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ABSTRACT

We consider the Laplace transform of various sum rules of the Weinberg
type including the leading non-perturbative effects. We show from the third
type Weinberg sum rules that 7.5 ~ 8.9 Eﬂ/ad'{ 22.5 ~26.6 for the sum rule
We also deduce an upper bound to the by-product
The firat Weinberg sum rule allows us

scale value M:‘.Mp ~ M¢ .
~ A

mumd

to get a lower bound on fvr and on the Al coupling to the W boson, while
(M, ¢ 1.25 Ce¥).

of light quark invarlant masses.

the second sum rule gives anupper bound on the Al MAES.
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There has been recent progress in extending the applicability domain
of Quantum Chromodymamics (QCD) to obtain predictions on lew-energy parameters
{hadron masses and coupling constants). The approach is based on sum rules
obeyed by the spectral functions of a specific two-peint funmetion of current
operators, as a consequence of generel analyticity properties. There exist
a variety of QCD sum rules in the literature [1-3] depending on how these
analyticity and positivity properties are exploited. Of particular interest

for low-energy phenomenology are the sum rules of the Laplace tranaform type

Fruy = ;ﬂié/ﬁi& 2

(1)

proposed by SVZ [1a] for the light quark system and recently revised by NR [1b].
Here %Im Tr(t) denotes s specific spectral function {e.g. the hadronle vacuum
polarization messured in the ete” > hadrons }; %’-’(Ma) is & quantity, which

in principle cam be computed asymptotically in QCD provided that Mz is larger
than the QCD scale A which we shall take to be A Td"v 210 MeV in the
dimensicnal rencrmslization M8 a3 & result issued from the QCD sum
rule analysis of the isovector part of the e+e--';lha.drons total cross-section [5].

scheme +

Clearly, the sum rule in Eq.{l) is more selective on the low—energy behaviour
of the spectral function for small epocugh M than the right-hand side of the
usuel dispersion relation

o0
W% -g*50) < f _/:{f-;‘,fm%ﬁ "subtraction” . (2)
o

In this note we shall be concerned with the two-point correlation functions of
the vector {(axial vector) current J‘Es)(x) H Eiyu(vs)dtd (llai being the quark
field of flavour i) 1):
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and to its divergence auJ‘('s) = (o, ¥ mJ) Ei('fs)wj:
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{5) _amt w(” are related by the current algebra Ward identity
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(6)

In the Nambu-Goldstone realization of chiral symmetry, the Quantity <0|"v—i\lii|0>
15 not zero e.nd its role becomes crucial im the sum rule involving

(5) and \b(s) We sl’fall be mainly interested in the re-analysis of the
Weinberg sum rule [6]
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FNR [2] showed that the second and t.hird sum rules are quadratically divergent

to leading order of chiral symmetry bresking terms and so they introduced the
convergent sum rule /

@0 w7 . (Z/ <
S 1 JM/A’/H— 7 A=A /f/zo.

The Laplace transforms of Egs.(7) and {8) are cbtained by applying to
both sides of the dispersion reletion of the type in Eg.(2) the operator
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We shall also study the phenomenclogical implications of these Laplace sum
rules for the light quark systems and other versiona of the third Weipberg

sum rules.

1. The third Weinberg sum rule

To leading order of QCD and of the non-perturbative effects, the
Laplace transform of the third Weinberg sum rule reads:
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(11 - —n) far 8U(3), * SU(n)L, Ei

. For M2 + ®, this aym r'ule recovers the originasl}

is the inwvariant

M=

where Y= 2, —Bl =
mass of the quark 1.
Weinberg result. However, we want to saturate the spectral function by the
In the ud
channel, the sum rule is saturated by the Tr pole and we shall use the

positivity of the scalar coatribution. Using the PCAC result

(o mg) <ol Vlhe + G 10 = 2ffemf+ 2 "

(f" % 93.28 MeV is the pion decay amplitude)
in order to estimate the quark condensate contribution to the sum rule (SU(2)F

low resonance states and so we have to choose M2 smell enocugh.

symmetry 1limit), we get from the sum rule, the useless inequality:
g/" )"

due to the fact that the contribution of Ai'](o) cancels the pole contribution
to the sum rule for M2 > mﬁ . In fact, the usefulness of the sum rule could
be saved by golng to M2\< mfr + but our present QCD theory does not permit
this cholice.
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2. The FNR sum rule and a lower bound for ‘n‘lsﬁl\d

Using the Broadhurst result [T] for A]'J(qg) and Ai‘j(O), and the
Ward identity in Eg.{5), we get the Laplace transform of the FNR sum rule %o

two loopa and including the leading non-perturbative effects 2]
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In the uds chamnel, we expect <o|$d¢6(0> 2= Lolv v lo) £ O
(SU(3)F symmetry), my << mg Saturating the spectral function by the Tr and
K mesons and using the PCAC relstion in Fq.{13), we get for moderate M2
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We transform this equality into an inequality using the negativity of the
perturbative QCD contribution to the sum rule to the extent that my < m .
So we get the improved version of the FNR result f2] s
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3. The Bresdhurst type sum rule and en upper bound for ﬁs/ﬁ\d

As was observed in Ref.7, a combination of flavoured two-peolnt functions
vhich is independent of its value et g = O 1s the SU{2)F symmetry limit of

79“‘{“5 772“—/%_ = )‘D % - AJ/ (26)
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Taking the Laplace trgnsfom of Im Duds( } and in the limit (m‘1 =m, << ms)’

we get the sum rule . : aﬂé
® _tmt, .
- P —_
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where ii(ﬂg) is the running quark mass.

(a7)

by the K pole and Im 1)‘,31c1

together with the negativity

For moderate Mz, we approximate Im poe
by the, M pole. We use the positivity of Im D°°
of the right-hand side of the gum rule.

Jﬁ/‘&,ze %/ﬂ

vhich for M & Mﬁ ~ mf glves
A

T 5 225~ 268

B

Then, we get the inequality

/"’ <07 (18)

(19)

in the limit m = m_ .
u a

y, .- Upper value of 2 m fromia third Weinberg type sum rule independ.ent of
spiS)( 0).

We can alsc work with the Lapla.ce tra.nsform of the quentity q Ai'j(q )
which becomes independent of wiJ(O (D) after the use of the Laplace

tranaform operator. Using the BNRY result [3] for ﬂfi’j(q } and the result
of rp“(q ) from Ref.B, we get the sum rule in the ua channel
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Here the continuum contribution within the QCD model is parametrized by the

-2t _nf 2
e © factor [9] ¢ ft ' 3m  is the continuum threshold), (asG D =0.04 GeV
1 5 515,19
(10} 1s the gluon vacuum ccndens&te ¥, = - 5 o (32 -~ tigny for
SU(3)C X SU(n)F- We shall use PCAC combined mth the SU(2)F symmetry srgument
for the estimate of the quark vacuum condensate m, <O|$J¢J|O> . Using

the positivity of the scalar contribution to the sum rule, we get the upper

%
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where the error is the square of the ealculated QCD correctionz. Note that up
to the non-leading chiral symmetry bresking terms and to the correction factor
due to the lnelusion of the eontinuum contribution, the snalytical expression
for the upper bound of ( 1/2 and for the lower bound cf".(ﬁu + ﬁd) obtained
bty KR [1b] are the seme. The result in Eq.{21) combined wi::h the results from
other sources is useful for the determination of the absolute values of the

u and 4 quark masses.

5. First Weinberg sum rule and coupling constant of mesons

The Laplace transform of the first Weinberg sum rule including the
leading non-perturbative effects has been discussed recently by the authors of
Ref.11 and reads

N 77 2] @) ro) A -l
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‘In the iid channel, we saturate the integral by the 'n" P and AJ_ using a
narrovw width approximation. Using the PCAC relation in Eq.(11} (50(2),

symmetry limit), the relation m m i WE f2 m.,r/"!* from By, (20) artd s
positivity of the scalsr contribition to the sum rule, we get
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where Xi is the coupling of the meson i 4o the vector boson.
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Clearly for Mo M_ ., the Al contribution is suppressed compared to the T
and f one [12] and we get & reiaticn between f and the ,p meson coupling

A
&> M "/z-_ e, &/’*/wfﬁw#)/xaf
aé’fr /‘f‘ /ve

vhich can be reached using en alternative method [12]. For M & M, , the A
contribution to the sum rule is optimized. Then, we deduce the Al coupling
to the W boscn

2 oy - '
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22 ” 247

(25)
vhich we consider as an improvement of the usual result [6]
2
b /)
RN
zé‘z_ z% {26)
Eq.(25) can be translated into & bound to the 7T ~¥ ‘Jt' A, branching ratio
P e h4) ,
24 = ~.. 2 C4F ‘
2" TV heR) _ en
in and to the data
to be compared to the FNR result Ry, % 0.8 [2]4,1:0 the resultf[13] RTA <?0 7;0 2&[
Ry g 2 (0.54 £ 0.16) [ihl In the 33 channel, we saturate the spectral

function by the K and K meson. An analysis simlilar to the sbove gives the '
bound ' ’
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6. Second Weinberg sum rule and the L.L mass

As was shown by FNR [2], the secodd Weinberg sum rule is divergent.
However, ita convergence can be saved working with its Laplace transform which
reads in the Ud channel:
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A saturation of the sum rule by low mass resonances requires to choose & moderate
M2 and so for the light quark u,d, the right-hand side of the sum rule

{29)

remains yet a correction term. We optimize the Al contribution to the sum rule
for Me o M2 . Using the positivity of the right-hand aide of Eq.{29), we
get the inequality:

47”#: [ "! ,
- Y/
€ S - e 5o (30)
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| which combined with Eq.(23) gives
/‘/L Mﬁ 4 . 2
R D) e
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/?,z
i.e. ,
a4 V »
My & 2. &2 M = L.25 &e 32)

An inclusion of higher p states to Eg.(31) could be done in order to improve
the Tesult but it seems, then, natural to include higher Al gtates as a

companion: of the P—like one.
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FOOTNOTES

We shall follow the notation in BNRY [3]. In particular, the notation
for the non-transverse part of the two-point function is slightly
different than that used by FNR [2].

In this paper we shall only take into mccount the contribution of
the leading non-perturbsative terms to the sum rule. It is known
from some examples of Ref.l that the contribution of the operators
JTYITY  and ﬁaw -12'- kawG]:lv rerains a few correction of the leading
QCD contribution from M 3 Mg and so, their effect which is
proportional to ES(Mz) <0|W|0>7' !'-g does not play a crucial role
for the results given in this peper.

Fotice that the coefficient of our (& /) term differs from the result
in Ref.T. In fact, our result comes from the (&;/11') log - €2
term of the quantity B-C of Ref.T.

I thank E. de Rafael for s discussion om this point.
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