INSTITUTO DE ENGENHARIA NUCLEAR DEPARTAMENTO DE REATORES DIVISÃO DO REATOR ANCONAUTA

INW-mf--7817

MEDIDAS DE ÍNDICE DE ESPECTRO UTILIZANDO CÂMARAS DE FISEÃO MINIATURAS.

AUFORES:

Maria Inês Silvani Souza Rosanne Cefaly de Aranda A. Furieri Serebias da Silva Oliveira Luiz Osório de Brito Aghina

> . .

1980.

Câmaras de fissão são detetores de neutrons que fun cionam como câmaras de ionização tendo como agente ionizador os produtos de fissão.

Esses detetores são empregados para a medida da população de neutrons em um determinado local ou para medida de parâmetros integrais da física de reatores.

O presente trabalho trata da técnica do uso das câmaras de fissão para a medida desses parâmetros integrais.

De uma maneira simples pode-se representar uma câma ra de fissão como:

- 6. ANODO ONDE ESTÁ DEPOSITADO O NATERIAL FÍSSIL
- 5 CATODO
- C- ISOLANTES

Parâmetros integrais em física de reatores são qua<u>n</u> tidades que podem ser medidas em um determinado local de um re<u>a</u> tor tal como uma taxa de reação e que representa o efeito de várias outras grandezas - Parâmetros diferenciais - tal como s<u>e</u> · ção de choque de grupo de energia.

A importância dos parâmetros integrais é que a sua medida pode ser comparada com cálculos teóricos baseado nos pa-

râmetros diferenciais e assim verificar a precisão dessas últ<u>i</u> mas grandezas.

Para o projeto de reatores rápidos do IEN torna-se importante a medida de parâmetros integrais tais como relação de taxas de fissão ou <u>indice de espectro</u> e com isto verificar a precisão das seções de choque de fissão como também o espectro de neutrons, e aplicar o resultado das medidas no processo da ajustagem de seção de choque de grupo de energia.

Este trabalho descreve o método utilizado para a m<u>e</u> dida do índice de espectro e toda a sistemática experimental no uso das câmaras de fissão e dos códigos de interpretação de resultados das medidas.

O reator empregado como meio de irradiação de neu trons é o reator Argonauta do Instituto de Engenharia Nuclear e as câmaras de fissão empregadas são do tipo miniatura e de origem francesa.

Não serão apresentados ainda os resultados finais do processo de medida do Índice de espectro pois aguarda-so o término da construção de um conversor de neutrons de maior eficiên cia do que se possue atualmente.

Foram realizadas experiências para testar as câmu ras de fissão e levantadas suas características cujos resulta dos serviram para testar o código ESFI empregado neste método experimental para a interpretação dos resultados das medidas.

- FUNDAMENTOS TEÓRICOS PARA O CÁLQULO DO ÍMDICE DE ESPECION

З,

O Índice de espectro para o isótopo <u>x</u> com respeito ao isótopo <u>y</u> em um ponto <u>R</u> dentro de um meio, no qual existe um fluxo de neutrons é dado por:

$$I.E = \frac{ \begin{cases} E_n & \sigma_f^X (E) \notin (E,R) d E \\ E_1 & \sigma_f^E \end{cases}}{ \begin{cases} E_n & \sigma_f^Y (E) \notin (E,R) d E \\ E_1 & \sigma_f^E \end{cases}}$$

ondo: β (E,R) é o fluxo de neutrons em função da energia no ponto <u>R</u>

 σ_{f}^{x} (E) e σ_{f}^{y} (E) é a seção de choque diferencial de fissão microscópica para o isótopo x e y respectivamente.

O Índice de espectro pode também ser interpretado como a razão da seção de choque efetiva de fissão dos dois isótopos, ou seja:

$$\mathbf{I} \cdot \mathbf{E} = \frac{\hat{\sigma} \cdot \mathbf{x}}{\hat{\sigma} \cdot \mathbf{f}} \quad \text{sendo} \quad \hat{\sigma} \cdot \mathbf{f} = \begin{cases} \mathbf{\sigma}_{\mathbf{f}}^{\mathbf{X}} (\mathbf{E}) \quad \mathbf{g}(\mathbf{E}, \mathbf{R}) \quad \mathbf{d} \in \mathbf{E} \\ \mathbf{g}(\mathbf{E}, \mathbf{R}) \quad \mathbf{d} \in \mathbf{F} \end{cases}$$

Usualmente utiliza-se o ²³⁵U como isótopo de referência, isto é, a do denominador.

A razão da sua utilidade e limitações pode ser compreendida estudando-se a dependência da seção de choque com a energia dos seguintes isótopos; 232 Th, 233 U, 234 U, 235 U, 236 U, 237 Np, 238 U, 239 Pu, 240 Pu, 241 Pu, 242 Pu.

Para calcular o índice de espectro utiliza-se um isótopo cuja seção de choque de fissão varie fortemente com a energia do neutron e outro isótopo cuja seção de choque poderá ser independente da energia do neutron. Não há isótopo que sa tisfaça o último requisito, mas o ²³³U, ²³⁵U, ²⁴¹Pu, ²³⁵Pu, são razoavelmente satisfatórios.Deste ponto de vista o ²³⁹Pu é

o melhor (figura 2.1) mas o 235 U é, e será geralmente utiliza do, pelo motivo que as seções de choque de fissão microscópica de determinados materiais são usualmente medidas em relação ao 235 U. Deste modo os efeitos das incertezas nos dados nucleares serão minimizados.

Entre os isótopos cuja seção de choque de fissão varia fortemente com a energia dos neutrons, pode-se citar o ²³² Th, ²³⁴U, ²³⁶U, ²³⁸U, ²³⁷Np, ²⁴⁰Pu e ²⁴²Pu, tendo todos eles um limiar de fissão.

A seção de choque de fissão, em função da energia : do neutron é mostrado na figura 2.2 e 2.3.

As razões 242 Pu / 235 U; 236 U/ 235 U; 238 U/ 235 U e 232 Th/ 235 U nos dão bons índices de espectro, com energia limiar de aproximadamente: 0,7 Mev; 1,0 Mev; 1,5 Mev e 1,8 Mev respectivamente.

ζ.

Fig. 2.2 SEÇÃO DE CHOQUE DE FISSÃO DO
 ²³⁴ U,
 ²³⁵ U,
 ²³⁷ Np e
 ²⁴⁰ Pu
 COMO FUNÇÃO DA ENERGIA DO NEUTRON.

Para determinar o Índice de espectro experimentalmente será irradiado uma pequena quantidade de material físsil e em seguida medida sua atividade.

6.

O presente trabalho tem por objetivo determinar o Indice de espectro experimentalmente utilizando como detetores câmaras de fissão miniaturas.

Uma câmara de fissão possue um depósito composto de um material físsil, e quando colocado em um fluxo de neutrons provoca um número de pulsos <u>A</u>, e esta quantidade pode ser escr<u>i</u> ta como:

 $\mathbf{A} = \mathbf{k} \ \hat{\boldsymbol{\sigma}}_{\mathbf{f}\mathbf{R}} \ \mathbf{N} \ \boldsymbol{\beta}_{\mathbf{R}}$

onde:

σ fR é a seção de choque efetiva para a fissão do material físsil depositado na câmara que está no espectro de neutrons existentes no lugar de medida R

N é o número de núcleos físseis existentes no depósito

 ${\it j}_R$ é o fluxo total de neutrons existentes no ponto de medida.

k é o coeficiente de proporcionalidade que nos dá o rendimento da câmara.

2.2 - Medida de Índice de Espectro

Como já vimos o índice de espectro pode ser dado pe la relação $\hat{\sigma}_{f}^{x/\hat{\sigma}_{f}^{5}}$ onde $\hat{\sigma}_{f}^{5} = \hat{\sigma}_{f}^{(235)}$ U). Portanto será necessário duas câmaras de depósitos diferentes, cujas massas deposi tadas devem ser conhecidas.

Geralmente as medidas feitas para se determinar o número de núcleos físseis do depósito são imprecisas, e para eliminar essa imprecisão, é utilizado o seguinte método:

 Expõe-se as duas câmaras de depósitos diferentes em um fluxo de neutrons referência, térmico como exemplo, cuja seção de choque para a fissão do material depositado seja conhecida para neutrons daquela energia.

A

O efeito das duas câmaras expostas ao mesmo tempo no mesmo fluxo será:

$$A_{xTh} = k \sigma_{f}^{x} Th N_{x} \mathscr{G}_{Th}$$

$$A_{5} Th = k' \sigma_{f}^{5} Th N_{5} \mathscr{G}_{Th}$$

$$\frac{k' N_{5}}{k N_{x}} = \left(\frac{A_{5}}{A_{x}}\right)_{Th} \left(\frac{\sigma_{f}^{x}}{\sigma_{f}^{5}}\right)_{Th}$$

as quantidades A₅ e A_x são obtidas experimentalmente e $\left(\sigma_{\rm fr}^{\rm X}/\sigma_{\rm fr}^{\rm S}\right)_{\rm Th}$ é facilmente obtida de tabelas.

2) Expõe-se o mesmo par de câmaras por um mesmo tempo em um flu xo de neutrons rápidos no mesmo local anterior; o efeito será

$$A_{xR} = k \hat{\sigma}_{fR}^{x} N_{x} \beta_{R}$$
$$A_{5R} = k \hat{\sigma}_{fR}^{5} N_{5} \beta_{R}$$

resultando:

$$\frac{\begin{pmatrix} \hat{\sigma}_{f} x \\ \hat{\sigma}_{f} 5 \end{pmatrix}_{R}}{\hat{\sigma}_{f} 5 \end{pmatrix}_{R}} = \frac{\begin{pmatrix} A_{x} \\ A_{5} \end{pmatrix}_{R}}{\begin{pmatrix} A_{5} \\ A_{x} \end{pmatrix}_{Th}} \begin{pmatrix} \sigma_{f} x \\ \sigma_{f} 5 \end{pmatrix}_{Th}$$

Devido ao pequeno tamanho das câmaras vamos supor que o espectro de neutrons não se modifica com a presença da câ mara.

Para câmaras cujo material depositado consiste de somente um isótopo físsil, o cálculo do índice de espectro é bastante simples. Esse cálculo se torna mais complexo quando se utiliza câmaras cujo material depositado contém mais de um isótopo e todos eles físseis a neutrons térmicos ou a neutrons rá-. pidos, que é a situação normal na prática. Para esse cálculo expoè-se oseguinte exemplo:

Câlculo do Índice de espectro: $\hat{\sigma}^{241}_{Pu}$ $\frac{f}{\sigma_f^{235}_{U}}$ utili zando uma câmara do 241_{Pu} e uma de 235_{U} .

Normalmente um depósito de ²⁴¹ Pu contém os seguintes isótopos: ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu, ²⁴² Pu, ²⁴¹ Am.

Para calcular o índice de espectro desejado temos duas considerações a fazer:

1) O decaimento do ²⁴¹ Pu cuja meia vida é relativamente curta comparada com a vida da câmara, $T_{1/2} \sim 15$ anos.

$N = N_1 e^{-\lambda t}$

N₁ é o nº de átomos de ²⁴¹Pu em uma data referência t=0

- λ é a constante de desintegração do ²⁴¹ Pu.
- 2) A formação do ²⁴¹Am a partir do decaimento do ²⁴¹Pu que é um emissor β^{-1}

 $N'Am = N_1 (1 - e^{-\lambda t})$

onde N'Am é o número de átomos de Am que está sendo formado pelo decaimento do 241 Pu.

Os outos isótopos são considerados estáveis por pos suirem meia vida muito grande comparada com a vida da câmara.

Vamos analisar o efeito em diferentes espectros das duas câmaras expostas com igual tempo no mesmo fluxo.

A) <u>FLUXO TÉRMICO</u>: a razão das atividades A obtida nes-

se fluxo também é chamada de <u>coeficiente de calibração térmi-</u> <u>ca</u>.

a) câmara de ²⁴¹Pu

 $\frac{241}{A}_{Th}^{Pu} = k\beta (N_9 \sigma_{9Th} + N_1 \sigma_{1Th})$

ε.

pois a seção de choque para a fissão dos isótopos 240 Pu, 242 Pu, e 241 Am é igual a zero para neutrons de energia na faixa têrmica.

 $\begin{array}{c} 241_{p_{11}}\\ \text{Lembrando ainda que } A_{Th}^{} & \tilde{e} \text{ a atividade obtida em}\\ uma data de referência, isto é, t = 0 e que após um tempo t da data de referência \end{array}$

$$h_{1} \text{ Th} = A'_{1} \text{ Th} \left[\frac{N_{9} \sigma_{9} \text{ Th} + N_{1} \sigma_{1} \text{ Th}}{N_{9} \sigma_{9} \text{ Th} + N_{1} e^{-\lambda t} \sigma_{1} \text{ Th}} \right]$$
$$h_{1} = \Lambda^{241} \text{Pu}$$

ondò:

 $\sigma_{g} = \sigma_{f}^{239} pu$ $\sigma_{j} = \sigma_{f}^{241} pu$

 $A'_{1 \text{ Th}}$ é a atividade produzida pelo mesmo fluxo \emptyset cm um tempo t após a data de referência.

Para simplificar comparações posteriores trabalha-se com a atividade com a data de referência.

·b) câmara de ²³⁵U

onde:

$$A_{5 \text{Th}} = k' \sigma_{5 \text{Th}} N_5 \beta_{\text{Th}}$$
$$A_5 = A^{235} U$$
$$\sigma_5 = \sigma_f^{235} U$$

B) FLUXO RÁPIDO

a) câmara de ²⁴¹Pu

$$A_{1R} = k \ \beta_R \left[N_9 \ \hat{\sigma}_{9R} + N_0 \ \hat{\sigma}_{OR} + N_1 \ \hat{\sigma}_{1R} + N_2 \ \hat{\sigma}_{2R} + N_{Am} \ \hat{\sigma}_{AmR} \right]$$

onde: $C_0 = \hat{\sigma}_f^{240} Pu^{242} Pu^$

onde:

$$h_{1R} = \lambda' \ln \left[\frac{N_9 \hat{\sigma}_{9R} + N_0 \hat{\sigma}_{0R} + N_1 \hat{\sigma}_{1R} + N_2 \hat{c}_{2R} + N_{AR} \hat{\sigma}_{ARR}}{N_9 \hat{\sigma}_{9R} + N_0 \hat{\sigma}_{0R} + N_1 e^{-\lambda C} \hat{\sigma}_{1R} + N_2 \hat{\sigma}_{2R} + N_{AR} \hat{\sigma}_{ARR} + N_1 (1 - e^{-\lambda C})^2 \hat{\sigma}_{RR}} \right]$$

b) câmara de ²³⁵U

$$A_{5R} = k' \beta_R N_5 \hat{\sigma}_{5R}$$

trabalhando com as equações acima chega-se que o índice de es pectro desejado é dado por:

 $\begin{pmatrix} \hat{\sigma}_1 \\ 0 \\ 5 \end{pmatrix}_R = \frac{1}{a_1} \left\{ \frac{(^{N_1}/^{N_5})_R}{(^{N_1}/^{N_5})_{Th}} \left[\begin{pmatrix} \sigma_9 \\ \sigma_5 \end{pmatrix}_{Th} + a_1 \begin{pmatrix} \sigma_1 \\ \sigma_5 \end{pmatrix}_{Th} - \begin{pmatrix} \hat{\sigma}_9 \\ \hat{\sigma}_5 \end{pmatrix}_R \begin{pmatrix} \hat{c}_0 \\ \hat{\sigma}_5 \end{pmatrix}_R (a_0 + a_2 k_2 + a_m k_n) \right\} \right]$ orde: $a_1 = \frac{N_1}{N_9} \quad a_0 = \frac{N_0}{N_9} \quad a_2 = \frac{N_2}{N_9} \quad a_m = \frac{N_{Am}}{N_9}$ $k_2 = \begin{pmatrix} \hat{\sigma}_2 \\ \overline{\sigma}_0 \end{pmatrix}_R \quad k_m = \begin{pmatrix} \hat{\sigma}_{Am} \\ \overline{\sigma}_0 \end{pmatrix}_R$ $: N_0 \in o \ n9 \ de \ atomos \ de \ 240 Pu$ $N_1 \in o \ n9 \ de \ atomos \ de \ 241 Pu$ $N_2 \in o \ n9 \ de \ atomos \ de \ 241 Pu$ $N_1 \in o \ n9 \ de \ atomos \ de \ 241 Pu$ $N_1 \in o \ n9 \ de \ atomos \ de \ 241 Pu$ $N_1 \in o \ n9 \ de \ atomos \ de \ 241 Pu$ $N_1 \in o \ n9 \ de \ atomos \ de \ 241 Pu$ $N_1 \in o \ n9 \ de \ atomos \ de \ 241 Pu$ $N_2 = (1 + 1) + (1$

Os valores de k $_2$ e k $_m$ são obtidos ou a partir de cálculos teóricos ou de medidas separadas.

Quando se utiliza câmaras cujos depósitos possuem um limiar, a técnica utilizada é usar câmaras dopadas. Nesse caso incorpora-se geralmence ao isótopo cuja reação tem um limiar de fissão., uma quantidade bem conhecida da ordem de 1% de um isótopo cuja seção efetiva é conhecida para o espectro térmico. Co mo por exemplo:

Para se determinar $\sigma_2^{238} U/\sigma_{\tilde{f}}^{239}$ Pu utiliza-se o par câmara de ²³⁸U dopado com 1% de ²³⁹ Pu e uma câmara de ²³⁹ Pu pu+

ro.

3 - DEFEVOR CAM RA DE FILSÃO

3.1 - Funcienzmento

O funcionamento de uma câmara de fissão, é baseado no fenômeno de fissão de alguns elementos, através dos neutrons tém micos e (ou) rápidos.

Una câmara de fissão é usada para detetar neutrons pela medida da ionização produzida num gás pelos fragmentos de fissão. Estes fragmentos são ejetados no gás quando um neutron causa a fissão na camada físsil da câmara e o pulso de tensão formado pela ionização após cada evento da fissão é coletado por . • um campo elétrico aplicado.

Os pulsos são contados eletronicamente e parmite dida da taxa de reação na camada físsil no nomento em que se produz a fissão, que é diretamente proporcional ao fluxo de ne<u>u</u> trons de irradiação.

3.2 - Descrição

As câmaras de fissão miniaturas existentes no IEN p<u>a</u> ra o desenvolvimento das técnicas experimentais em Física de Reatores, foram fabricadas pelo CEA (Centro de Energia Atômica-- França),

Os metais utilizados são o aço inoxidável, titânio, alumínio e zircaloy.

Os isolantes de contato são de material cerânico e ∞ condutores de titânio o que permite o funcionamento a altas te<u>m</u> peraturas.

Os depósitos de material físsil são geralmente feitos sobre um dos eletrodos, a menos quando se quer uma sensibilida de maior.

£2.

Nas bordas dos eletrodos é mantida uma zona sem depósito de largura tal que não <u>perturbe</u> o campo elétrico, permitindo que a coleção de carga seja completa.

Os depósitos são classificados em três categorias.

- a) depósitos físseis a neutrons térmicos 235_{92} (U enriquecido a 93% em 235_{92} U); 233_{94} Pu; 242_{94} Pu 94^{92} U); 235_{94} Pu; 239_{94} Pu; 242_{94} Pu
- b) depósitos físseis a neutrons rápidos

 $\frac{238}{92}$ U (U enviguecido a 400 ppm de $\frac{235}{93}$ U); $\frac{237}{93}$ Np; $\frac{232}{90}$ Th

 c) depósitos de materiais físseis a neutrons rápidos depados com uma pequena quantidade de um material físsil a neutrons tôrmicos:

 $\begin{array}{l} \upsilon_{\text{nat}} & ({}^{238}\upsilon + 0,71\$ \; \frac{235}{92}\upsilon); \; \frac{238}{92}\upsilon + 1\$ \; \frac{235}{92}\upsilon; \; \frac{237}{93} \mathrm{Np} + 0,5\$ \; \frac{239}{94} \mathrm{Pu}; \\ \frac{238}{92}\upsilon + 1\$ \; \frac{239}{94} \mathrm{Pu} \; , \; \mathrm{etc...} \end{array}$

As massas dos depósitos das câmaras existentes no IEN variam de 30 a 500 microgramas.

O conhecimento da composição isotópica é indispens<u>é</u> vel.

Existem três tipos de geometria de câmaras:

1 - Geometria cilíndrica

1.a) Tipo FCTO4 :

A câmara tipo FCTO4 se apresenta na forma cilíndrica com 4 mm de diâmetro e 23,2 mm de comprimento.

É constituida de titânio e zircaloy, sendo utilizado este último metal para reduzir a absorção parasita dos neutrons.

O depósito físsil é feito sobre o anodo e possui 11 mm de comprimento e 2,5 mm de diâmetro.

Os pulsos se formam em um tempo inferior à 100 ns.

O gás que preenche a câmara é o argônio puro.

Utiliza-se este tipo de câmara, conectando em sua ex tremidade, prolagadores coaxiais dos mesmos metais com 5 mm de diâmetro e de comprimento variável de 0,5 a 2,8 m (figura 3.1).

Este tipo de câmara é utilizado para medidas de Indi ces de espectro em arranjos críticos.

Apresenta-se no quadro abaixo, a relação das câmaras tipo FCT04 com seus respectivos depósitos existentes no IEN:

Isótopo	nat U	233 ບ	235 U	239 Pu	240 Pu		
	1523	1625	1350	1442	1441		
	1624	1626	1567	1574	1443		
Nº da Câmara		1866	1622	1620	1621		
		1867	1869	1864			
			1870	1865			

Na figura 3.2 mostra-se o esquema da câmara tipo FCTO4 .

1.b) Tipo FCYO1:

Este tipo em que a câmara está solidária ao prolonga dor, se apresenta na forma de uma agulha com 800 mm de compei mento e 1,5 mm de diâmetro.

Os metais que constituem a câmara são Inconel e Alumínio.

O depósito físsil tem 0,7 mm de diâmetro e 10 mm de comprimento, e é feito sobre o anodo.

•

Fig. 3.1 - Prolongadores Coaxiais e Câmaras.

28.7

· · · ·

· · ·

~Fig. 3.2

•

Os pulsos são formados em um tempo inferior a 50 nanosegundos.

A câmara é preenchida com o gás argônio puro.

O esque 1 da câmara é visto na figura 3.3 e 3.4.

A utilização deste tipo de câmara é para medida de fluxo nos elementos combustíveis de reatores tipo piscina.

• O quadro abaixo apresenta a relação das câmaras do tipo FCYOL existentes no IEN:

Isótopo	nat	235	238		
	U	ບ	U		
nº da câmara	1573	1571	1572		

2 - Geometria plana

tipo FPZ12:

As câmaras nesta geometria se apresentam com 12mm de diâmetro e 31,5mm de comprimento (figura 3.5)

O material principal de construção é o zircaloy.

O material físsil é depositado sobre o anodo tendo 8 mm de diâmetro.

Os pulsos são formados em um tempo menor que 100 na nosegundos.

Sua utilização é para medida absoluta de fluxo.

Apresenta-se no guadro abaixo as câmaras do tipo FPZ12 existentes no IEN:

(dimensões em mm)

Cabeça do conector estanque

•

Fig. 3.3

•

3.7.

Parte sensivel -(detalhe da figura 3.3)

. .

36

CÂMARA PLANA EM ZIRCALOY TIPO FPZ 12

Fig. 3.5

Isótopo233
U235
U237
Np239
PuNº da câmara1863
18581434
18581575
1862

· · · -

· · · ·

10

: · .

4 - MONTAGE: EXPERIMENTAL

4.1 - Introdução

Como foi dito anteriormente, o meio de irradiação de neutrons empregados para irradiação das câmaras de fissão é o Reator Argonauta.

O Reator Argonauta é um reator de pesquisa utilizando urânio enriquecido a 20% como combustível, água como moderador e refletor de grafite.

O núcleo e constituido de dois cilindros de alumi nio concêntricos onde estão situados os elementos combustíveis separados por cunhas de grafite. O elemento combustível é constituido de 17 placas paralelas de 61 cm de comprimento, 7,3 cm de largura e 0,243 cm de espessura. As placas são feitas de uma mistura prensada de po de alumínio e U_3O_8 enriquecido a 20% (4).

Este Reator é dotado de 13 canais de irradiação na parte frontal eum em cada lateral. Os canais de irradiação são localizados em frente à coluna térmica.

As medidas que serão apresentadas foram feitas na faixa de neutrons térmicos obtidos no canal de irradiação denominado J-2 com a finalidade de verificar o perfeito funcioname<u>n</u> to das câmaras e determinar um espectro característico.

Para utilizar somente faixa de neutrons rápidos, como o Reator é térmico, temos que simular um f'uxo de neutrons rápidos para se obter a razão da taxa de reação nesse fluxo.

Para isso está sendo construido um novo conversor de neutrons, como está mostrado na figura (4.1).

O conversor é constituido de urânio natural metálico. A ratão do seu uso é que os neutrons térmicos provenientes do Reator dissionarão os núcleos de 235 U contidos no U natural; de cada fissão ocorrevá a emissão de dois a três neutrons com ener gia de aproximadamente 2 Mev. Esses neutrons provenientes da flasio, com energia na faixa rápida fissionarão os núcleos de ²³⁸U o que resulta mais neumons rápidos e que por sua vez fissionarão outros núcleos de 238U e assim por diante. Teremos des se modo um fluxo de neutrons rápidos que atingirá a câmara de fissão e esta será recoberta com uma folha de cádmio de espessura suficiente para absorver todos os neutrons térmicos aue possam chegar à câmara. Desse modo teremos que a resposta đa câmara será devido exclusivamente a neutrons rápidos.

No presente trabalho não foram realizadas medidas utilizando o conversor. Apenas utilizamos um dispositivo que mos traremos no item 4.2 em faixas de neutrons térmicos.

4.2 - Condição de irrallação

2

ť

i

O canal de irradiação utilizado foi o J-2 e está l<u>o</u> calizado conforme a figura (4.2).

Para irradiação das câmaras, foi utilizado um dispo sitivo como é visto na figura (4.3).

Tal dispositivo é composto de 2 blocos de grafite que se encaixam. O bloco l possui aproximadamente 77 cm de com primento e o bloco 2 aproximadamente 80 cm de comprimento. O segundo bloco possui uma perfuração interna que conterá a câmara de medida.

Conecta-se à câmara, em uma extremidade, um cabo con xial em aço inox, cujo comprimento é adaptado à experiência.

A câmara é colocada no dispositivo conforme a posição da figura (4.3).

Todo conjunto é colocado dentro do canal de irradia_ ção J-2, como é visto na figura (4.4).

FIG. 4.3 - POSIÇÃO DO CANAL DE IRRADIÇÃO EM RELAÇÃO AO NÚCLEO.

1 - BUCHAS PARA O PUXADOR

2 - ADAPTADOR PARA INTRODUÇÃO DA CÂMARA

3 - HASTE DA CÂMARA

4 - CAMARA DE FISSÃO

5 - CABO PARA O PRÉ-AMPLIFICADOR

FIG. 4.4 - DISPOSITIVO DE IRRADIAÇÃO.

:0 10

FIG. 4.5 - ARRANJO EXPERIMENTAL COLOCADO NO CANAL J-2 DA COLUNA TERMICA.

50

É importante manter o dispositivo fixo enquanto ele permanece no interior do canal de irradiação.

Só hã necessidade de retirar o dispositivo quando as câmaras forem trocadas.

O valor da potência de operação do reator durante as diversas irradiações e o valor da duração destas,são feitas co<u>n</u> forme as medidas desejadas.

Várias câmaras foram utilizadas, mas no presente tr<u>a</u> balho são apresentadas apenas resultados da câmara nº 1550.

Tal câmara é do tipo FCTO4 (cilíndricas) com depósito físsil de 235 U.

A potência do reator utilizada foi de 170 watts.

Estabilizada a potência, deu-se o início as medidas desejadas.

4.3 - Sistema de contagem

A figura 4.5 mostra o diagrama em bloco do sistema de contagem associado à câmara e é constituido por:

FIG. 4.5 - ESQUENA DO SISTEMA DE MEDIDA .

H.V. Detector Bias Supply
pré-amplificador
amplificador
S.C.A. Single Channel Analysis
Timer

M.C.A. Multichannel Analysis

4.4 - Técnica de medida

Inicialmente foram feitas medidas com a finalidade de verificar as características da câmara fornecidas pelo fabr<u>i</u> cante.

O funcionamento de uma câmara de fissão pode ser representada essencialmente por meio da curva de discriminação e da curva característica da câmara.

Após a verificação de que a câmara está em perfeitas condições de funcionamento, usando um Analisador Multicanal, l<u>e</u> vantamos o espectro de fissão desejado (item 4.4.1).

O espectro obtido no Analisador Multicanal é regi<u>s</u> trado e em seguida transportado para cartões que servirão de d<u>a</u> dos de entrada do Programa ESFI (Capítulo 5).

4.4.1 - Levantamento das características da câmara nº 1550

A - Medida da corrente de fuga da câmara

Como entre a fonte de alta tensão e a câmara existem resistências muito elevadas (1,3 M´Ω no pré-amplificador), faz--se necessário uma medida da corrente de fuga da câmara nº 1550, para determinar a tensão real V_c a ela aplicada.

O diagrama do sistema da medida de corrente da figu. . ra é dado na figura 4.6.

FIG. 4.6 - DIAGRAMA DO SISTEMA DE MEDIDA DE CORRENTE DE FUGA.

 $R_1 = 1,3 \text{ M } \Omega \Rightarrow \text{resistência interna da fonte}$ $R_2 = 23 \text{ M } \Omega \Rightarrow \text{resistência do pré-amplificador}$ $V_c \Rightarrow \text{voltagem da câmara}$ H.V.+ voltagem na fonte de polarização

Observou-se que aplicando-se tensões comparáveis à voltagem de operação da câmara fornecida pelo fabricante, a co<u>r</u> rente de fuga é desprezível.

B - Curva de discriminação integral

Com H.V. = 300 volts, variando-se o nível de discriminação, obteve-se a curva da fig. 4.7.

Para pequenos valores de V (menores de 0,4 volts) os impulsos parasitas são todos contados. Nota-se que entre 0,4 e 1,0 volts, a taxa de contagem permanece invariável e independen te do limiar de discriminação. A curva apresenta então um patamar pois a maior parte dos impulsos são todos maiores que os pulsos parasitas.

Um gráfico da curva característica desta câmuya é mostrada na fig. 4.8 obtida com nível de discriminação em 0,4 volts.

Nesta curva, nota-se que a taxa de contagem praticamente independe da alta tensão a partir de 150 volts.

A partir dal, escolheu-se 300 V como a voltagem de \underline{o} peração da câmara, o que corresponde à tensão fornecida pelo fabricante.

D - Espectro característic. da câmara

CONTAGEM (X 10³)

Determinadas as características da câmara de fissão nº 1550 e verificado suas condições de funcionamento, com a alta tensão em 300 volts e usando-se o analisador multicanal, (M.C.A.) obteve-se o espectro de fissão característico da câmara, fig. 4.9.

20 15 10 5 0 50 100 150 200 CANAL

O espectro característico de uma câmara de fissão de pende de vários fatores, sendo os principais:

32.

- espessura e homogeneidade do depósito
- posição da superfície do eletrodo onde o material físsil édepositado.
- geòmetria da câmara
- tensão aplicada

Como o depósito de material físsil não é muito fino, o espectro de fissão registrado não apresenta uma relação grande pico-vale, aumentando assim a incerteza quanto ao espectro de fissão, devido às partículas α geralmente emitidas pelo material depositado. Daí a necessidade do tratamento destes dados, o que é feito pelo programa ESFI.

E - Variação da posição do pico do espectro da fissão

A variação da posição do pico com a tensão aplicada também foi analisada observando-se a posição do pico em um multicanal para várias tensões aplicadas à câmara. O resultado obtido (fig. 4.10) mostra que o ponto de operação escolhido (300V) encontra-se na região proporcional, o que indica o perfeito fu<u>n</u> cionamento da câmara.

5 - TRATAMENTOS DE DADOS

5.1 - Código ESFI

O código ESFI, adaptação do programa francês DECAF, é utilizado para o tratamento dos dados recolhidos das contagens feitas com câmaras de fissão. É composto do programa principal e cinco subrotinas e é feito para espectros registrados por analisadores multicanal em 100 ou 200 canais.

O tratamento dos dados obtidos no multicanal se tustifica considerando a contribuição, ao aspecto de pulsos da câma ra, da radiação alfa que acompanha o processo. Por outro lado,os depósitos do material fissil não são muito finos e assim os es pectros de fissão registrados não apresentam uma relação grande pico-vale.

Assim sendo a escolha de um ponto de funcionamento a partir da curva de discriminação pode acarretar uma incert da mui to grande na fração do espectro de fissão obtido.

O ponto de operação considerado é então obtido do próprio espectro de fissão fornecido pela câmara pela determina ção de um extremo inferior de cada espectro, do modo que se segue:

Calcula-se inicialmente o valor médio da integral m<u>a</u> xima do pico que vem a ser a máxima soma de contagens obtidas em 10 (dez) canais consecutivos.

Localizada a soma máxima sob 10 canais toma-se 1/8 da soma dos canais extremos correspondentes a esta soma obtendo--se um número inteiro que corresponde ao novo intervalo de busca de área (soma) máxima, que uma vez localizada corresponderá ao pico. Determina-se então um canal de referência, situado à direi…a do pico (fig.5.1), partindo daquele cuja contagem correspondente é a mais próxima da metade do valor médio da integral máxima do pico. Em seguida, por um ajuste de reta por mínimos qua drados em volta deste ponto determina-se a interseção desta reta com o valor da meia altura do pico e obtem-se um número que é o canal de referência R.

A integral do espectro (taxa de contagem) é então c<u>al</u> culada para 5 valores diferentes de corte do espectro: 0,20R; "0,25R; 0,30R; 0,40R; 0;50R. A escolha do melhor corte so poderá ser efetuada quando se estudar a variação dos indices de espectro para os vários cortes.

Cada integral é expressa por unidade de potência do reator e por unidade de tempo e estas integrais serão introduzi das em outro programa (TAFI) para o cálculo do índice de espectro.

Uma saída típica deste programa é mostrado na página seguinte.

₩ <u></u> , - ₩ Αρτια Βτ	ta, nga sanga	-		464 -		• •••••		• •• -		A- * *						•		• -			
	•	56671	r.	NUMERO	de m	205 M	NÌT	19287A D	A CAMA	RA	/ NUME	RO DA	слялі		NDM	ERD DE	EXPER	TENCI	A 5.	0084646	
/10/74 CANAL	. J7	1			1			U239	cir				1	• •			2			3,000	
					CAN	AL 50	DE	PARTIDA	A7A4	A BUSC	A INI	CIAL	00 PI	:0							.*
		************ *	BUSCA	INICIAL	C AN	AIS 40	Α	49 * 1	ARGUP A	INICI	AL DA	BUSC	۵ 10	CANA	15 *				. بر در تر ۵		*
CXPERIENCIA PEFEPENCIA	50.3	* 7 * 	BUSCA	FINAL	сля.	A 15 39	۸	\$0 * L	ARGURA	FINAL	04	BUSC	4 12	Слил	* 7 IS 	VALOR	HEDIC	0 00 P	100	27945	• •
EXPEPIENCIA	2	*	BUSCA	INICIAL	CAN.	A 15 40	Λ	49 + 1	ARGURA	INICI	AL DA	BUSC	Λ 10	CARA	* 21.				••• •• •• •• •• •		•
FFFERENCIA	58.2	3 *	BUSCA	FINAL	C AH	AIS 39	A 	50 v L	ARGURA	FIHAL	DA	BUSC	A 12	C & N & 7 - 7 - 7 - 7 - 7	15 *	VALOR	MEDIC	9 00 P	100	20956	* -
																				,	
	-	EXP	ERIEN	CIA +	СОРТ	E 0.20	+ (INATE O,	25 *	CORTE	C.30	 * '	COLLE	0.40	 *	CORTE	V.50	-n *			•
	+	,	978 Bay (k- 61- 6- 1	1 * 2 *	130	97.047 59.422	* * *	12970,4	65 ×	1281 1327	8.N32 4,949	* *	1244 1270	4.602 1973	*	11840	.715	5 5		• .	•
			HEDI	A *	.133	28.234	ÿ	13176.7	793 *	1304	6.891	*	1267	3.205	*	12031	.629	*			
			DESV	10 +		6.376	+	6.2	292 *		6.377	*		6.488	() ()	(.768	*			•
•			TAB	ELA DOS	V4LO	RES MED	105 1	HOPMALIN	ADOS F	PARA U	YALOR	KEDI	0 005	DIÉER	LENTE	S COR	TES				
			4	CORTE	4 4 7 7 8 1 - 6	0.20	*	0,25	*	0.30	- <i></i>	* 0	, 40	*	0,5	0	*				
			•	0.20	•	1.000	*	0,993)	0.97	9 	* (.951	•	0.0	06 	*				
			* ~~~	0.25	*	1.010	* 	1.000) *	0.78	9 	* (960	*	0.0)15	•				•
			*	0.30	* 	1.022	, 	1,011	4 	1.00	0 	+ (971	*	0,9	26	*				
			\$ \$\$	0.49	<i>*</i>	1,052	*	1.04	l *	1.02	9 	¢ ;	.000	, , , ,	0.5	53	¢				
	,		•	.0.50	*	1.)03	۴ 	1.092	•	1.08	0	»]	.049	*		00 	* -				
•		•																•			
			· ·			سر م هد هد مر عد		ter ya ng tai tai ya tay a									-			•	
			* * 5	CORTE ERIE 1	¥ 5	0,20 13323,2	4 3 9	0.25 13:96	* •77 *	0,30 13046	.09	4 i * 12	5,50 5572 •2	+ 9 *	0. 120	VC 54 - 53					
		•	** * * * *	84 85 18 18 18 14 14 14 14	******							~ ~ * ~ ~	1 is a p an f		• •• •• •• •		• ••				

• ••

١

·..

5.2 - Código TAFT

ł

induced in the

O programà TAFI consiste de 9 subrotinas, sendo 3 subrotinas obrigatórias e 6 optativas, e tendo cada uma delas sua própria função. Os resultados do programa ESFI serão utilizados como dados de entrada do programa TAFI que tem os seguin tes objecivos principais:

- a estocagem sobre fitas magnéticas dos resultados das medidas para cada câmara.
- calcular um cueficiente de ponderação para cada câmara, bisem do-se em todas as câmaras de uma mesma natureza, isto 6, mes ma composição isotópica e mesma geometria.
- malhorar este coeficiente de ponderação, caso se introduza
 mais câmaras de natureza igual âquela para a qual foi calcula
 do o coeficiente de ponderação anterior e ou mais medidas fei tas com as câmaras anteriores.
- calcular um coeficiente de callivação térmica para cada par de natureza, desde que tenha sido anteriormente calculado um coeficiente de ponderação para cada câmara que constitui o par.
- calcular o índice de espectro desejado para um par de nature za desde que tenha sido calculado anteriormente o coeficiente de calibração térmica.

A cada nova série de medidas o programa é realimentado o que faz com que ele reculcule os coeficientes de ponderação, polendo assim sempre melhorar-se as medidas do índice de espectro, no que diz respeito ã sua precisão.

1 - Coeficiente de Ponderação

As câmaras de fissão são classificadas por natureza de depósito. Como as massas dos depósitos variam, obtem-se con tagem diferentes para um mesmo fluxo. O programa faz, através de uma das subrotinas, uma ponderação de tal forma que todas as câmaras ficam relacionadas a uma câmara teórica.

Dois casos podem ocorrer:

1)
$$X_{j} = \frac{Y_{j}}{\sum_{\substack{n \\ j = 1}}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} X_{j}}$$

X_i - é o coeficiente de ponderação de uma duda câma ra i de natureza Λ

'n

 $Y_i = \hat{e}$ o valor médio das integrais médias obtido para a câmara de natureza A.

 n - é o número de câmaras diferentes de natureza A incluindo a câmara i

M_j - é o número de medidas efetuadas com cada câmara j de natureza A

Y, - valor médio das integrais médias obtida para a câmara j del natureza A

2) Coeficiente de ponderação melhorado

Pode-se melhorar um coeficiente de ponderação já e xistente para uma câmara introduzinto novas câmaras de mesma na tureza e (ou) novas medidas realizadas com as câmaras com que já se calculou o coeficiente de ponderação. O novo coeficiente de ponderação é dado por:

$$X_{i}^{\prime} = \frac{M_{i} X_{i} + N_{i} Y_{i}^{\prime} \left(\sum_{j=1}^{\Sigma} N_{j} M_{j} X_{j} / Y_{j}^{\prime} \right) / \left(\sum_{j=1}^{\Sigma} M_{j} N_{j} \right)}{M_{i} + N_{i}}$$

onde:

- X'i é o novo coeficiente de ponderação para a câmara i de natureza A
- M_j é o número de medidas realizadas com a câmara i para o cálculo do coeficiente de ponderação antigo

X_i é o coeficiente de ponderação antigo da câmara i

Ni é o número do total de medidas realizadas com a câmara i (medidas antigas + medidas novas)

39.

- Y' valor médio das integrais médias das N_i medidas realizadas com a câmara i
- n' é o número de câmaras diferentes, novas + antigas, de natureza A n'> n
- Nj é o número total de medidas realizadas com a c<u>a</u> mara j de natureza A
- M_j é o número de madidas antigas realizadas com a câm<u>a</u> ra j de natureza A
- X_j é o coeficiente de ponderação antigo obtido para a câmara j de natureza A
- Y' é o valor médio das integrais médias das N_j medi das realizadas com a câmara j de natureza Z

2 - Coeficiente de Calibração Térnica

いいいたい ひついのわたいいち たい 死を行いたすた

Para um par de naturezas diferentes, A e B por exemplo, o programa calcula através de uma das suas subrotinas, o coeficiente de calibração térmica.

Este é dado pela razão do valor médio teórico das in tegrais médias obtidas através de todas as câmaras de n. Eureza A para o valor médio teórico das integrais médias obtidas atravês de todas as câmaras de natureza B, para as câmaras irradiadas no fluxo térmico.

O coeficiente de calibração térmica ó calculado de duas formas diferentes:

1 - naturezas envolvendo câmaras que não contém ²⁴¹Pu

$$c_{ct} = \frac{(1/N) \sum_{i=1}^{n} (Y_i/X_i)}{(1/L) \sum_{j=1}^{l} (Y_j/X_j)}$$

onde: C_{ct} é o coeficiente de calibração térmica

N é o número de câmaras do numerador de natureza A

Y_i e Y_j valor médio das integrais médias obtidas <u>ex</u> periment.lmento para a câmara i e j de nat<u>u</u> reza A e B respectivamente.

 $X_{j} \in X_{j}$ coeficiente de ponderação obtido para as c_{j}^{2} maras i e j respectivamente

L nº de câmaras do denominador de natureza B.

2 - naturezas envolvendo câmaras do numerador que contém ²⁴¹ Pu Denominando câmaras de natureza A aquelas cuja composição isotópica contenham ²⁴¹ Pu.

$$c_{ct} = \frac{(1/N) \sum_{i=1}^{n} (Y_i/X_i) \text{ ALA (i)}}{(1/L) \sum_{j=1}^{k} (Y_j/X_j)}$$

onde: ALA (i) é um fator que multiplica a atividade de cada câ mara i para corrigir a atividade em relação a um tempo de referência escolhido, isso devido ao decaimento do 241 Pu.

No programa ALA (i) é calculado para cada câmara i através da subrotina DECROI o é dado para cada câmara por:

$$ALA = \frac{N_9 + N_1 (\sigma_1/\sigma_9) Th}{N_9 + N_1 e^{-\lambda t} (\sigma_1/\sigma_9) Th}$$

onde:

N₉ é a porcentagem do número de núcleos de ²³⁹Pu exi<u>s</u> tentes na câmara i de natureza A

N₁ é a porcentagem do número de núcleos de ²⁴¹Pu exis. tentes na câmara i de natureza A.

(°1/°9) é o índice de espectro térmico t é o tempo decorrido desde o tempo de referência λ é a constante de desintegração do ²⁴¹Pu

3 - Indice de Espectro

O programa calcula o Índice de espectro de modo dif<u>e</u> rente segundo as naturezas de câmara

a) Para natúrezas contendo sómente un isótopo

 $\mathbf{I.E.} = \left(\frac{\hat{\sigma}_{f}^{A}}{\hat{\sigma}_{e}^{B}}\right) = \left[\frac{(1/N)\left(\frac{\Sigma}{i=1} \mathbf{Y}_{i}/\mathbf{X}_{i}\right) / (1/LN)\left(\frac{\Sigma}{j=1} \mathbf{Y}_{j}M_{j}/\mathbf{X}_{j}\right)}{\mathbf{C} \mathbf{C} \mathbf{T}}\right] \left(\frac{\sigma_{f}^{A}}{\sigma_{f}^{B}}\right)$

onde normalmente $\sigma_{f}^{B} = \sigma_{f}^{5}$

onde:

- N é o número de câmaras diferentes usadas para o cálculo do índice de espectro, mas que se tenha calculado o coeficiente de ponderação e o coeficiente de calibração térmica.
- LN é o número de medidas efetuadas com todas as câmaras do denominador usadas para o cálculo do indice de espectro, mas que se tenha calculado o coeficiente de ponderação e o coeficiente de calibração térmica
- X_i,Y_j valor médio de várias medidas da atividade obtida no fluxo de neutrons rápidos para a câmara i de natureza A e para a câmara j de natureza B respectivamente.
 - M_j número de medidas efetuadas com a câmara j de n<u>a</u> tureza B no fluxo de neutrons rápidos
 - CCT coeficiente de calibração termica para a razão de natureza A/B

b) Para pares cuja natureza do numerador contenha U^{nat}

$$\mathbf{I.E.} = \left(\frac{\hat{c}_{f}^{8}}{\hat{c}_{f}^{5}}\right)_{R} = \left[\frac{(1/N)\left(\sum_{i=1}^{n} Y_{i}/X_{i}\right) / (1/LN)\left(\sum_{j=1}^{\ell} Y_{j}M_{j}/X_{j}\right)}{C C T} - 1\right]_{g}^{N_{ij}^{nat}}$$

onde:

いたいのでしてもなからしていたい

CCT é o coeficiente de calibração térmica obtido para a razão de natureza ^{nat}U e ²³⁵U

 N_5 nat porcentagem em número de núcleos de ²³⁵U contidos no ^{nat}U

 N_8^{nat} porcentagem em número de núcleos de ²³⁸U contidos no ^{nat}U.

c) îndice para naturezas contendo 241 Pu em relação a uma nature za simples 235 U

I.E.
$$= \left(\frac{\hat{\sigma}_{f}^{1}}{\sigma_{f}^{5}}\right)_{R} = \frac{1}{a_{1}} \left\{ \frac{A(0)}{CCT(0)} \left[\left(\frac{\sigma_{9}}{\sigma_{5}}\right)_{Th} + a_{1} \left(\frac{\sigma_{1}}{\sigma_{5}}\right)_{Th} \right] - \left(\frac{\hat{\sigma}_{9}}{\hat{\sigma}_{5}}\right)_{R} - \left(\frac{\hat{\sigma}_{0}}{\hat{\sigma}_{5}}\right)_{R} - \left(\frac{\hat{\sigma}_{0}}{\hat$$

onde A(O) é a atividade experimental obtida corrigida para um tempo de referência

 a_0 , a_1 , a_2 , a_m , k_2 e k_m já foram definidos anteriormente. CCT(O) coeficiente de calibração térmica no tempo de ref<u>e</u> rência.

outras expressões utilizadas no TAFI para cálculo do índice de espectro:

 $\left(\frac{\hat{\sigma}_{0}}{\sigma_{5}}\right)_{R} = \frac{1}{a_{0} + a_{2} k_{2}} \left\{ \frac{\Lambda(0)}{CCT(0)} \left[\left(\frac{\sigma_{9}}{\sigma_{5}}\right)_{Th} + a_{1} \left(\frac{\sigma_{1}}{\sigma_{5}}\right)_{Th} \right] \left(\frac{\hat{\sigma}_{9}}{\hat{\sigma}_{5}}\right)_{R} - a_{1} \left(\frac{\hat{c}_{1}}{\hat{\sigma}_{5}}\right)_{R} \right\}$ $\left(\frac{\hat{\sigma}_2}{\hat{\sigma}_5}\right)_{R} = \frac{1}{a_2 + a_0 k_0 + a_m k_m} \left\{ \frac{A(0)}{CCT(0)} \left[\left(\frac{z_9}{\sigma_5}\right)_{Th} + a_1 \left(\frac{\sigma_1}{\sigma_5}\right)_{Th} \right] + \left(\frac{\hat{\sigma}_9}{\hat{\sigma}_5}\right)_{R} - a_1 \left(\frac{\sigma_1}{\sigma_5}\right)_{R} \right\}$ $\hat{\sigma}_{0}$ \tilde{e} a seção de choque para a fissão do 240 Pu $\hat{\sigma}_{2}$ \tilde{e} a seção de choque para a fissão do 242 Pu onde:

BIBLIOGRAFIA

- 1 Rapport CEA nº 744 M. Guery et J. Jachon
- 2 Revue de Physique Appliquée Tome 6, Juin 1971 page 121
 M. Guery et A.Jarrige.
- 3 Nota Técnica Interna IEN nº 07/1974 M. Pacheco e D. Souza

4 - Manual do Reator Argonauta - IEN (1966)

ì

where the

ł

;

....

:

į

-

ł

- the other than a second of the second of the second of the

5 - Nota Técnica SPE nº 213/1974 - J. Pinel.

C - Nota Técnica Interna - IEN nº 06/1974 - M. Pacheco

B.I.S.T. Commissariat à L'Energie Atomique nº 170 - maio 1972 - J.L. Campan, R. Bosser, J.P. Brunet, J.G. Loho M. Guery et P.Menessier.