

4639/81

International Atomic Energy Agency

Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

ON THE LAPLACE TRANSFORM OF THE WEINBERG TYPE SUM RULES *

Stephan Narison ***
International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

We consider the Laplace transform of various sum rules of the Weinberg type including the leading non-perturbative effects. We show from the third type Weinberg sum rules that $7.5 \sim 8.9 \lesssim \hat{m}_{\rm g}/\hat{m}_{\rm d} \lesssim 22.5 \sim 26.6$ for the sum rule scale value M \simeq M_p \sim M_φ. We also deduce an upper bound to the by-product $\hat{m}_{\rm u}\hat{m}_{\rm d}$ of light quark invariant masses. The first Weinberg sum rule allows us to get a lower bound on f_{π} and on the A₁ coupling to the W boson, while the second sum rule gives an upper bound on the A₁ mass $(M_{\rm A} \lesssim 1.25~{\rm GeV})$.

MIRAMARE - TRIESTE September 1981

- To be submitted for publication.
- ** Address after 1 October 1981: LAPP, Bp 109, Annecy-le-Vieux F74019, Cedex, France.

There has been recent progress in extending the applicability domain of Quantum Chromodynamics (QCD) to obtain predictions on low-energy parameters (hadron masses and coupling constants). The approach is based on sum rules obeyed by the spectral functions of a specific two-point function of current operators, as a consequence of general analyticity properties. There exist a variety of QCD sum rules in the literature [1-3] depending on how these analyticity and positivity properties are exploited. Of particular interest for low-energy phenomenology are the sum rules of the Laplace transform type

$$G(M^2) = \frac{1}{\pi} \int dt \, e^{-t/M^2} I_m \, \widetilde{II}(t)$$
(1)

proposed by SVZ [1a] for the light quark system and recently revised by NR [1b]. Here $\frac{1}{\pi}$ Im $\Pi(t)$ denotes a specific spectral function (e.g. the hadronic vacuum polarization measured in the $e^+e^- \rightarrow \text{hadrons}$); $\mathcal{H}(M^2)$ is a quantity, which in principle can be computed asymptotically in QCD provided that M^2 is larger than the QCD scale Λ which we shall take to be $\Lambda \simeq 70 \sim 210$ MeV in the dimensional renormalization MS scheme MS as a result issued from the QCD sum rule analysis of the isovector part of the $e^+e^- \rightarrow \text{hadrons}$ total cross-section [5]. Clearly, the sum rule in Eq.(1) is more selective on the low-energy behaviour of the spectral function for small enough M than the right-hand side of the usual dispersion relation

$$\widetilde{\Pi}(q^{2} = -q^{2} > 0) = \pi \int_{0}^{\infty} \frac{dt}{t + q^{2}} \widetilde{Im}\widetilde{\Pi}(k) + \text{"subtraction"} . \qquad (2)$$

(3)

In this note we shall be concerned with the two-point correlation functions of the vector (axial vector) current $J^{\mu}_{(5)}(\mathbf{x}) \equiv \bar{\psi}_{1}\gamma^{\mu}(\gamma_{5})\psi_{1}$ (ψ_{1} being the quark field of flavour i) 1):

and of flavour 1) 11:

$$\Pi_{(5)}^{\mu\nu} = i \int d^{4}x \, e^{igx} \langle 0| \Pi J_{(5)}^{\mu}(x) \left(J_{(5)}(0) \right) | 0 \rangle$$

$$\equiv - \left(g^{\mu g^{2}} - g^{\mu g^{2}} \right) \Pi_{(5)}^{(4)}(g^{2}) + g^{\mu g} J_{(5)}^{(g^{2})}(g^{2})$$

and to its divergence $\partial_{\mu}J_{(5)}^{\mu} = (m_1 * m_1) \bar{\psi}_1(\gamma_5)\psi_1$: $\psi_{(5)}^{ij}(q^2) = i \int_{0}^{1} d^4z \, e^{i(q^2z_0)} \sqrt{U} \, \partial_{\mu}J_{(5)}^{\mu}(z) \, (\partial_3J_{(5)}^{(0)}(0)) |0\rangle .$

-2-

* $D_{(5)}^{1,1}$ and $\Psi_{(5)}^{1,1}$ are related by the current algebra Ward identity

$$q^{2}D_{(5)}^{y} = y_{(5)}^{y}(q^{2}) - y_{(5)}^{y}(0),$$
 (5)

where

$$\frac{y^{9}(0)}{(5)}(0) = -(m_{i} + m_{j}) \left\{ < 0 | \vec{y}_{i} + \vec{y}_{i} + \vec{y}_{j} \right\} / 0 \rangle \\
- m_{i}^{3} \log \frac{m_{i}^{2}}{2} \pm m_{j}^{3} \log \frac{m_{j}^{2}}{2} \right\} + \mathcal{O}(m_{i}^{2}, \overline{\alpha}_{5}^{2}).$$
(6)

In the Nambu-Goldstone realization of chiral symmetry, the quantity $\langle 0|\overline{\psi}_1\psi_1|0\rangle$ is not zero and its role becomes crucial in the sum rule involving $D_{(5)}^{1,1}$ and $\psi_{(5)}^{1,1}$. We shall be mainly interested in the re-analysis of the Weinberg sum rule [6] 1)

$$\int_{0}^{\infty} dt \frac{1}{\pi} \left\{ Im \Delta_{ij}^{(k)} + Im \Delta_{ij}^{(k)} \right\} = 0$$
 first sum rule , (7a)

$$\int_{0}^{\infty} dt = I_{m} t \Delta_{ij}^{(l)}(t) = 0 \qquad \text{second sum rule} \qquad (7b)$$

$$\int_{0}^{\infty} dt \frac{1}{\pi} Im \Delta^{ij}(t) = 0 \qquad \text{third sum rule } 2$$
 (7c)

where $\Delta_{i,j}^{(1)} \equiv \mathcal{N}^{(1)i,j} - \mathcal{N}_{5}^{(1)i,j}$, $\Delta_{i,j}^{(0)} \equiv \frac{1}{q^2} \{ p^{i,j} - p_5^{i,j} \}$ and $\Delta_{i,j}^{(0)} \equiv q^2 \Delta_{i,j}^{(0)}$. FNR [2] showed that the second and third sum rules are quadratically divergent to leading order of chiral symmetry breaking terms and so they introduced the

$$\int_{0}^{\infty} dt \int_{0}^{\infty} Im \left\{ \Delta^{ij}(t) - \int_{0}^{\infty} \Delta^{ik}(t) = \Delta^{ijk}(t) \right\} = 0.$$
(8)

The Laplace transforms of Eqs.(7) and (8) are obtained by applying to both sides of the dispersion relation of the type in Eq.(2) the operator

$$\begin{array}{l}
1 = \lim_{\substack{Q \leftarrow \infty \\ n = \infty}} \frac{\left(-1\right)^n}{n!} \left(\frac{2}{2q^2}\right)^n. \\
1 = \lim_{\substack{Q \leftarrow \infty \\ n = \infty}} \frac{Q^2}{n!} \left(\frac{-1}{n-1}\right)! \left(\frac{2}{2q^2}\right)^n.
\end{array}$$
(9)

We shall also study the phenomenological implications of these Laplace sum rules for the light quark systems and other versions of the third Weinberg sum rules.

1. The third Weinberg sum rule

To leading order of QCD and of the non-perturbative effects, the Laplace transform of the third Weinberg sum rule reads:

$$\frac{1}{M^{2}} \int_{0}^{\infty} dt e^{-\frac{t/M^{2}}{2}} Im \Delta^{(t)} = -\frac{3}{2\pi^{2}} \frac{m_{i}m_{j}}{(\log m/h)^{2\delta_{2}/-\beta_{2}}} + \frac{2}{M^{2}} \langle 0|m_{i} \overline{Y_{j}} Y_{j} + m_{j} \overline{Y_{i}} Y_{i} |0 \rangle, \tag{10}$$

where $\gamma_1 = 2$, $-\beta_1 = \frac{1}{2} (11 - \frac{2}{3} n)$ for $SU(3)_C \times SU(n)_F$, \widehat{m}_1 is the invariant mass of the quark i. For $M^2 + \infty$, this sum rule recovers the original Weinberg result. However, we want to saturate the spectral function by the low resonance states and so we have to choose M^2 small enough. In the uchannel, the sum rule is saturated by the \widehat{M} pole and we shall use the positivity of the scalar contribution. Using the PCAC result

($f_{\pi} \approx 93.28$ MeV is the pion decay amplitude) in order to estimate the quark condensate contribution to the sum rule (SU(2)_F symmetry limit), we get from the sum rule, the useless inequality:

$$-\frac{3}{2\pi^2}\frac{\tilde{m}_u\tilde{m}_d}{(\log M_{/h})^{2\delta_2/-\beta_2}}+\mathcal{O}(\frac{m_{\chi^2}}{m_{\ell}})^2\geqslant 0$$
(12)

due to the fact that the contribution of $\Delta^{1,1}(0)$ cancels the pole contribution to the sum rule for $M^2 > m_{\pi}^2$. In fact, the usefulness of the sum rule could be saved by going to $M^2 \leq m_{\pi}^2$, but our present QCD theory does not permit this choice.

2. The FNR sum rule and a lower bound for mg/md

Using the Broadhurst result [7] for $\Lambda^{ij}(q^2)$ and $\Lambda^{ij}(0)$, and the Ward identity in Eq.(5), we get the Laplace transform of the FNR sum rule to two loops and including the leading non-perturbative effects

$$\frac{1}{M^{4}} \int_{0}^{\infty} dt \, e^{-t/M^{2}} \, Im \, \Delta^{ijk}(t) = \frac{3}{2\pi^{2}} \, \frac{m_{i}m_{j}}{M^{2}} \left(\frac{M^{2}}{M_{i}} \log \frac{M^{2}}{m_{j}^{2}} (l + \frac{2}{\pi^{2}} \log \frac{M^{2}}{m_{j}^{2}} - (j - k) \right)$$

$$(-) \frac{2}{(M^{4})^{2}} \, m_{i}(0) \, \overline{Y}_{i} \, Y_{i} - \frac{M}{M^{4}} \, \overline{Y}_{k} \, Y_{k} \, Io \rangle . \tag{13}$$

In the uds channel, we expect $\langle 0|\bar{\psi}_{\rm d}\psi_{\rm d}|0\rangle\simeq\langle 0|\psi_{\rm g}\psi_{\rm g}|0\rangle$ $\langle 0|\psi_{\rm g}\psi_{\rm g}|0\rangle$ (SU(3)_F symmetry), m_d << m_s. Saturating the spectral function by the $||\Pi||$ and K mesons and using the PCAC relation in Eq.(13), we get for moderate $||M||^2\simeq ||M|^2\simeq ||M|^2\simeq ||M|^2$):

We transform this equality into an inequality using the negativity of the perturbative QCD contribution to the sum rule to the extent that $m_{\tilde{d}} << m_{\tilde{g}}$. So we get the improved version of the FNR result $\{2\}$:

$$\frac{\hat{m}_{0}}{\hat{m}_{d}} \ge \frac{2\int_{K}^{2}M_{K}^{2}}{3\int_{L}^{2}m_{h}^{2}}e^{-\frac{M_{K}^{2}}{M_{K}^{2}}\int_{L}^{2}+\frac{M_{K}^{2}}{M_{L}^{2}}\int_{L}^{2}} 2\frac{7.5 - 13.3}{(15)}$$

for $M^2 \simeq M_0^2 \sim M_0^2$.

3. The Broadhurst type sum rule and an upper bound for \hat{m}_{g}/\hat{m}_{g}

As was observed in Ref.7, a combination of flavoured two-point functions which is independent of its value at q = 0 is the $SU(2)_p$ symmetry limit of

$$q^{2}\mathcal{D}^{uds} = q^{2} \left\{ \mathcal{D}^{us} - \left(\frac{m_{3} - m_{u}}{m_{3} + m_{u}} \right) \mathcal{D}_{5}^{us} + \frac{m_{5} - m_{u}}{2m_{u}} \mathcal{D}_{5}^{ud} \right\}.$$
 (16)

Taking the Laplace transform of Im $D^{uds}(t)$ and in the limit $(m_u = m_d << m_s)$, we get the sum rule \cdot :

$$\int_{0}^{\infty} dt e^{-t/m^{2}} \int_{0}^{\infty} Im \mathcal{D}(t) = -\frac{3}{2\pi^{2}} m_{0}^{2} \int_{0}^{\infty} 1 + \frac{4}{3} \frac{\bar{q}_{5}}{4} + O(\frac{m_{0}}{m_{0}}, \frac{1}{M^{2}}, \bar{q}_{5}^{2})$$
(17)

where m, (p) is the running quark mass.

For moderate M^2 , we approximate Im D_5^{us} by the K pole and Im D_5^{ud} by the M pole. We use the positivity of Im D^{us} together with the negativity of the right-hand side of the sum rule. Then, we get the inequality

$$-2\int_{K}^{2}M_{x}^{2}e^{-\frac{M_{x}^{2}/M_{x}^{2}}{2}}+\frac{m_{y}}{m_{d}}\int_{T}^{2}m_{x}^{2}\leq0, \qquad (18)$$

which for $M^2 \simeq M_0^2 \sim M_0^2$ gives

$$\frac{\Lambda}{M_0} \lesssim 22.5 \sim 26.5$$
(19)

in the limit mu = md.

Where we were of $\hat{\mathbf{m}}_{\mathbf{k}}$ from a third Weinberg type sum rule independent of $\mathbf{v}_{(5)}^{(1)}(0)$

We can also work with the Laplace transform of the quantity $q^2\Delta^{ij}(q^2)$ which becomes independent of $\psi_5^{ij}(0) - \psi^{ij}(0)$ after the use of the Laplace transform operator. Using the ENRY result [3] for $\psi_5^{ij}(q^2)$ and the result of $\psi^{ij}(q^2)$ from Ref. 8, we get the sum rule in the $\bar{u}d$ channel

$$\frac{1}{M^{4}} \int_{0}^{\infty} dt e^{-t/M^{2}} \int_{0}^{\infty} \int_{0}^$$

(20)

Here the continuum contribution within the QCD model is parametrized by the $\frac{e^{-2t}c^{/M^2}}{factor} \text{ [9] } (\sqrt{t_c} \text{ $23m_\pi$ is the continuum threshold), } \langle \alpha_c c^2 \rangle \text{$\simeq} 0.04 \text{ GeV}^4$ [10] is the gluon vacuum condensate $y_2 = \frac{1.01}{12} - \frac{5}{18} n_F, \quad \beta_2 = -\frac{51}{4} + \frac{19}{12} n_F \quad \text{for SU(3)}_C \times \text{SU(n)}_F. \text{ We shall use PCAC combined with the SU(2)}_F \text{ symmetry argument for the estimate of the quark vacuum condensate } m_i < 0 | \overline{\psi}_j \psi_j | 0 \rangle$. Using the positivity of the scalar contribution to the sum rule, we get the upper hound

$$\left(\begin{array}{c} \hat{M}_{u}\hat{m}d \end{array}\right)^{\frac{1}{2}} \lesssim \left(\begin{array}{c} 19\pm5 \\ 13\pm3 \end{array}\right) MeV \int_{\Omega} \Lambda = \left(\begin{array}{c} 70 \\ 140 \end{array}\right) MeV,$$

$$9\pm2$$

where the error is the square of the calculated QCD corrections. Note that up to the non-leading chiral symmetry breaking terms and to the correction factor due to the inclusion of the continuum contribution, the analytical expression for the upper bound of $(\widehat{\mathbb{m}}_{u}\widehat{\mathbb{m}}_{d})^{1/2}$ and for the lower bound of $(\widehat{\mathbb{m}}_{u}\widehat{\mathbb{m}}_{d})^{1/2}$ and for the lower bound of $(\widehat{\mathbb{m}}_{u}\widehat{\mathbb{m}}_{d})^{1/2}$ and for the lower bound with the results from other sources is useful for the determination of the absolute values of the u and d quark masses.

5. First Weinberg sum rule and coupling constant of mesons

The Laplace transform of the first Weinberg sum rule including the leading non-perturbative effects has been discussed recently by the authors of Ref.11 and reads

$$\frac{1}{M^{2}} \int_{0}^{\infty} dt e^{-\frac{t}{M^{2}}} \left\{ I_{m} \Delta_{ij}^{(2)}(t) + I_{m} \Delta_{ij}^{(0)}(t) \right\} \simeq \left(\frac{\overline{\alpha}_{i}}{\pi} \right) \frac{1}{\pi e} \left\{ -\frac{\overline{m}_{u} \overline{m}_{d}}{\overline{M}^{e}} + \frac{g}{3} \pi^{2} \left(\frac{\overline{m}_{d} \langle \overline{\psi}_{u} \psi_{u} \rangle + \overline{m}_{u} \langle \overline{\psi}_{u} \psi_{u} \rangle}{M^{4}} \right) \right\}. \tag{22}$$

In the $\overline{u}d$ channel, we saturate the integral by the $\overline{\mathcal{H}}$, ρ and A_1 using a narrow width approximation. Using the PCAC relation in Eq.(11) (SU(2)_F symmetry limit), the relation $\overline{m}_{\underline{u}}\overline{m}_{\underline{d}} \simeq \frac{4}{3} \overline{\mathcal{H}}^2 \ r_{\underline{d}}^2 \ m_{\underline{d}}^4 / \mu^4$, from Eq.(20) and the positivity of the scalar contribition to the sum rule, we get

$$e^{-\frac{M_0^2/M^2}{2\sqrt{\chi^2}}} - e^{-\frac{M_{n_1}^2/M^2}{2\sqrt{\chi^2}}} - e^{-\frac{M_0^2/M^2}{2\sqrt{\eta^2}}} \le -\frac{\alpha_3}{(\frac{\pi}{n})} \frac{4}{3} \frac{m_1^2}{M^2} \frac{1}{(23)}$$

where χ_i is the coupling of the meson i to the vector boson.

Clearly for M α M ρ , the A contribution is suppressed compared to the T and ρ one [12] and we get a relation between f_{π} and the ρ meson coupling

$$f_{\bullet} \geq \frac{M_{\bullet}}{2 f_{\phi}} \frac{1}{\sqrt{e}} \left\{ 1 - \frac{M_{h_{\bullet}}^{2}}{M_{f}^{2}} \frac{\delta_{\rho}^{2}}{\delta_{h_{\bullet}}^{2}} e^{1 - \frac{M_{h_{\bullet}}^{2}}{M_{h_{\bullet}}^{2}} / \frac{M_{h_{\bullet}}^{2}}{M_{f}^{2}}} \right\}^{1/2} \simeq (92 \pm 7) M_{\bullet} V,$$

which can be reached using an alternative method [12]. For $M \cong M_{A_1}$, the A_1 contribution to the sum rule is optimized. Then, we deduce the A_1 coupling to the W boson

$$\frac{\pi M_{h_1}^2}{2k_1^2} > e \left\{ \frac{\pi M_2^2}{2k_1^2} e^{-\frac{M_2^2}{M_{h_1}^2}} - 2\pi f_{\pi}^2 \left(1 + O(\frac{\pi}{\pi} \frac{m_1^2}{m_2^2}) \right) \right\} \simeq 607 n \text{MeV}^2$$
(25)

which we consider as an improvement of the usual result [6]

$$\frac{\pi M_{R_1}^2}{Z V_L^2} = \frac{\pi M_{\tilde{p}}^2}{Z V_R^2} - 2 \pi g_{\tilde{p}}^2 . \tag{26}$$

Eq.(25) can be translated into a bound to the 7 -> U A branching ratio

$$R_{TA_3} = \frac{\Gamma(\tau \to \gamma_c A_3)}{\Gamma(\tau \to \gamma_c e \bar{\gamma}_c)} \geqslant 0.47$$
(27)

in and to the data to be compared to the FNR result $R_{\text{TA}} > 0.48$ [2]4to the result/[13] $R_{\text{TA}} < (0.7\pm0.2)$ / $R_{\text{TA}} \simeq (0.54\pm0.16)$ [14]. In the us channel, we saturate the spectral function by the K and K meson. An analysis similar to the above gives the bound

$$R_{TK*} = \frac{P(\tau \to \lambda_{T}K^{n})}{P(\tau \to \lambda_{T}e\bar{\lambda_{T}})} \gtrsim 0.06 . \tag{28}$$

6. Second Weinberg sum rule and the A mass

As was shown by FNR [2], the second Weinberg sum rule is divergent. However, its convergence can be saved working with its Laplace transform which reads in the ud channel:

$$\frac{1}{m^{2}} \int dt \ te^{-t/M^{2}} \int Im \Delta_{nd}(t) = \frac{3}{2\pi^{2}} \frac{m_{n}m_{d}}{(\log m_{h})^{2N_{d}/-p_{2}}} \left\{ 1 + O(\frac{\alpha_{s}}{\pi}), \frac{1}{M^{2}} \right\}$$
(29)

A saturation of the sum rule by low mass resonances requires to choose a moderate M^2 and so for the light quark u,d, the right-hand side of the sum rule remains yet a correction term. We optimize the A₁ contribution to the sum rule for $M^2 \simeq M_{A_1}^2$. Using the positivity of the right-hand side of Eq.(29), we get the inequality:

$$e^{-\frac{M_{2}^{2}/M_{B_{2}}^{2}}{2M_{2}^{2}}} - e^{-\frac{1}{2}\frac{M_{M_{2}}^{2}}{2M_{2}^{2}}} > 0$$
 (30)

which combined with Eq.(23) gives

$$M_{A_1}^2 \leq M_g^2 \cdot \frac{1}{1 - 2f_1^2/25_1^2} e^{M_g^2/M_{A_2}^2}$$
(31)

1.e.

An inclusion of higher 9 states to Eq.(31) could be done in order to improve the result but it seems, then, natural to include higher A₁ states as a companion of the 9-like one.

ACKNOWLEDGMENTS

The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.

FOOTNOTES.

- 1) We shall follow the notation in BNRY [3]. In particular, the notation for the non-transverse part of the two-point function is slightly different than that used by FNR [2].
- In this paper we shall only take into account the contribution of the leading non-perturbative terms to the sum rule. It is known from some examples of Ref.1 that the contribution of the operators $\bar{\psi}\Gamma\psi\bar{\psi}\Gamma\psi \text{ and } \bar{\psi}\sigma_{\mu\nu}\frac{1}{2}\lambda_a\psi\sigma_a^{\mu\nu} \text{ remains a few correction of the leading QCD contribution from M > Mp and so, their effect which is proportional to <math display="block">\bar{\alpha}_S(M^2) < 0|\bar{\psi}\psi|0 > \frac{1}{6} \text{ does not play a crucial role for the results given in this paper.}$
- Notice that the coefficient of our $(\vec{\alpha}_s/\pi)$ term differs from the result in Ref.7. In fact, our result comes from the $(\vec{\alpha}_s/\pi)$ log $q^2/\sqrt{2}$ term of the quantity B-C of Ref.7.
- 4) I thank E. de Rafael for a discussion on this point.

REFERENCES

- [1a] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. <u>B147</u>, 385, 448 (1979).
- [1b] S. Narison and E. de Rafael, Phys. Letters <u>103B</u>, 57 (1981).
- [2] E.G. Floratos, S. Narison and E. de Rafael, Nucl. Phys. <u>B155</u>, 115 (1979).
- [3a] S. Narison, E. de Rafael and F.J. Yndurain, Marseille preprint CPT/80p1186 (1980) (unpublished).
- [3b] C. Becchi, S. Narison, E. de Rafael and F.J. Yndurain, Z. Phys. C8, 335 (1981).
- [4] S. Narison, "Techniques of dimensional regularization" (to appear in Phys. Rep.).
- [5] S.I. Ridelman, L.M. Kurdadze and A.I. Vainshtein, Phys. Letters 82B, 278 (1979).
- [6] S. Weinberg, Phys. Rev. Letters <u>18</u>, 507 (1967).
- [7] D.J. Broadhurst, Phys. Letters 101B, 423 (1981).
- [8] C. Bourrely, B. Machet and E. de Rafael (to appear in Nucl. Phys. B.).
- [9] S. Narison, Phys. Letters B (to appear).
- [10 B. Guberina, R. Meckbach, R.D. Peccei and R. Ruckl, Munich preprint MPI-PAE/Pth 52/80.
- [10b] V.A. Novikov, L.B. Okun, MA.. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Phys. Rep. 41C, 1 (1978);
- [10c] L.J. Reinders, H.R. Rubinstein and S. Yazaki, Rutherford preprint RL-80-088 (1980).
- [11] P. Pascual and E. de Rafael, Marseille preprint (July 1981).
- [12] S. Narison, ICTP, Trieste, preprint IC/81/112.
- [18] S. Marison, Mucl. Phys. <u>B182</u>, 59 (1981).
- [14] G. Wolf, DESY preprint 80/13 (1980) and references therein.

- 1C/81/29 N.S. CRAIGIE and J. STERN Sum rules for the spontaneous chiral symmetry breaking parameters of OCD.
- IC/81/86 Y. FUJIMOTO Induced Yukawa coupling and finite mass. INT.REP.*
- IC/81/92 I.A. ELTAYEB On the propagation and stability of wave motions in rapidly rotating spherical shells III: Hydromagnetic three-dimensional motions.
- IC/81/93 T.S. TODOROV On the commutativity of charge superselection rules in standard quantum field theory.
- IC/81/94 RAJ K. GUPTA Elements of nuclear physics. INT.REP.*
- IC/81/95 Conference on Differential Geometric Methods in Theoretical Physics (30 June - 3 July 1981) - Extended abstracts.
- IC/81/96 S. RAJPOOT Parity violations in electron-nucleon scattering and the SU(2)_L × SU(R)_R× U(1)_{L+R} electroweak symmetry
- IC/81/97 M.K. EL-MOUSLY, M.Y. El-ASHRY and M.H. EL-IRAQI Modified basin-type INT.REP.* solar still.
- IC/81/98 M.D. MIGAHED, A. TAWANSI and N.A. BAKR Electrical conductivity in INT.REP. polyacrylonitrile and perbunan.
- IC/81/99 M.D. MIGAHED, A. TAWANSI AND N.A. BAKR Dipolar relaxation phenomena INT.REP.* and DC electrical conductivity in perbunan films.
- IC/81/100 O.A. OMAR Photo-response spectrum of surface barrier diodes on GaAs_{1-x}P_x INT.REP.* mixed crystals.
- IC/81/101 M.K. E1-MOUSLY and N.K. MINA Photocrystallization of a-Se thin films. INT.REP.
- IC/81/102 M.K. E1-MOUSLY and N.K. MINA DC conductivity of a binary mixture. INT.REP.*
- IC/81/103 M.O. BARGOUTH and G. WILL A neutron diffraction refinement of the crystal INT.REP.* structure of tetragonal nickel sulfate hexahydrate.
- IC/81/104 BOLIS BASIT Spectral characterization of abstract functions. INT.REP. $^{\bullet}$
- IC/81/105 G. DEMARDO, H.D. DOEBNER and E. SPALUCCI Quantum effective potential in $S^1 \times R^3$.
- IC/81/106 E. WITTER Mass hierarchies in supersymmetric theories.
- IC/81/107 C.R. GARIBOTTI and F.F. GRIESTEIN Recent results relevant to the evaluation of finite series.
- IC/81/108 F.F. GRINSTEIN On the analytic continuation of functions defined by INT.REP.* Legendre scries.
- IC/81/109 P. BUDINICH and P. FURLAR On a "conformal spinor field equation".

^{*} Internal Reports: Limited Pistribution.

THESE PREPRINTS ARE AVAILABLE FROM THE PUBLICATIONS OFFICE, ICTP, PO BOX 586.
1-34100 TRIESTE, ITALY.

19

- IC/81/110 G. SENATORE, P.V. GIAQUINTA and M.P. TOSI Structure and electric resistivity of dilute solutions of potassium halides in molten potassium.
- IC/81/111 BOLIS BASIT Unconditionally convergent series and subspaces of D^m(0,1). INT.REP.*
- IC/81/112 S. MARISON QCD sum rules for pseudoscalar mesons.
- IC/81/113 M.P. DAS An atomic impurity in a high density plasma. INT.REP.*
- IC/81/114 M.A. KENAWY, T.H. YOUSSEF, F.A. SAADALAH and M.B. ZIKRY Relaxation INT.REP.* spectrum of deformed Cu-8.8 wt pct Zn.
- IC/81/115 F. BAYEN and J. NIEDERLE Localizability of massless particles in the framework of the conformal group.
- IC/81/116 H.D. DOEBNER, P. STOVICEK and J. TOLAR Quantization of the system of two indistinguishable particles.
- IC/81/117 M. AHMED Average metastable states and internal fields in Ising spin INT.REP. glasses.
- IC/81/118 K. AKAMA and H. TERAZAWA Pregeometric origin of the big bang.
- IC/81/119 V. ALONSO, J. CHELA-FLORES and R. PAREDES Pairing in the cosmic neutrino background.
- IC/81/120 S. NARISON QCD sum rules of the Laplace transform type for the gluon component of the U(1) meson mass.
- IC/81/121 M. SALEEM and M.A. SHAUKAT Study of the reaction $\pi^{-}p + \omega n$ in the 15-40 GeV/c momentum range.
- IC/81/122 M.A. RASHID Expansion of a function about a displaced centre.
- IC/81/123 J.E. KIM Natural embedding of Peccei-Quinn symmetry in flavour grand INT.REP. unification.
- IC/81/124 FARID A. KHWAJA Short-range order in alloys of nickel with the INT.REP.* elements of group VIII of the periodic table.
- IC/81/125 BOLIS BASIT Unconditionally convergent series in the space C(Q).
 INT.REP.*
- IC/81/127 SOE YIN and E. TOSATTI Core level shifts in group IV semiconductors and semimetals.
- IC/81/128 SOE YIN, B. GOODMAN and E. TOSATTI Exchange corrections to the bulk plasmon cross-section of slow electrons in metals.
- IC/81/129 SOE YIN and E. TOSATTI Spin-flip inelastic scattering in electron energy loss spectroscopy of a ferromagnetic metal.
- IC/81/130 A. BREZINI and G. OLIVIER Self-consistent study of localization.

- IC/81/131 M. APOSTOL and I. BALDEA Electron-phonon coupling in one dimension. INT.REP.
- IC/81/132 D. KUMAR Fractal effects on excitations in diluted ferromagnets.
- IC/81/133 A. SMAILAGIC Pseudoclassical fermionic model and classical solutions. INT.REP.*
- IC/81/134 A. SMAILAGIC Quantization of the Thirring model around meron solution.
- IC/81/135 ABDUS SALAM Proton decay as a window on highest energy physics
- IC/81/136 S.S. AHMAD and L. BEGHI Analysis of the energy-dependent single separable models for the NN scattering.
- IC/81/137 R.K. GUPTA, R. AROUMOUGAME and N. MALHOTRA Adiabatic and sudden INT.REP.* interaction potentials in the fusion-fission of heavy ion collisions: Asymmetric target projectile combinations.
- IC/81/138 J.E. KIM Reason for SU(6) grand unification.
- IC/81/139 M.D. TIWARI and H.H. MENDE Phonon heat capacity and superconducting transition temperature of dilute solutions of HF, Ta and W in V.
- IC/81/140 F.A. KHAWJA, M. IDREES and M.S.K. RAZMI One parameter model potential for INT.REP.* noble metals.
- IC/81/141 J. CHELA-FLORES and H.B. GHASSIB A temperature-dependent theory for INT.REP.* He II: Application to the liquid structure factor.
- IC/81/142 ARMED OSMAN Coulomb effects in deuteron stripping reactions as a three-bodied problem.
- IC/81/143 PENG HONGAN and QIN DANNUA Lepton pair production in deep inelastic scattering of polarized particles.
- IC/81/144 M. SAMIULIAH and MUBARAK AHMAD $O(S)_T \times O(S)_R \times U(1)_V$ electroweak gauge theory and the neutrino pairing mechanism.
- IC/81/145 S.H. MAKARIOUS A numerical solution to the radial equation of the tidal wave propagation.
- IC/81/146 LEAR MIZRACHI On the duality transformed Wilson loop operator.
- IC/81/147 AHMED OSMAN A cluster expansion for bounded three-alpha particles as a three-body problem.
- IC/81/148 E. TOSATTI and G. CAMPAGNOLI Charge superlattice effects on the electronic structure of a model acceptor graphite intercalation compound.
- IC/81/149 S.H. MAKARIOUS Nelmholtz equation and WKB approximation in the tidal wave propagation.
- IC/81/150 DAWA BEAVIS and DIPIN DESAI Diquark fragmentation in leptoproduction of hadrons.
- IC/81/152 W. FURMANSKI Scaling violation in QCD.
- IC/81/153 A. TAWANSI and Y. EID Potassium borosilicate glasses: Phase separation INT.REP. and structon types.

. . į