t a t i o n a r i t y ' 9 the ensemble proper­
t i e s are independent of x, the p o s i t i o n of the i n t e r ­
v a l ) . 

Usually the most one can hope for i s to t e s t the 
theory for the c_wo l e v e l funct ions and i t s i n t e g r a l s 
such as I2 and A>. However froo a very long sequence 
of l e v e l s or froo a c o l l e c t i o n of aany short sequences 
a s i s Che case for nuclear s p e c t r a , ic nay be possible 
to observe soae higher-than-cwo l eve l e f f e c t s as w e l l . 
Moreover the higher order funct ions are needed for 
the c a l c u l a t i o n of the sample errors of the t e s t i n g 
procedure ; thus for example for t e s t i n g two-point 
measures one needs to know the k - l e v e l funct ions 
for k<4. Although a l l c l u s t e r funct ions have been 
evaluated for C E ' 1 , very few ana ly t i c r e s u l t s are 
a v a i l a b l e for higher-chan-iwo-poinc measures. r o r 
propert ies r e l a t e d Co Y^ with k>2, we re ly mostly on 
Monte C.-rlo r e s u l t s chat we have obtained from a 
sample, adequate for our purpose, of 100 COE matrices 
of d imens iona l i ty 330. 

Sotie examples of h igher- than- two- leve l measures are 
provided by the d i s t r i b u t i o n s and c o r r e l a t i o n proper­
t i e s of Che A] a s well as the number (n) s t a t i s t i c s . 
In t h i s paper some r e s u l t s for As are considered 
(see Fig .2c for Var A, and F igs .3a ,3b for the Ai d i s ­
t r ibut ion for n - 1 0 , 2 0 ) . For very large n.Var A> ap­
proaches 2 the va lue .011 which should_be compared 
with the Poisson r e s u l t Var \i » ( 1*1ln/30)n/2IO. Once 
again i t i s seen that the f l u c t u a t i o n s are small for 
COE. 

In order to make optimal use of an observed spectrum, 
w« introduce s p e c t r a l averaged q u a n t i t i e s . Consider a 
sequence c o n t a i n i n g ( p + n l e v e l s . For a s t a t i s t i c 
U(n;x) def ined in an in terva l of length n at » , the 
spec tra l average 

. x*(p-n) _ 
<W(n)> p - (p-n) J x W(n,y) dy (5) 

i s an es t imator of W(n). The var iance of <W>-, which 
i s the square of the sample e r r o r , i s a l s o given by 
the theory : 2 

Var <W(n)> = <W(ïï)> - <W(n)> 
P P P 

2 Var W(n) r(p-ff) , - . _ , - X J - 5 — - J r ' ( p - n - r ) C ( r ; n ) d r 
(p-nV 0 

2 Var W(n) r l _ , . . . . , . , 
" L CUn;n)dA , (6) 

(p/n) ° 
where C(r;n) i s the a u t o c o r r e l a t i o n funct ion of W : 

C(r;n) - (Var W(n)) | w ( n ; x ) W ( n ; x * r ) - ( U ( n ) ) 2 

}• (7) 

The last step of Eq.(6), valid for p»m, follows from 
the fact that the autocorrelation functions for mea­
sures discussed in this paper fall off rapid'7, being 
close to zero for rin for o: I. Notice that as p»». 
Var <W>p goes to zero, whic.i is nothing but the er-
godic property" : the spectral average coincides with 
the ensemble average. 

It is seen from (6) that for the sample «Tors we 
need Var U as well as the integral / C(An;n)dA both 
of which we estimate from our Honte Carlo sample. 
The details will be published elsewhere. In practice 
instead of (5) we use a less smooth average in which 
the integral is replaced by a summation. 

3.Comparison with Experiment for Energy Levels 

In the conventional analysis on* treat* the data from 
each nucleus, containing about 50-100 levels, sepa­
rately and consequently the statistical significance 
is poor. As seen from (S) the testing procedure im­
proves as the sample size increases. Moreover since 
the correlation functions, Eq.(7), fall off rapidly 
it is not necessary to have one long sequence but a 
collection of aany relatively short sequences could 
also be used. 

Since one expects that the resonance energies of every 
compound nucleus will share the same fluctuation pro­
perties, it seems natural, *vA in the spirit of random 
matrix theory, to treat the set (NDE) of nuclear re­
sonance energy data of different nuclei as a sampling 
of eigenvalues of COE matrices ; see Ref. 1 2 for a si­
milar notion for complex atomic spectra. As an example 
of this procedure, the nearest neighbor spacing dis­
tribution is shown in Fig.I. It is clear that a his­
togram containing "\> 1700 spaeiags corresponding to 
the NDE (Fig.lb) is statistically much more signi­
ficant, when compared to a theoretical prediction, 
Chan a histogram containing only t 100 spacings cor­
responding to a single nucleus (Fig.la). 

Our NDE consists of 1762 resonance energies corres­
ponding to 36 sequences of 32 different nuclei : 

i) Slow-neutron resonance data on ' " " ' " Z n 
(103,65,45 levels"), ""cd (17 levels1*),'»»,l"Sm 
(70, 27 levels"), ' " ' ' " ' ' " ' "°Cd (19,47,21,54 
levels16), ">"«2'"*Dy (18,46,20 levels"), 
""•""•"°Er (109,48,31 levels'"), "2"'-»«'*Y b 

(55,19,23 levels")," 2 , 1""'"W(41,30,14 levels 2 0), 
'•«•"'Os (56,17 levels21), 2 1 2Th (178 levels22^ <snd 
2 1 8L' (146 levels 2 2), 

ii) (n.y) reaction data on " 7 H f (34'j-3* levels, 
23'j-4' levels2'), " ,Hf(25 ,J-4* levels, 22'J-5* 
levels21) and 2"U(58'J-3' levels, 68'J-4* level*2"), 

iii) proton resonance data on ""Ca(52'l/2 ' levels, 
39'1/2" levels"). *'Ti(66'l/2" levels25) and "Pe 
(56'l/2"levels"). 



Fig.I. nearest neighbor spacing histogram for : (a) 
: " E r , (b) Nuclear Data Enseable (NDE). 

* 
The criterion for inclusion in Che NDE is that the 
individual sequences be in general agreement with COE. 

We have Bade an extensive test of the theory by stu­
dying the aforementioned functions Y^Cr), I"(n), 
A](n) as wall as others. A couplet* account will be 
given elsewhere. Here we restrict ourselves to a few 
typical examples for the NDE. 

Consider first the two-level measures Z'(K) and Ï. (n"). 
The procedure for calculations i* to evaluate for 
each of £he 36 sequences the spectral-averaged measure, 
say <Ai(n)> for Ai(n), and then take their average, 
weighced according to the size of each sequence. We 
Jiavc considered the range 0<rî<IOO. The results for 
n<2S are shown in Figs.2a, 2b. They are in a remarka­
bly good agraeaent with COE. We emphasize that tvoi-
eall£ the "figure of merit", e.g. (Var <Ai>)'/:/£, 
for A), is of the order of a few percent in the pre­
sent analysis, whereas in the conventional analysis 
it is 1 20X or more. The values corresponding to the 
Poisson case as well as the Caussian L'nitarity En­
semble (CUE ; see section 5 below) are also shown for 
comparison. 

To explore highcr-than-two level effects we consider 
the ensemble variance of Ai(n~), which is sensitive to 
Y K upto k«4, and the distribution function of ', i for 
various values of n (which involves in principle all 
order effects)._The results are presented in Fig.2c 
for Var A> for n<25 and two examples (n»10,20) of the 
distribution function of A) are shown in Fig.3. The 
agreement between the COE predictions and data it 
«gain very good. 

In the previous paper' our NDE consisted of 1407 
resonance energies corresponding Co 30 sequences of 
28 different nuclei, In the present NDE we have added 
8 new sequences. Moreover, we have not included the 
modifications suggested by the authors of the Columbia 
data to account for some missing levels. Instead, we 
have considered shorter sequences in a few cases and 
have dropped from the list the '' " ''"Cd-spectra which 
involved large modifications. Our conclusions, as 
exemplified by Figs.2,3 are still Che same as in Ref.' 

Fig.2. (a) E2,(b) A,,(c) Var Ai as functions of n . 
Dashed lines correspond, for COE, to one standard 
deviation from the average. 

4. width Fluctuations 

The main question is whether the transition widths 
(via which the resonance levels are detected and 
identified) have a x! (Porter-Thomas') distribution : 

D(x) - <2<rx)"l/2 exp(-x/2) ; x - r u | P u , (8) 

where the width ' l c measures the rate of transition 
from an initial (statistical) state i to a channel 
state c. Or, equivalently the question is whether the 
transition amplitudes, whose squares (to within a 
penetrability factor) are the widths,are Caussian 
random variables. This prediction follows directly 
from the orthogonal invariance of the random matrix 
ensembles as is the case with COE ; see Ch.VII of 
Ref.'. 
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Fig.4. Histogram for the absolue* valu** of transition 
amplitudes : (a) "*Er, (b) NDE. The theory predicts 
P<x)-(2/fT)'/2exp<-x1/2). 

Xv-distribution;for details see Refs.'*
17. Ht have 

studied u as a function of a and a plot is given in 
Fig.J. The departures from theory for açlO"' say be 
due to the missing small widths. For larger values of 
a the agreement is again very good. 

Fig.3. Distribution function of £j : (a) n-10, (b) 
n«20. Dashed lines correspond, for COE, to one standard 
deviation from the average. 

The amount of data that can be used to test the theory 
is much larger than in the case of energy levels. This 
is because even if some of the resonances are not de­
tected due to very small widths, Eq.(8) can be tested 
for x>os, an expérimental threshold. In this section 
we present the results for some of the neutron-widths. 
A more detailed analysis will be taken up later. Tnt 
a similar analysis of ouch older data, see Ref. ; 7 

We consider an HOE containing 1182 widths corresponding 
to 21 level sequences* of the previous section : 

itt.iti,i7iEr> i-i.i. , b | iii'H'H, ' H T n a n d • 'H'. 

The transition amplitude distributions are shown in 
Fig.4 for an individual sequence as well as the NDE. 
The agreement between theory and data is seen to be very 
good. 
For further tests we calculate J, the number of de­
grees of freedom, assuming that the width distribution 
itself is :< with v not necessarily an integer. A sta­
tistically significant departure from y«l would then 
be an indication of a failure of rh» Porter-Thomas 
model. A cosasonly-used procedure is to construct 'hi? 
likelihood function which is the product of the x.. * 
densities of the observed (renormalized) widths and 
then to maximize this function with respect to J. The 
sample errors associated with this estimation procedure 
are obtained by studying the deviations from the 
maximum. The rcult would however show departure if 
some small widths are missing. For a better procedure 
we may assume a (relative) cut-off s below which the 
widths are likely to be missed and then do the above 
analysis for all widths of values •:• with a truncated 

* The widths in each sequence are renormalized to 
unit average. 

Fig.5. The degree of freedom v as a function of cut­
off "J. The error bars correspond to one standard de­
viation from the estimated v. 

Finally we turn to Che question of correlations between 
the width and energy level fluctuations. The theory 
predicts the two to be statistically independent. To 
test this we calculate the correlation coefficient 

N t 
i-l 

r. -<r> 
ic •x-v-) • (9) 

for each sequence. Here N is the number of levels in 
the sequence and r i c the width associated with the 
level E t. <r> and a. are Che mean and standard devia­
tion of the Tie, and 1 ic 

<E.> - Ai*B, 
- I N 

<E.>) (10) 

- 4 



where A and 5 are fixed by minimizing the expression 
for -"£ . For Che NDE we take the average of the corre­
lation coefficients for each sequence, weighted ac­
cording to the size of the sequence. We obtain r(NDE)« 
0.017 as pared to the theoretical value OtO.029 
confirming again the predictions. 

5. Conclusion 

Ue have established an astonishingly good agreement 
between a parameter-free theory (COE) and rhe data. 
Ue emphasize that, apart froa rotation and tine-
reversal invariance resulting in the real syaaetric 
nature of the matrices, COE takes no account of the 
specific properties of the nuclear Haailtonian, e.g. 
its (l*2)-bodv nature, its large pairing and quadru-
pole components, etc . Ue also recall that the 
eigenvalues and eigenvector components of realistic 
(non-random) nuclear shell model matrices show the 
sane fluctuation patterns7'*'. How can this be under­
stood theoretically ? 

To answer this we recall fir:* that there are other 
classical ensembles in which, like COE, the orthogo­
nal invariance plays a key role and which also give 
the saae fluctuations11 . But more significantly 
for the nuclear Haailtonian, there are Monte Carlo 
results2**'° which indicate that enseables of two-
body operators acting in many-particie (shell aodel) 
spaces also yield fluctuations characteristic of COE. 
More recently" it has been demonstrated that adding 
a COE matrix H to a.iv real syaaetric aatrix K,(k>oH), 
leads very quickly, as a increases, to the same fluc­
tuations. Intermediate fluctuation patterns are to be 
expected only when the random matrix elements are not 
auch larger than the local average spacing of the gi­
ven (non-randoa) aatrix K. The good agreeme. : with 
experiment, coupled with the theoretical understanding 
which is now emerging, reinforces the belief that COE 
fluctuations are to be found in i.ature under very ge­
neral conditions. 

Ue mention finally that one can use the close agree­
ment to impose restrictions on mechanisms which would 
change the fluctuations. In particular if time rever­
sal is not an exact symmetry, the appropriate model 
would be an ensemble of complex Heroic ian matrices in 
which the real and imaginary parts are sampled inde­
pendently. The Gaussian Unitary Ensemble (CUE) in 
which the two parts have the saae norm is one such 
example. It gives very different fluctuation proper­
ties than COE*"'. For example, ï2(r)-(sinïïr/^r)' 
implying ftronger_l eve1 repulsion than COE (see Figs. 
2a,2b for Z 2 and A>) and widths follow a xj distri­
bution. Analytic results for ensembles in which the 
real and imaginary parts have unequal weights have 
recently been given ". It is shown tor energy level 
fluctuations (and is erpected to be valid for width 
fluctuations at well) that even a small magnitude of 
the imaginary part induces major changes in fluctua­
tion properties, leading very rapidly from COE to CLE 
type fluctuations. The results are being used''1 to 
derive an upper bound on the time reversal non-inva­
riant part of Che nuclear Hamilconian. 
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