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Abstract 

The electromagnetic field due to the rotation of a circular 
singular magnetic flux-line is calculated. Averaging the resulting 
electric field over the period of rotation it is shown that by 
this procedure neither a static Coulomb charge nor an electric 
dipole moment can be generated. 



I 

In connection with work by H. Jehle who t r i e s to explain e l e c t r i c 

and other propert ies of p a r t i c l e s by considering spinning, c l o sed loops 

of quantized magnetic f l u x , the electromagnetic f i e l d due to one rotat ing 

loop i s of i n t e r e s t . Espec ia l ly the quest ion of emerging s t a t i c e l e c t r i c 

propert ies i s of importance. This problem w i l l be considered here . Our 

method to c a l c u l a t e the electromagnetic f i e l d or ig ina t ing from a s ingular 
2) . 

magnetic f l u x - l i n e i s due to Dirac where the s ingular f l u x - l i n e becomes 
3) . 

the famous Dirac - s t r ing . This formalism w i l l be used in th i s paper. 

The e lectromagnet ic f i e l d - s ' r e n g t h tensor i s given by 

F P V ( X ) - aV(*> - aV(x ) • ^ p v ( x ) ( i ) 

where *G is the tensor dual to G , that is 
# G U v I pvaß 

2 aß 

and G „(x) i s a tensor concentrated on the s ingular l i n e (Dirac - s tr ing) 

y ( T , O ) (T and a parametrize th is l ine in 4-dimensional s p a c e - t i m e ) , a 
given by 

G (x) - g /dTdo 6"(x-y(T,o) ) ly ( T , o ) y ' ( T , o ) - y . ( i , o ) y ' ' ( T , O ) I (3 ) 
op a p p a 

with 

y a ' IT y a ' y a " "50" y a ' 8 * m a 8 n e t i c c h a r « e - ( 4 > 

Assuming that there e x i s t s only the s ingular Dirac-s tr ing the f i e l d 

equation has to be 

3 F p V ( x ) - 0 ( 5 ) 

or e q u i v a l e n t l y , s u b s t i t u t i n g for F p from ( I ) , 

U A V ( x ) - a V 3 A Cx) + 3 # G p V ( x ) » 0 , ( 6 ) 
P p 

which becomes in the Lorentz-gauge, 3 A • 0 , 



i l A V ( x ) 8 * G W V ( x ) (7 ) ! 

The standard s o l u t i o n of equ* (7) with no incoming tree f i e l d i s deter 

mined by use of the retarded Creen's function to be 

'(x) * /dSc» 6 ( 1 » ~ T i " ( x ° - x " ' » 1 — *cu\x>) 
f l * * - 1 4*1 x - x ' ^x i ^ 

(8) 

Specializing to the case ofjinierest, that is when the Dirac-string is 
a closed loop of unit radius rotating around the x3-axis with circular 
frequency u (see Fig. I), tie parametrization of the singular loop may 
be chosen to be 

y (T,C) • {T,(| + coso 

oo < -j < oo 

coswT,(i + coso)s inu)t ,s ino ) 

0 < a < 2n . 

(9) 

Inserting (9) into the defining equ. (3) for G (x) one obtains for the 
dual tensor 

*C M V(x) 
/i-z 2! 

•L=r- ö(l-|z|){<5 x-(l + /l-22)cosaJt)6(y-(l + »l-z2)sinwt) 

0 w x / l - z 2 j u y / l - z 2 uz ( l + / l - z ' ) 

0 /l-z 2 yz/(l+/l-z2) 

0 -xz/(l + /l-z'!) 

0 

(10) 

• (same expression with /l-z 2 -* - /l-z 2) 

It is convenient to perform a partial integration in (8) in order to put 
• { u v the partial derivative in fconti of the integral. But since G is not 
t ; 

restricted to a finite region in time (contrary to 3-space), one has to 
be careful about boundary terms originating from time derivatives. This 
difficulty can be circumvented by using instead of G a regularized version 



3 

*G r e g(x) « e ~ a t ^ «C (x) (II) 
pv MV 

and taking the limit a ' 0 after the calculation. The eIcetronuignctii 
potential is given now by 

C P V (x° - |x-x'!,x'') 
r e g ^x M 4*|x"-x"'j 

and one therefore obtains for the electric field 

E£ (x) -A 0'^) - A 1' 0^) .ii-/ dAl {-_l_^ i • I*z*_L*G 

M 2 4* |x-x'! r C K |x 

i) r d 3x* . i . Jj 

reg reg reg ^2 ' 4* ^ , , reg | x _ x , ; , reg 

(x-xVu-x' ' ) -* ^ j o l A l f d V . I 

(13) 
| x - x ' | 3 " b " ' " jx -x ' 

. 3 (S-xVu- ; '^ # Gjo + (;-xV ̂ ji + 

j i -x ' l 2 " g | x -x ' | 5 r e g 

W l V 1 ( 6 i j . ^ x - x ^ ^ x - x ^ ^ ^ J Q # 

4 n |x -x' |3 |J-J' |2 "B 

Since it is the static, time independent, and not the radiation field 
which is of interest one can average the electric field over on.? period 
of rotation, t « 2it/w, thus getting rid of all time-derivative terms in 
(13), since G is of course periodic in time with period T and the 
limit a » 0 can be taken quite easily after averaging. Thus the result 
for the static part of the electric field is given by 

-Ei(x)> - lim £- V dx°(A 0 , i(x) - A i f ° ( x » -

» / d * d 3 x . ! ( 6 U . 3(«-*') (x-x')' } j % _ .-.(i-ix'i). 
2 T f o 4*|x-x'|3 |x-x'|2 |/l-z'-'| 

• {«(x ,-(l*/l-z , 2)cos*)6(y ,-(l*/l-z , ; )sin<^) • (14) 

(x ,/|-z» ?) ty ,/|-z , 2,z'(l + /l-z , 2)) J * (same term »l-z* 2 - -,'\-z''•')), 



which vanishes of course in the static case (u = 0 ) . From the above form 
one realizes immediately, that the large distance behaviour o( die 
electrostatic field is of 0(l/r 3) at most, thus no electric charge is 
generated. Actually Che field falls off even stronger at large distances, 
since due Co Che averaging procedure (integration over $) and the symmetric 
integration over z' in (14) the electric dipole term (•- l/r3) vanishes too. 
Therefore, in conclusion, the final result is that a rotating Dirac-luop 
does not generate any electric charge or electric dipole moment. 
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Figure Caption 

Fig. 1: Rotating loop. 
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