ORNL/TM--8318

DE83 003173

ORNL/TM-8318 Dist. Category UC-41

Contract No. W-7405-eng-26

Health and Safety Research Division

PHOTON AND NEUTRON FLUENCE-TO-KERMA CONVERSION FACTORS FOR ICRP-1975 REFERENCE MAN USING IMPROVED ELEMENTAL COMPOSITIONS FOR BONE AND MARROW OF THE SKELETON

George D. Kerr

Date Published - November 1982

NOTICE This document contains i .formation of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

> OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY

CONTENTS

	Page
LIST OF TABLES	• v
ABSTRACT	. 1
INTRODUCTION	. 2
ELEMENTAL COMPOSITION OF REFERENCE MAN	. 2
TWELVE-ELEMENT APPROXIMATION	. 7
KERMA	. 8
KERMA FACTORS FOR PHOTONS	. 11
KERMA FACTORS FOR NEUTRONS	. 14
DISCUSSION	. 17
ACKNOWLEDGEMENTS	. 18
REFERENCES	. 19
APPENDIX A. RMCOMP/BAS Computer Program	• 65
APPENDIX B. Example of Output from RMCOMP/BAS Computer Program	. 69

.

.

LIST OF TABLES

Tab le		Page
1.	Composition of Reference Man for twelve elements	25
2.	Revision to Table 108 of ICRP-1975 Reference Man Report	26
3.	Summary of data on twelve-element composition for various skeletal components from Table 108 of ICRP-1975 Reference Man Report	27
4.	Estimation of gross content and trace elements in red bone marrow of Reference Man	28
5.	Revisions to trace-element and mineral content of Reference Man	29
6.	Revisions to gross content of Reference Man	31
7.	Summary of organ-tissue masses of Reference Man calculated by using RMCOMP/BAS computer program	33
8.	Summary of revisions to Table 108 of ICRP-1975 Reference Man Report	36
9.	Summary of revised data on twelve-element composition for various skeletal components of Reference Man	39
10.	Elemental composition for various total-body components of Reference Man calculated by using RMCOMP/BAS computer program	40
11.	Elemental composition for various skeletal components of Reference Man calculated by using RMCOMP/BAS computer program	41
12.	Elemental composition for various soft-tissue components of Reference Man calculated by using RMCOMP/BAS computer	40
		42
13.	bone	43
14.	Comparison of data on elemental composition for red bone marrow	44
15.	Comparison of data on elemental composition for muscle tissue	45

LIST OF TABLES (CONT'D.)

T ab le		Page
16.	Kerma factors for photons in various total-body components of Reference Man	46
17.	Kerma factors for photons in various skeletal components of Reference Man	47
18.	Kerma factors for photons in various soft-tissue components of Reference Man	48
19.	Comparison of kerma factors for photons in compact bone	49
20.	Comparison of kerma factors for photons in red bone marrow	50
21.	Comparison of kerma factors for photons in muscle tissue	51
22.	Comparison of kerma factors for photons in bone and soft- tissue compositions developed for use in red-bone-marrow dosimetry	52
23.	Kerma factors for neutrons in various total-body components of Reference Man	53
24.	Kerma factors for neutrons in various skeletal components of Reference Man	56
25.	Kerma factors for neutrons in various soft-tissue components of Reference Man	5 9
26.	Comparison of kerma factors for neutrons in bone and soft- tissue compositions developed for use in red-bone-marrow dosimetry	62

PHOTON AND NEUTRON FLUENCE-TO-KERMA CONVERSION FACTORS FOR ICRP-1975 REFERENCE MAN USING IMPROVED ELEMENTAL COMPOSITIONS FOR BONE AND MARROW OF THE SKELETON

> George D. Kerr Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830

ABSTRACT

A twelve-element approximation of the total-body, soft-tissue, and skeletal components of ICRP-1975 Reference Man is used to investigate particle fluence-to-kerma conversion factors for photons with energies between 1 keV and 20 MeV and neutrons with energies between 0.0253 eV and 20 MeV. Several recent ICRP revisions to the elemental composition of Reference Man, which have not been included in other kerma-factor calculations, are taken into account. This work suggests some additional revisions to the major-element content (i.e, H, C, N, and O) and to the mineral and trace-element content (i.e., Na, Mg, P, S, C1, K, Ca, and Fe) of various total-body, soft-tissue, and skeletal components of Reference Man. The revisions to the bone and red marrow of the skeleton offer significant new refinements in red-bone-marrow dosimetry.

INTRODUCTION

Findings of a recent ORNL review^{1,2} and of other reviews, which have been discussed at the Late Effects Workshop on Dosimetry of Atomic-Bomb Survivors, 29th Annual Meeting of the Radiation Research Society, Minneapolis, Minnesota, May 31, 1981 (Ref. 3) and the Symposium on Reevaluations of Dosimetric Factors, Hiroshima and Nagasaki, U.S. Department of Energy, Germantown, Maryland, September 5-6, 1981 (Ref. 4), have clearly established a need to revise the dosimetry for the atomic-bomb survivors. This effort will involve several divisions at the Oak Ridge National Laboratory (ORNL), several other national laboratories, and several consulting firms.

One of the main tasks of the Health and Safety Research Division at ORNL is to provide revised estimates of various organ-dose parameters related to a survivor's neutron and gamma-ray exposures. The objectives of the work summarized in this report were: (a) to better define the elemental composition of various skeletal components of ICRP-1975 Reference Man,⁵ and (b) to investigate photon and neutron fluence-to-kerma conversion factors for various total-body and organ-tissue components of ICRP-1975 Reference Man as revised here. Scaled down mathematical descriptions of the volumes and shapes of the total body and internal organs of Reference Man will be used, of course, in the organ-dose calculations for atomic-bomb survivors.⁶⁻⁸

ELEMENTAL COMPOSITION OF REFERENCE MAN

Data on the elemental composition of Reference Man have evolved over a number of years. 5, 6, 9, 10 A twelve-element approximation of

Reference Man, as defined in the ICRP's 1975 Report⁵ and revised in this work (see Table 1), was used to investigate particle fluence-tokerma conversion factors for photons with energies between 1 keV and 20 MeV and neutrons with energies between 0.0253 eV and 20 MeV. Several recent revisions to ICRP-1975 Reference Man, 11, 12 which have not been included in other kerma-factor calculations, are taken into account. For example, the ICRP has recommended that the total-body mass of phosphorus be reduced from 780 to 580 g and the skeletal mass be reduced from 700 to 500 g (Ref. 11). This revision suggests that the ICRP-1975 Reference Man Report⁵ originally overestimated the mineral content of the skeleton or underestimated either the calcium content of bone (see page 288 of Ref. 5) or the oxygen content of bone ash (see Table 106 of Ref. 5). The mass fraction (or percent by weight) of oxygen in bone ash would need to be nearly 50% to account for this reduction of 200 g in the phosphorus content of the skeleton. It appears that the estimate of 1000 g of calcium in the skeleton of ICRP-1975 Reference Man is too low. Widdowson and Dickerson¹³ estimate 1320 g for the skeletal calcium of a Reference Man with a total-body mass of 70 kg, the data of Mitchell and co-workers 14-16 yield an average of 1090 g of calcium in the skeleton when normalized to the 10-kg skeletal mass of Reference Man, and an age-dependent model for skeletal calcium developed from the data of Mitchell and co-workers by Leggett, Eckerman, and Williams¹⁷ yields a value of 1135 g when averaged over 20 to 60 years of age. Thus, an increase in the calcium content of total bone in Reference Man from 1000 to 1200 g is consistent with the preceding information and also obviates any

improper change in the oxygen content of bone ash or the total mineral content of the skeleton.

Another ICRP revision to the matrix of skeletal values (Ref. 12) corrects a misalignment of data in Table 108 of the ICRP-1975 Reference Man Report (see Table 2). Thus, no data are given on trace elements in red marrow of ICRP-1975 Reference Man (see Table 3). Only the major elements are specified by using the assumption that red marrow is approximately 60% hematopoietic tissue (i.e., erythrocytes) and 40% fat (i.e., subcutaneous adipose tissue). A more complete description of the elemental composition of red marrow has been given by Aspden¹⁸ based on the work of Roberts, Miles, and Woods.¹⁹ Their work suggests that red marrow is approximately 50% hematopoietic tissue and 50% fat tissue. These data were used here to obtain a more realistic estimation of both the gross content and trace elements in red marrow of Reference Man (see Table 4). One suprising result was that this approximation gives essentially the same values for the gross content of red marrow as Table 105 of the ICRP-1975 Reference Man Report (i.e., 600 g of water, 9 g of ash, 600 g of fat, and 300 g of protein). The only revision made in this work was to reduce the protein content in red marrow of ICRP-1975 Reference Man from 300 to 290 g. Addition of six grams of potassium to the skeletal matrix of values for total bone (see page 287 of Ref. 5) and 0.42 g of potassium to the yellow marrow, based on the trace-element content of subcutaneous adipose tissue (see page 96 and Table 108 of Ref. 5), made it possible to better define the skeletal matrix of values for both marrow and bone (see Table 5).

The ICRP-1975 Reference Man Report⁵ defines two distinct types of mineralized bone (i.e., cortical and trabecular bone) and two distinct types of soft tissue in mineralized bone (i.e., red and yellow marrow). Cortical bone is the hard compact bone found on the exterior of bones, especially the shafts of the long bones (e.g., the femur and humerus). The cortical bone in an adult comprises about 80% (i.e., 4000 g) of the total mineralized bone (i.e., 5000 g) of the skeleton. Trabecular bone, sometimes referred to as cancellous bone, is the soft spongy bone which is found in the interior of the flat bones (e.g., the skull and pelvis) and ends of the long bones of the body. The trabecular bone in an adult comprises about 20% (i.e., 1000 g) of the total mineralized bone in the skeleton. Yellow (fatty or inactive) marrow is contained primarily within the shafts of the long bones, and red (active) marrow is contained primarily within the fragile network of trabecular-bone cavities in the flat bones and ends of the long bones. Since developing red blood cells (i.e., erythrocytes) are found in various stages of maturation throughout the red marrow, it is considered to be the critical target tissue with respect to leukemia induction.²⁰

A BASIC computer program, RMCOMP, was written during the course of this work to calculate the major-element content (i.e., H, C, N, and O) of various organs or tissues from data given in Tables 105 and 106 of the ICRP-1975 Reference Man Report (see Appendix A of this report). Values for the carbohydrate content of organs and tissues, which are not tabulated in Table 105 of the ICRP-1975 Reference Man Report, were obtained from discussions in the text of that report (see

Table 6). The RMCOMP/BAS computer program sums the major-element content with the mineral and trace-element content of an organ or tissue to obtain a calculated organ mass (or weight) and mass fraction (or percent by weight) for a total of 12 elements (i.e., H, C, N, O, Na, Mg, P, S, Cl, K, Ca, and Fe). Since some unexpected and rather large discrepancies were found between data from calculations for the skeleton and data on either the weight (i.e., mass) or the majorelement content (i.e., H, C, N, and O) from Table 108 of the ICRP-1975 Reference Man Report (e.g., the mass of periarticular tissue and the oxygen content of trabecular bone), the calculations were extended to all organ-tissue components of Reference Man (see Tables 7 and 8). It was usually possible to resolve the various discrepancies by referring to either the text of the ICRP-1975 Reference Man Report,⁵ a 1977 paper by White and Fitzgerald,²² or the Errata published in 1979 and 1980 by the ICRP (Refs. 11 and 12).

A summary of all revisions to either the gross content or the elemental content of various organs or tissues of ICRP-1975 Reference Man are listed in Tables 6 and 8. The revisions in Table 8 are only those values from calculations using the RMCOMP/BAS computer program (see Appendicies A and B) which did not round up or down to the value given in Table 108 of the ICRP-1975 Reference Man Report.⁵ One of the original objectives of this work was to better define the elemental composition of various skeletal components of Reference Man (see Table 3). Thus, the revisions relating directly to this objective are listed separately in Table 9.

TWELVE-ELEMENT APPROXIMATION

Various approximations to the elemental composition of Reference Man have been used in calculations of particle fluence-to-kerma conversion factors for photons and neutrons. Some calculations have considered as few as the four major elements of the body, 2^{23} , 2^{24} and others as many as fifteen elements²⁵ or more.²² However, most of the calculations have used either eleven or twelve of the most abundant elements in the body.²⁶⁻²⁹ A twelve-element approximation was selected for use in this work. It includes the eleven most abundant elements in the total body (i.e., skeleton and total soft tissue) of ICRP-1975 Reference Man (see Table 110 of Ref. 5) and iron which is one of the most abundant trace elements in some organs or tissues of interest such as the lungs (see Table 2 of Ref. 6) and red bone marrow (see Table 9 of this report).

A summary of data on the percent by weight (i.e., mass fraction) of the twelve elements (i.e., H, C, N, O, Na, Mg, P, S, Cl, K, Ca, and Fe) in various total-body, soft-tissue, and skeletal components of ICRP-1975 Reference Man as revised in this work are listed in Tables 10, 11, and 12, respectively. The formulations for total body and skeleton in Table 10 and for the bone and red-marrow components of the skeleton in Table 11 are significantly different compared to those for ICRP-1975 Reference Man, and therefore, are designated as ICRP-revised values (see Tables 13 and 14). All other formulations, including those for total soft tissue in Table 10 and for various soft-tissue components in Table 12, which are based primarily on data in Tables 105 and 108 of the ICRP-1975 Reference Man Report⁵ and the Errata published in 1979 and 1980 by the ICRP (Refs. 11 and 12), are designated simply as ICRP-1975 values (see Tables 13, 14, and 15).

Additional comparisons with other formulations^{18,30-33} for compact bone, red marrow, and muscle tissue are given in Tables 13, 14, and 15, respectively. In the past, a variety of soft tissues of the body have been approximated by the use of muscle tissue or so-called typical soft tissue. The formulations for muscle tissue (i.e., typical soft tissue) and compact bone (i.e., wet cortical bone) from the ICRU's 1964 Report,³⁰ which have been widely used in dosimetric calculations for soft tissues in bone,³⁴⁻³⁶ are of special interest. It has been suggested by White and Fitzgerald²² that consideration should be given to the abandonment of the ICRU bone formulation, as the newer ICRP data for cortical bone and for red and yellow marrow provide much better alternatives.

KERMA

Kerma is the sum of the initial kinetic energies of all charged particles <u>liberated</u> by indirectly ionizing particles in a small volume element of a specified material divided by the mass of material in that volume element. 37-39 It is a useful quantity in dosimetry when charged particle equilibrium exists at the position and in the material of interest, and bremsstrahlung losses by the charged particles are negligible. In this case, kerma and absorbed dose can be equated. 37-39 Absorbed dose is the energy <u>imparted</u> by charged particles in the small volume element of the specified material divided by the mass of the material within that volume element. Units of absorbed dose and kerma can be either rads or grays.³⁹ One rad is numerically equal to 100 ergs per gram of the specified material, and one gray (or Gy) is numerically equal to one joule per kilogram of the specified material (or 100 rads).

The material volume of interest in a practical situation may be located in a medium of similar composition or in a medium of different composition. For example, the intensity of a radiation field incident on the body may be specified in terms of tissue kerma in air. If the tissue volume is so small that it does not appreciably disturb the radiation field, then the in-air tissue kerma in rad units and the exposure in roentgen (or R) units will be nearly equal in magnitude (i.e., 1 R is approximately equal to 0.95 rad) (Ref. 30). Exposure is the sum of all positive or negative ions produced by photons in a small air-volume element divided by the mass of the air in that volume element (i.e., 1 R equals 2.58 x 10^{-4} coulomb per kilogram of air) (Ref. 39). Thus, exposure is applicable only in the case of photons, while in-air tissue kerma can be applied in the case of both photons and neutrons.

Some recently published factors for in-air tissue kerma from neutrons and gamma rays use the ICRP-1975 formulation for either total body or total soft tissue of Reference Man. The ICRP-1975 formulation for total soft tissue of Reference Man is recommended over that for the total body. Since the total body is a combination of the skeleton and total soft tissue, its use as a typical soft tissue of the body is inappropriate, especially in the case of low energy photons. The

ICRP-1975 formulation for total soft tissue of Reference Man gives conversion factors that are more consistent with the ICRU-1964 and A-150 (or Shonka) formulations for muscle tissue 30,40 and muscle equivalent plastic, 40,41 respectively, which have been widely used as a typical soft tissue in both theoretical calculations and experimental measurements of in-air tissue kerma.

The kerma factors given here are the kerma in the specified material of interest per unit particle fluence of either photons or neutrons with a specified energy. If the particle fluence involves a broad spectrum of photon or neutron energies, then an appropriately weighted mean value must be used for the kerma factor.^{38,39} Of course, the mean value would be weighted by the particle spectrum in air if the quantity of interest is in-air tissue kerma and by the particle spectrum in the body if the quantity of interest is an organ dose. The particle spectrum within the organ of interest can be calculated, for example, by using Monte Carlo radiation transport codes such as MORSE (Refs. 42 and 43).

Bremsstrahlung losses by the charged particles are negligible for the biological materials of concern here, and charged particle equilibrium exists for all pratical purposes at the interfaces between the various soft tissues. Thus, kerma and absorbed dose can be equated in the case of most soft tissues in the body once the self shielding by overlying body tissues is taken into account. In the case of the skeleton, only the soft tissues, and not the bone itself, are considered to be at risk.^{20,44} The red marrow is considered to be the critical target tissue for leukemia induction, and the osteogenic cells, especially those on the endosteal surfaces of bone, are considered to be the critical target tissue with respect to bone cancer induction. The osteogenic cells are the precursors of the cells involved in the formation of new bone (i.e., the osteoblasts) and the resorption of old bone (i.e., the osteoclasts). However, kerma and absorbed dose to soft tissues in bone cannot be equated since charged particle equilibrium may not exist wear a soft tissuebone interface. 35,36 The calculation of absorbed dose to soft tissues in the skeleton, which will be discussed later, is a more difficult problem than the calculation of absorbed dose to soft-tissue organs, such as the breasts, thyroid, lungs, and G.I. tract, which are critical target tissues for cancer induction, and the gonads, which are the critical target tissue for genetic effects.

KERMA FACTORS FOR PHOTONS

The kerma factor for photons in a specified tissue (or organ) is calculated by summing the products of the mass fraction of an element in the tissue, the photon energy, and the mass energy-transfer coefficient of the element for photons of that energy. 38,39,47 If the unit of photon energy is MeV, and the units of the mass energytransfer coefficients are square centimeters per gram, then the above sum can be multiplied by 1.602×10^{-8} to obtain a kerma factor with units of rads per photon per square centimeter or 1.602×10^{-10} to obtain a kerma factor with units of grays (Gy) per photon per square centimeter. The mass energy-transfer coefficients for photons from a 1968 report by Evans⁴⁷ and a 1969 report Hubbell⁴⁸ have become the standard for use in kerma-factor calculations for the biological materials of interest here. These data have been updated recently by Hubbell, ⁴⁹ and his newer cross-section tabulations for photons with energies between 1 keV and 20 MeV were used in this work. ⁵⁰ Differences between the newer cross-section tabulations of Hubbell^{49,50} and the older cross-section tabulations of both Hubbell⁴⁸ and Storm and Israel⁵¹ are of the order of 1% or less over most of the element-energy range of the data, but in some cases are as much as 5%.

Mass fractions for the total-body, skeletal, and soft-tissue components given in Tables 10, 11, and 12 were used to obtain the kerma factors for photons listed in Tables 16, 17, and 18. Note that the kerma factors for photons in all of these various organ-tissue components are essentially the same in the energy regions dominated by Compton scattering (i.e., several hundred keV to several MeV) and pair production (i.e., several MeV or more) (see Fig. 1 of Ref. 47). The kerma factors, however, are quite different in the energy region dominated by photoelectric absorption (i.e., several hundred keV or less). Adipose tissue and other soft tissues with a high fat content, such as the yellow marrow (80% fat) and red marrow (50% fat), yield the smallest kerma factors.²² However, the kerma factors for 30-keV photons in all soft tissues of the body are nearly an order of magnitude smaller than in bone due to differences in the abundance of higher atomic-number elements such as phosphorus (2 = 15) and calcium (Z = 20). The greater photoelectric absorption of low energy photons in the higher Z elements of bone is extremely important since it enhances the absorbed dose to soft tissues in the skeleton.

Kerma factors for photons in the various compact-bone. redmarrow, and muscle-tissue formulations listed in Tables 13, 14, and 15 are compared in Tables 19, 20, and 21, respectively. The ICRU-1964 and ICRP-1975 formulations for compact bone (i.e., wet cortical bone) yield kerma factors, as pointed out by White and Fitzgerald,²² which differ by as much as 30% at low photon energies. Their suggestion to abandon the ICRU-1964 bone formulation, 30, 35 which predates the work of Kim, ³¹ Tipton and co-workers, ^{32,52-54} and Woodard, ³³ for example, appears to be non-controversial. The abandonment of the ICRU-1964 muscle-tissue formulation as an approximation for the red and yellow marrow also appears to be non-controversial. It was previously suggested by Kerr⁵⁵ that caution should be exercised in the use of the ICRP-1975 formulation for red marrow since the traceelement content was not defined (see Table 14). However, the traceelement content of red marrow and the trace-element and mineral content of trabecular bone are both reasonably well defined for Reference Man as a result of this work.

According to the ICRP-1975 Reference Man Report,⁵ there is a difference between the water content of cortical and trabecular bone. Thus, the ICRP-revised formulation for trabecular bone, rather than cortical bone, is used in the kerma-factor comparisons shown in Table 22. Note, at the lower energies, that the ratio of kerma factors for photons in the ICRP-revised formulations for trabecular bone and red marrow are significantly greater than the ratio of kerma factors for photons in the ICRU-1964 formulations for compact bone (i.e, wet cortical bone) and muscle tissue (i.e, typical soft tissue) which has been used as an approximation for red marrow. The differences at low photon energies would be even larger if the factors for kerma (i.e., kinetic energy released to charged particles) in the ICRP-revised formulation for cortical bone had been used in place of those in the ICRP-revised formulation for trabecular bone (see Table 17).

KERMA FACTORS FOR NEUTRONS

Kerma factors for neutrons in nineteen different isotopes and elements, including the twelve elements of interest here, have been tabulated by Caswell, Coyne, and Randolph.²⁹ Their tabulations give the kerma factors for a monoenergetic "thermal-neutron" energy of 0.0253 eV and for 119 contiguous energy "groups" or "bins" extending from 0.026 eV to 30 MeV. Each bin is characterized by a central or mean energy and an energy interval of a given width (see Table 23). The kerma factors are calculated from cross sections averaged over the full energy width of each bin. Averaging over binned energy widths eliminates the somewhat irregular behavior of the kerma factors due to resonance absorption of neutrons by elements other than hydrogen. Only their tabulated data for bins with neutron energies less than 20 MeV are used since this is the highest energy of interest in the case of a fission neutron source such as a nuclear weapon.²⁷

Mass fractions for the total-body, skeletal, and soft-tissue components given in Tables 10, 11, and 12 were used to obtain the kerma factors for neutrons listed in Tables 23, 24, and 25. The sum of the products of the kerma factor in an element for a specified neutron energy from Caswell, Coyne, and Randolph²⁹ and the mass

fraction of the element in a specified tissue (or organ) gives a kerma factor for that neutron energy and that tissue with units of rads per neutron per square centimeter or units of grays per neutron per square centimeter if the sum is multipled by 1.00 x 10^{-2} . In the case of fast neutrons (i.e, neutrons with energies greater than 1 keV), most of the kerma is due to recoil-hydrogen ions or recoil protons, and in the case of lower energy neutrons, especially thermal neutrons, most of the kerma is due to 620-keV protons produced by the ${}^{14}N(n,p){}^{14}C$ reaction. Thus, the kerma factors for fast neutrons and for thermal neutrons in a specified organ-tissue component of the body depend to a large extent on the hydrogen content and on the nitrogen content, respectively, of that organ-tissue component. Since nitrogen is a 1/Vabsorber of thermal neutrons with velocity, V, the kerma factors for a monoenergetic "thermal-neutron" energy of 0.0253 eV can be used to obtain an estimate of the kerma factors for a Maxwell-Boltzman distribution of thermal neutrons at various temperatures.^{56,57} For example, the kerma factors for a monoenergetic "thermal-neutron" energy of 0.0253 eV would be divided by 1.128 to obtain an estimate of the kerma factors for a Maxwell-Boltzman distribution of thermal neutrons at a normal temperature of 20°C (or 293°K).

Comparisons between kerma for neutrons in the ICRP-revised formulations for trabecular bone and red marrow and the kerma factors for neutrons in the ICRU-1964 formulations for compact bone (i.e., wet cortical bone) and muscle tissue (i.e., typical soft tissue) are given in Table 26. Note that there are significant differences in the ratios of the kerma factors (bone-to-soft tissue), due to the bone formulations (i.e., ICRP-revised trabecular bone vs. ICRU-1964 compact bone), rather than the soft-tissue formulations (i.e., ICRP-revised red marrow vs. ICRU-1964 muscle tissue). The abandonment of the ICRU-1964 bone formulation in the case of neutrons, as in the case of photons, appears to be non-controversial. In fact, Lawson⁵⁸ elected to use data on compact bone from Woodard's 1962 work,³³ rather than that from the ICRU's 1964 Report,³⁰ in his 1967 calculations of the absorbed dose from recoil protons near a soft tissue-bone interface.

Results of Lawson's calculations⁵⁸ suggest that bone has a negligibly small effect on the energy transfer between bone and red marrow at thermal-neutron energies and at fast-neutron energies less than several MeV due to the short range of the low energy-recoil protons. At fast-neutron energies greater than several MeV, however, there is a reduced energy transfer from bone to red marrow (and other soft tissues) due to the longer range of the higher energy-recoil protons. ^{58,59} An even greater sparing effect on the absorbed dose to red marrow from neutrons with energies greater than several MeV is predicted if either Woodard's formulation or the ICRP-revised formulation for compact bone (i.e., wet cortical bone) is used in place of the ICRP-revised formulation for trabecular bone. This is due to differences in the water content and, thereby, the hydrogen content of the ICRP-1975 formulations for trabecular and cortical bone (see, for example, page 79 of Ref. 5, and Table 11 of this report).

The elemental composition of cortical bone has been widely used as that of typical bone. If a typical bone composition is selected for use in calculations of absorbed dose to the red marrow in

trabecular bone and the endosteal cells in both trabecular and cortical bone, then the ICRP-revised formulation for total bone is recommended over the ICRP-revised formulations for either cortical bone or trabecular bone (see Tables 9 and 11). This recommendation provides a somewh. better approximation to kerma from either neutrons or photons in both cortical and trabecular bone (see, for example, Tables 17 and 24 of this report).

DISCUSSION

The calculation of absorbed dose to the soft tissue of the skeleton is a complex problem, since electronic equilibrium may not exist near a soft tissue-bone interface, and it is difficult to model the intricate intermixture of soft tissue and bone in the skeleton. In past calculations for neutrons and photons, 60-63 for example, simple geometrical models have been used to approximate the complex geometric relationships between the trabecular laminae and cavities containing the red marrow. Recently, however, Whitwell and Spiers⁶⁴ have developed a calculational method which uses Monte Carlo sampling techniques and actual probability distributions to obtain the pathlengths of a charged particle through the trabecular laminae and cavities rather than geometrical models. The necessary probability distributions for a number of bones in the body have been compiled by Beddoe, Darley, and Spiers.⁶⁵ To calculate the energy imparted in the red marrow, for example, one considers the potential paths a charged particle may take in crossing the trabecular laminae and cavities. The energy of the charged particle upon entering a cavity

will depend on its initial kinetic energy and that dissipated in reaching the cavity. The amount of energy imparted within the red marrow is dependent on the path the charged particle takes through the cavity and the energy it had on entrance. If the charged particle has sufficient energy to traverse the cavity, it will encounter another trabecular lamina. Then, if energetically possible, it will cross and enter another cavity. This method of tracking the energy imparted in red marrow has been used primarily in dosimetric calculations for beta particles from internally deposited bone-seeking radionuclides. 64,65 However, it is possible to use the pathlength probability distributions, as compiled by Beddoe, Darley, and Spiers,⁶² and the Monte Carlo sampling techniques, as developed by Whitwell and Spiers⁶⁴ and refined by Eckerman, 66-68 to improve the dosimetric calculations for photons and neutrons. The formulations for bone and soft tissue of ICRP-1975 Reference Man, as revised here, are currently being used in calculations of the absorbed dose to soft tissues of the skeleton and in other work relating to the revisions of the organ-dose estimates for the atomic-bomb survivors.

ACKNOWLEDGEMENTS

The author wishes to thank J. H. Hubbell, National Bureau of Standards, who provided unpublished data from new cross-section tabulations for photons which were used in this work. Many helpful suggestions throughout the course of this work and the preparation of this manuscript were also provided by Mark Cristy, K. F. Eckerman, M. R. Ford, and M. L. Randolph, Oak Ridge National Laboratory.

REFERENCES

- G. D. Kerr, "Review of Dosimetry for the Atomic Bomb Survivors," in: <u>Proceedings of the Fourth Symposium on Neutron Dosimetry</u> (Edited by G. Burger and H. G. Ebert), Gesellschaft fuer Strahlenund Umwelforschung, Munich-Neuherberg, June 1-5, 1981, Vol. 1, pp. 501-513 (Luxemburg: Office for Offical Publications of the European Communities, 1981).
- 2. G. D. Kerr, <u>Findings of a Recent ORNL Review of Dosimetry</u> for the Japanese Atomic-Bomb Survivors, Oak Ridge National Laboratory Report ORNL/TM-8078 (1981).
- 3. W. K. Sinclair and P. Failla, "Dosimetry of the Atomic Bomb Survivors," Radiat. Res. 88, 437 (1981).
- 4. J. W. Thiessen and V. P. Bond (Editors), <u>Reevaluations of</u> <u>Dosimetric Factors: Hiroshima and Nagasaki</u>, DOE Symposium Series CONF-810928 (1982).
- W. S. Snyder, M. J. Cook, L. R. Karhausen, E. S. Nasset, G. P. Howells, and I. H. Tipton, <u>Report of the Task Group on Refer</u>ence Man, ICRP Publication 23 (Oxford: Pergamon Press, 1975).
- W. S. Snyder, M. R. Ford, G. G. Warner, and H. L. Fisher, Jr., "Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom," Pamphlet 5 of the Medical Internal Radiation Dose Committee, J. Nucl. Med. 10, Supplement No. 3, (1969).
- 7. M. Cristy, <u>Mathematical Phantoms Representing Children of</u> <u>Various Ages for Use in Estimates of Internal Dose</u>, Oak Ridge National Laboratory Report ORNL/NUREG/TM-367 (1980).
- 8. M. Cristy, "Active Bone Marrow Distribution as a Function of Age in Humans," <u>Phys. Med. Biol.</u> <u>26</u>, 389 (1981).
- 9. International Commission on Radiological Protection, ICRP Publication 2, <u>Report of Committee II on Permissible Dose</u> for Internal Radiation (Oxford: Pergamon Press, 1959).
- 10. Recommendations of the International Commission on Radiological Protection, Brit. J. Radio., Supplement No. 6 (1955).
- International Commission on Radiological Protection, ICRP Publication 30, Supplement to Part 1, <u>Annals of the ICRP</u>, Vol. 3, No. 1-4 (Oxford: Pergamon Press, 1979).

- 12. International Commission on Radiological Protection, ICRP Publication 30, Part 2, <u>Annals of the ICRP</u>, Vol. 4, No. 3/4 (Oxford: Pergamon Press, 1980).
- E. M. Widdowson and J. W. T. Dickerson, "Chemical Composition of the Body," in: <u>Mineral Metabolism</u> (Edited by C. L. Comar and F. Bronner) Vol. II, Part A, pp. 1-247 (New York: Academic Press, 1964).
- 14. H. H. Mitchell, T. S. Hamilton, F. R. Steggerda, and H. W. Bean, "The Chemical Composition of the Adult Body and Its Bearing on the Biochemistry of Growth," J. Biol. Chem. <u>158</u>, 625 (1945).
- R. M. Forbes, A. R. Cooper, and H. H. Mitchell, "The Composition of the Adult Body as Determined by Chemical Analysis," <u>J. Biol.</u> <u>Chem. 203</u>, 359 (1953).
- R. M. Forbes, H. H. Mitchell, and A. R. Cooper, "Further Studies on the Gross Composition and Mineral Elements of the Adult Body," J. Biol. Chem. 223, 969 (1956).
- R. W. Leggett, K. F. Eckerman, and L. R. Williams, "Strontium-90 in Bone: A Case Study in Age-Dependent Dosimetric Modeling," <u>Health Phys.</u> (in press).
- P. Aspden, Private Communication (1972) as quoted in: J. R. Whitwell, <u>Theoretical Investigations of Energy Loss in Bone</u>, Ph.D. Thesis, University of Leeds (1973).
- B. E. Roberts, D. W. Miles, and C. G. Woods, "Polycythaemia Vera and Myelosclerosis: A Bone Marrow Study," <u>Brit. J. Hemat.</u> <u>16</u>, 75 (1969).
- 20. International Commission on Radiological Protection, ICRP Publication 11, <u>A Review of the Radiosensitivity of the</u> <u>Tissues in Bone</u> (Oxford: Pergamon Press, 1968).
- 21. B. L. Oster (Editor), <u>Hawk's Physiological Chemistry</u>, 14th Edition (New York: McGraw-Hill, 1965).
- 22. D. R. White and M. Fitzgerald, "Calculated Attenuation and Energy Coefficients for ICRP Reference Man (1975) Organs and Tissues," <u>Health Phys.</u> 33, 73 (1977).
- J. A. Auxier, W. S. Snyder, and T. D. Jones, "Neutron Interactions and Penetration in Tissue," in: <u>Radiation Dosimetry</u> (Edited by F. H. Attix, W. C. Roesch, and E. Tochlin) Vol. 1, pp. 275-316 (New York: Academic Press, 1968).

- 24. W. S. Snyder, "Dose Distribution in a Cylindrical Phantom for Neutron Energies Up to 14 MeV," in: National Council on Radiation Protection, NCRP Report 38, <u>Protection Against Neutron Radiation</u>, Appendix B.I. (Washington, D.C.: NCRP Publications, 1972).
- M. S. Singh, <u>Kerma Factors for Neutron and Photons with Energies</u> <u>Below 20 MeV</u>, Lawrence Livermore National Laboratory Report UCRL-52850 (1979).
- 26. J. J. Ritts, E. Solomito, and P. N. Stevens, <u>Calculations of</u> <u>Neutron Fluence-to-Kerma Factors for the Human Body</u>, Oak Ridge National Laboratory Report ORNL/TM-2079 (1968).
- 27. D. E. Bartine, J. R. Knight, J. V. Pace, III, and R. Rousin, <u>Production and Testing of the DNA Few-Group Coupled Neutron-</u> <u>Gamma Cross-Section Library</u>, Oak Ridge National Laboratory <u>Report ORNL/TM-4840 (1977)</u>.
- D. Kaul, S. Chen, and R. Jarka, <u>Neutron and Gamma Ray</u> <u>Response/Fluence Factors for Human Dosimetry Applications</u>, Science Applications Incorporated Report SAI-121-132-1 (1979).
- R. S. Caswell, J. J. Coyne, and M. L. Randolph, "Kerma Factors for Neutron Energies Below 30 MeV," <u>Radiat. Res.</u> 83, 217 (1980).
- Recommendations of the International Commission on Radiological Units and Measurements, ICRU Report 10b, <u>Physical Aspects</u> of Irradiation, National Bureau of Standards Handbook 85 (1964).
- 31. Y. S. Kim, "Human Tissues: Chemical Composition and Photon Dosimetry Data," Radiat. Res. 57, 38 (1974).
- 32. I. H. Tipton, "Elemental Composition of Total Body and Certain Tissues," <u>Health Phys. Div. Annu. Prog. Rep. July 31, 1969</u>, Oak Ridge National Laboratory Report ORNL-4446, pp. 299-301 (1969) as quoted in: National Council on Radiation Protection and Measurements, NCRP Report No. 38, <u>Protection Against Neu-</u> tron Radiation (Washington, D.C.: NCRP Publications, 1971).
- 33. H. Q. Woodard, "The Elementary Composition of Human Cortical Bone", <u>Health Phys.</u> 8, 513 (1962).
- 34. <u>Report of the International Commission on Radiological Units and</u> <u>Measurements (ICRU) 1959</u>, National Bureau of Standards Handbook 78 (1961).
- 35. Recommendations of the International Commission on Radiological Units and Measurements, ICRU Report 10d, <u>Clinical Dosimetry</u>, National Bureau of Standards Handbook 87 (1963).

- 36. F. W. Spiers, "Transition-Zone Dosimetry," in: <u>Radiation</u> <u>Dosimetry</u> (Edited by F. H. Attix, W. C. Roesch, and E. Tochlin) Vol. 3, pp. 809-867 (New York: Academic Press, 1969).
- 37. W. C. Roesch and F. H. Attix, "Basic Concepts in Radiation Dosimetry," in: <u>Radiation Dosimetry</u> (Edited by F. H. Attix, W. C. Roesch, and E. Tochlin) Vol. 1, pp. 1-92 (New York: Academic Press, 1968).
- 38. International Commission on Radiation Units and Measurements, ICRU Report 19, <u>Radiation Quantities and Units</u> (Washington, D.C.: ICRU Publications, 1971).
- 39. International Commission on Radiation Units and Measurements, ICRU Report 33, <u>Radiation Quantities and Units</u> (Washington, D.C.: ICRU Publications, 1980).
- 40. International Commission on Radiation Units and Measurements, ICRU Report 26, <u>Neutron Dosimetry for Biology and Medicine</u> (Washington, D.C.: ICRU Publications, 1977).
- 41. F. R. Shonka, J. E. Rose, and G. Failla, "Conducting Plastic Equivalent to Tissue, Air, and Polystyrene," in: <u>Second United Nations International Conference on Peaceful Uses of Atomic Energy</u>, Geneva, Switzerland, 1-13 September 1958, Vol. 21, pp. 184-187 (New York: United Nations Publications).
- 42. E. A. Straker, P. N. Stevens, D. C. Irving, and V. R. Cain, <u>The MORSE Code -- A Multigroup Neutron and Gamma-Ray Monte</u> <u>Carlo Transport Code</u>, Oak Ridge National Laboratory Report <u>ORNL-4585 (1970).</u>
- 43. M. B. Emmett, <u>The MORSE Monte Carlo Radiation Transport Code</u> System, Oak Ridge National Laboratory Report ORNL-4972 (1975).
- 44. L. S. Taylor, <u>Radiation Protection Standards</u> (Cleveland: CRC Press, 1971).
- 45. National Council on Radiation Protection and Measurements, NCRP Report 39, <u>Basic Radiation Protection Criteria</u> (Washington, D.C.: NCRP Publications, 1971).
- 46. Recommendations of the International Commission on Radiological Protection, ICRP Publication 26, <u>Annals of the ICRP</u>, Vol. 1, No. 3 (1977).
- 47. R. D. Evans, "X-Ray and Gamma-Ray Interactions," in: <u>Radiation</u> <u>Dosimetry</u> (Edited by F. H. Attix, W. C. Roesch, and E. Tochlin) Vol. 1, pp. 93-155 (New York: Academic Press, 1968).

- 48. J. H. Hubbell, <u>Photon Cross Sections, Attenuation Coefficients</u>, and <u>Energy Absorption Coefficients</u> from 10 keV to <u>100 GeV</u>, National Bureau of Standards Report NSRDS-NBS 29 (1969).
- 49. J. H. Hubbell, "Photon Mass Attenuation and Energy-Absorption Coefficients from 1 keV to 20 MeV," <u>Intern. J. Appl. Radiation</u> Isotopes (in press).
- 50. J. H. Hubbell, Personal Communication (July 1982).
- 51. E. Storm and H. I. Israel, "Photon Cross Sections from 1 KeV to 100 MeV for Elements Z = 1 to Z = 100," <u>Nuclear Data Tables A7</u>, 565 (1970).
- 52. I. H. Tipton, J. C. Johns, and M. Boyd, "The Variation with Age of Elemental Concentrations in Human Tissue," in: <u>Proceedings</u> of the First International Congress of Radiation Protection (Edited by W. S. Snyder <u>et al.</u>), Rome, Italy, September 5-10, 1966, Vol. 1, pp. 759-767 (Oxford: Pergamon Press, 1968).
- 53. I. H. Tipton and J. J. Shafer, "Trace Elements in Human Tissue: Rib and Vertebra," <u>Health Phys. Div. Annu. Prog. Rep. July 31,</u> <u>1964</u>, Oak Ridge National Laboratory Report ORNL-3697, pp. 179-185 (1964).
- 54. I. H. Tipton, C. Feldman, and M. J. Cook, "Gross Composition of Bone and Cartilage," <u>Health Phys. Div. Annu. Prog. Rep. July 31,</u> <u>1970</u>, Oak Ridge National Laboratory Report ORNL-4584, pp. 223-226 (1970).
- 55. G. D. Kerr, "A Review of Organ Doses from Isotropic Fields of Gamma Rays," <u>Health Phys.</u> 39, 3 (1980).
- 56. S. Glasstone and M. C. Edlund, <u>Nuclear Reactor Theory</u> (Princeton, N.J.: D. Van Nostrand, 1952).
- 57. R. L. Murray, <u>Nuclear Reactor Physics</u> (Englewood Cliffs, N.J.: Prentice-Hall, 1957).
- 58. R. C. Lawson, "The Recoil Proton Dose at a Bone-Tissue Interface Irradiated by Fast Neutrons," Phys. Med. Biol. 12, 551 (1967).
- 59. G. Pfister, G. Prillinger, G. Hehn, C. Krass, and P. Stiller, "Absorbed Dose and Recoil Spectra at Critical Tissue Boundaries Characterized by the Absence of Recoil Equilibrium" in: <u>Pro-</u> <u>ceedings of the Fourth Symposium on Neutron Dosimetry</u> (Edited by G. Burger and H. G. Ebert), Gesellschaft fuer Strahlen- und Umwelforschung, Munich-Neuherberg, June 1-5, 1981, Vol. 2, pp. 91-101 (Luxemburg: Office for Offical Publications of the European Communities, 1981).

- 60. J. L. Howarth, "Calculation of the Absorbed Dose in Soft-Tissue Cavities in Bone Irradiated by X-Rays," <u>Radiat. Res.</u> 24, 158 (1965).
- 61. N. Aspin and H. E. Johns, "The Absorbed Dose in Cylindrical Cavities within Irradiated Bone," <u>Br. J. Radiol.</u> <u>36</u>, 350 (1963).
- 62. D. E. Charlton and D. V. Cormack, "Energy Dissipated in Finite Cavities," <u>Radiat. Res.</u> 17, 34 (1962).
- 63. F. W. Spiers, "The Influence of Energy Absorption and Electron Range on Dosage in Irradiated Bone," <u>Br. J. Radiol.</u> 19, 52 (1949).
- 64. J. R. Whitwell and F. W. Spiers, "Calculated Beta-Ray Dose Factors for Trabecular Bone," Phys. Med. Biol. 21, 16 (1976).
- 65. A. H. Beddoe, P. J. Darley, and F. W. Spiers, "Measurements of Trabecular Bone Structure in Man," <u>Phys. Med. Biol.</u> 21, 589 (1976).
- 66. K. F. Eckerman, "Appendix A. Dosimetry of Radiostrontium," in: <u>Variability in Dose Estimates Associated with the Food Chain</u> <u>and Ingestion of Selected Radionucidse</u> (F. O. Hoffman, R. H. <u>Gardner, and K. F. Eckerman</u>) Oak Ridge National Laboratory Report NUREG/CR-2612 (in press).
- 67. K. F. Eckerman, <u>Absorbed Fraction Data for Radiosensitive</u> <u>Tissues of the Skeleton: Part 1, Beta Emitters in Trabecular</u> <u>Bone (in preparation).</u>
- 68. K. F. Eckerman, Personal Communication (August 1982).

.

.

Element	Mass (g)					
	ICRP- revised	1CRP- 1975	MIRD- 1969	ICRP- 1955		
H	7,000 ⁸	7,000 ^b	7,000 [°]	7,000 ^d		
С	16,000	16,000	16,000	12,600		
N	1,700	1,800	1,800	2,100		
0	43,000	43,000	43,000	45,500		
Na	100	100	110	105		
Mg	19	19	20	35		
P	580	580 ^e	840	700		
S	150	140	150	175		
C1	95	95	100	105		
К	140	140	140	140		
Ca	1,200	1,000	1,000	1,050		
Fe	4.2	4.2	4.9	4		

Table 1. Composition of Reference Man for twelve elements

^aThis work.

^bSee Table 110 on page 327 in Publication 23, International Commission on Radiation Protection (Ref. 5).

^CSee Table 2 on page 9 in Phamphlet 5 of the Medical Internal Radiation Dose (MIRD) Committee (Ref. 6).

^dSee Table C.II on page 25 in Recommendations of the International Commission on Radiological Protection (Ref. 10).

^eSee Errata on page iii in Publication 30, Supplement to Part 1, International Commission on Radiological Protection (Ref. 12).

Table 2. Revision to Table 108 of ICRP-1975 Reference Man Report

Organ/tissue		Quantity i	n organ or i	issue (g)
org		Selenium	Silver	Sodium
92	Red marrow			
93	Yellow marrow		2.1E-6 ^b	6.6E-1
94	Cartilage			6.0E+0
9 5	Periarticular tissue			4 .9 E+0
9 6	Skin		2.3E-5	4.7E+0
9 7	Epidermis			1.8E-1
98	Dermis			4.5E+0

^aSee Errata on page iii of Addendum to Ref. 11. The "organ or tissue" numbered 92 through 98 are misaligned with the data on Page 315 of Ref. 5.

^bRead as 2.1×10^{-6} .

Element	Mass (g)							
	Skeleton	Total bone	Cortical bone	Trabecu lar bone	Red marrow	Yellow marrow	Cartilage	Peri- articular
н	7.2E+2	1.9E+2	1.8E+2	4.3E+1	1.5E+2	1.7E+2	1.1E+2	8.8E+1
С	2.5E+3	7.4E+2	5.5E+2	1.3E+2	6.2E+2	9.5E+2	1.1E+2	8.2E+1
N	3.0E+2	2.1E+2	1.6E+2	3.8E+1	4.8E+1	9.6E+ 0	2.9E+1	2.2E+1
0	4.7E+3	2.1E+3	1.7E+3	2.6E+2	6.2E+2	3.4E+2	8.0E+2	6.6E+2
Na	3.2E+1					6.6E-1	6.0E+0	4 .9 E+0
Mg	1.1E+1		8.4E+0			2.6E-2		
P	5.0E+2	5.0E+2	4.0E+2	1.0E+2		2.1E-1		
S	1.7E+1		1.2E+1			1.1E+0	6.6E+0	5.4E+0
Cl	1.4E+1					1.6E+0	2.8E+0	2.3E+0
K	1.5E+1							
Ca	1.0E+3		8.0E+2			2.9E-2		
Fe	8.1E-1					3.2E-2		

Table 3.	Summary of data on	twelve-element	composition for	various_skeletal	components
	from Tabl	e 108 of ICRP-19	75 Reference Man	n Report ^a	

^aSee pages 290 to 324 of Ref. 5 and Errata in Refs. 11 and 12.

	Mass (g)				
Components	Blood- erythrocytes	Adipose tissue- subcutaneous	Skeleton- red marrow		
Total	2,400	7,500	1,500		
Gross content					
Water	1,500	1,100	595		
Ash	26	15	10		
Fat	13	6,000	605		
Protein	780	380	290		
Trace element					
Na	0.57	3.8	0.56		
Mg	0.13	0.15	0.056		
P	1.6	1.2	0.62		
S	7.9	5.5	3.0		
K	8.3	2.4	2.8		
C1	4.2	9.0	2.2		
Ca	0.012	0.17	0.021		
Fe	2.4	0.18	0.77		

Table 4. Estimation of gross content and trace elements in red bone marrow of Reference Man^a

⁴Assumes red marrow is approx. 50% (i.e., 750 g) red blood cells (i.e., erythrocytes) and 50% (i.e., 750 g) fat (i.e., subcutaneous adipose tissue) based on work of Roberts, Miles, and Woods (Ref. 19). Also see data of Aspden (Ref. 18).

Org	an/tissue	Сотро	Page	Original mass (g)	Revised mass (g)
1	Total body	Ca	296	1.0E+3	1 2E+3 ^b
1	Iotal body	P	310	$5.8E+2^{C}$	$5.8E+2^{C}$
		S	316	1.4E+2	$1.5E+2^{d}$
62	Heart	Na	314	4.0E-1 ^e	4.0E-1 ^e
66	Liver	Na	314	1.8E?	1.8E+0
88	Skeleton	Ca	296	1.0E+3	1.2E+3 ^b
		Р	310	5.0E+2	5.0E+2 -
		S	316	1.7E+1	3.1E+1 ¹
89	Skeleton-	Са	296		$1.2E+3_{b}^{b}$
	total bone	C1	298		5.0E+0 ⁿ
		Mg	306		1.0E+1
		P	310	$5.0E+2^{c}$	5.0E+2 $\frac{c}{2}$
		K	312		$6.0E+0_{1}^{J}$
		Na	314		2.0E+1 $\frac{n}{2}$
		S	316		1.5E+1 ¹
9 0	Skeleton-	Ca	296	8.0E+2	9.6E+2, ^k
	cortical bone	C1	298		4.0E+0, ^{κ}
		K	312		4.8E+0, K
		Na	314		1.6E+1 ^K
91	Skeleton-	Ca	296		2.4E+2 $_{1}^{k}$
	trabecular bone	C1	2 9 8		$1.0E+0_{1}^{K}$
		Mg	306	_	2.1E+0 ^{K}
		P	310	1.0E+2 ^C	$1.0E+2_{1}^{C}$
		K	312		$1.2E+0_{1}^{K}$
		Na	314		$4.0E+0^{K}$
		S	316		$3.0E+0^{1}$
92	Skeleton-	Ca	296		2.1E -2^{m}
	red marrow	C1	298		2.2 $E+0^{m}$
		Fe	304		7.7E-1 ^m
		Mg	306		5.6 $E-2^{m}$
		P	310		6.2E-1 ^m
		K	3 12		2.8E+0 ^m
		Na	314		5.6 $E - 1^{m}$
		S	316		3. 06+0 ^m

Tab le	5.	Revisions	t to	trace-ele	ement	and
min	eral	content	of	Reference	Man ^a	

Table 5 (cont'd.)

Organ/tissue		Compo	Page	Original mass (g)	Revised mass (g)
93	Skeleton- yellow marrow	K	312		4.2E-1 ⁿ

^aSee Table 108 on page 290 of Ref. 5.

^bSee discussion in text and Table 1 of this report.

^CSee Errata on page iii of Addendum to Ref. 12.

^dSum of revised values for sulfur content in the skeleton and total soft tissue.

^eSee Errata on page iii of Addendum to Ref. 11.

^fSum of revised values for sulfur content in the various components of the skeleton.

^hDifference between values for mineral or traceelement content in skeleton and other components of the skeleton in Table 108 of Ref. 5.

¹Based on mineral or trace-element content of cortical bone in Table 108 and on relative masses of cortical and trabecular bone in Table 105 of Ref. 5.

^jSee discussion on page 287 of Ref. 5.

^KBased on mineral or trace-element content of total bone and on relative masses of cortical and trabecular bone.

^mSee Table 4 of this report.

ⁿBased on trace-element content of subcutaneous adipose tissue in Table 108 of Ref. 5.

Organ	n/tissue	Compo	Page	Original mass (g)	Revised mass (g)
1	Total body ^b	Carbo- hydrate	280		4.0E+2 ^C
la	Total soft tissue	Carbo- hydrate	280		4.0E+2 ^C
27	Central nervous system	Carbo- hydrate	280		1.4E+1 ^d
28	Central nervous system-brain	Carbo- hydrate	280		1.4E+1 ^e
29	Central nervous system-cerebrum	Carbo- hydrate	280		1.2E+1 ^d
		Water	280	9.3E+2	9.4E+2 ^d
30	Central nervous system-cerebellum	Carbo- hydrate	280		1.5E+0 ^d
		Fat	280	1.3E+1	1.6E+1 ^d
31	Central nervous system-brain stem	C a rbo- hydrate	280		3.0E-1 ^d
58	Lower large intestine- descending colon	Protein	282	3.8E+0	1.2E+1 ^f
66	Liver	C ar bo- hydrate	282		4.0E+1 ^h
77	Muscle (skeletal)	Carbo- hydrate	284		3.0E+2 ⁱ
80	Skeleton-bone	Protein	284	1.3E+3	1.2E+3 ^j
92	Skeleton- red marrow	Protein	284	3.0E+2	2.9E+2 ^k
95	Skeleton- periarticular tissue	Water	284	5.7E+2	7.0E+2 ^m

Table 6. Revisions to gross content of Reference Man^a

Table 6 (cont'd.)

Organ/tissue		Compo	Page	Original mass (g)	Revised mass (g)
103	Teeth-Dentin	Protein	284	1.6E-1	7.6E+0 ⁿ

^aSee Table 105 on page 280 of Ref. 5.

^bGlycogen, the chief carbohydrate storage material of the body, is produced in the liver and stored primarily in the liver and muscle tissue before being depolymerized to glucose and liberated as needed by the body (Ref. 21).

^CSee discussion on page 24 of Ref. 5.

d Based on gross content of "organ or tissue" numbered 28 (Brain) in Table 105 of Ref. 5.

^eSee discussion on page 214 of Ref. 5.

^fBased on gross content of "organ or tissue" numbered 43 (Intestine) in Table 105 of Ref. 5.

^hSee table on pages 146 and 147 of Ref. 5.

ⁱSee discussion on pages 110 and 111 of Ref. 5.

^jValue rounded down to 1.2E+3 g, rather than up to 1.3E+3 g, to make it more consistent with the values of 1.0E+3 g and 2.4E+2 g for cortical and trabecular bone and the value of 1.9E+3 g for the skeleton in Table 105 of Ref. 5.

^kSee Table 4 of this report.

^mSee table at top of page 79 in Ref. 5.

ⁿDifference between values for "organ or tissue" numbered 101 (Teeth) and for other components numbered 102 (Teeth-Enamel) and 103 (Teeth-Pulp) in Table 105 of Ref. 5.
Organ/tissue		Standard	Percent difference ^b		
		mass (g)	Original val ues	Revised values	
1	Total body	70,000	+1.6 ^c	+0.78	
la	Total soft tissue	60,000	+1.5	+0.80	
2	Adipose tissue	15,000	-0.53	-0.53	
3	Subcutaneous	7,500	+0.07	+0.07	
4	Other separable	5,000	-0.20	-0.20	
5	Interstitial	1,000	-0.08	-0.08	
7	Adrenals	14	+1.3	+1.3	
8	Aorta	100	+1.5	+1.5	
9	Contents (Blood)	190	+1.9	+1.9	
10	Blood (Whole)	5,500	+0.82	+0.82	
11	Plasma	3,100	-1.7	-1.7	
12	Erythrocytes	2,400	+4.1	+4.1	
13	Blood vessels	200	+1.5	+1.5	
14	Contents (Blood)	3,000	+0.80	+0.80	
22	Connective tissue (CT)	3,400	+0.95	+0.95	
23	Separable CT	1,600	-0.74	-0.74	
27	Central nervous system	1,430	+3.1	+2.1	
28	Brain	1,400	+1.8	+0.76	
29	Cerebrum	1,200	+2.5	+0.88	
30	Cerebellum	150	+2.5	-0.51	
31	Brain stem	30	+3.1	+2.1	
32	Contents (Fluid)	120	-0.99	-0 . 99	
35	Eye lenses f	0.4	-3.8	-3.8	
36	Gall bladder	10			
37	GI tract	1,200	+1.0	+1.0	
40	Esophagus	40			
41	Stomach	150	+6.8	+6.8	
43	Intestines	1,000	+1.5	+1.5	
45	Small intestine	640	+0.73	+0.73	
47	Duodenum	60	+2.1	+2.1	
48	Jejunum	280	+2.1	+2.1	
49	Ileum	300	+0.34	+0.34	

Table 7. Summary of organ-tissue masses of Reference Man calculated by using RMCOMP/BAS computer program

Table 7 (cont'd.)

Organ/tissue		Standard	Percent difference ^b		
		mass (g)	Original values	Revised values	
50	Large intestine (LI)	370	+2.2 ^c	+2.2 ^d	
52	Upper LI	210	-0.41	-0.41	
54	Ascending colon	90	+1.3	+1.3	
55	Transverse color	120 I	+1.0	+1.0	
56	Lower LI	160	-0.85	-0.85	
58	Descending colon	90	-10.2	-1.2	
59	Sigmoid colon	50	-0.49	-0.49	
60	Rectum	20	-0.66	-0.66	
61	Hair ,	20	-4.0	-4.0	
62	Heart	330	+0.10	+0.10	
63	Contents (Blood)	500	+0.99	+0.99	
64	Kidneys	310	-0.16	-0.16	
66	Liver	1,800	+2.5	+0.33	
67	Lungs	1,000	+2.7	+2.7	
68	Parenchyma	570	+5.0	+5.0	
69	Content (Blood)	430	-0.49	-0.49	
73	Lymph nodes	250			
77	Muscle (Skeletal)	28,000	+1.5	+0.45	
79	Pancreas	100	+7.5	+7.5	
82	Pituitary	0.6			
83	Prostate	16	+2.3	+2.3	
88	Skeleton	10,000	+2.7	+0.54	
89	Bone	5,000	+24.9	+1.8	
9 0	Cortical bone	4,000	+7.0	+2.4	
91	Trabecular bone	1,000	+22.5	-2.6	
92	Red marrow	1,500	+0.40	+0.38	
93	Yellow marrow	1,500	+0.50	+0.48	
94	Cartilage	1,100	+3.1	+3.1	
9 5	Periarticular tissue	900	+18.7	+4.2	
96	Skin	2,600	-0.55	-0.55	
9 7	Epidermis	100			
98	Dermis	2,500			

Table 7 (cont'd.)

Organ/tissue		Standard	Percent difference ^b		
		mass (g)	Original values	Revised values	
100	Spleen	180	+0.53 ^c	+0.53 ^d	
101	Teeth	46	+1.2	+1.2	
102	Ename 1	10 ^e	+5.3	+5.3	
103	Dentin	35 ^e	+19.9	-0.97	
105	Testes	35	+4.2	+4.2	
106	Thymus	20			
107	Thyroid	20	+0.64	+0.64	
108	Tongue	70	-3.2	-3.2	
110	Trachea	10			
113	Urinary bladder	45			
114	Contents (urine)	102	+0.15	+0.15	

^aBased on calculations using values from Tables 105, 106, and 108 of Ref. 5.

^b100 x (standard mass - calculated mass)/standard mass.

^CIncludes revised values from Errata in Refs. 11 and 12.

^dIncludes revised values from Tables 5 and 6 of this report.

^eSee White and Fitzgerald (Ref. 22) and Errata in Ref. 11.

^fGross contents (i.e., water, fat, and protein) of the gall bladder and some other organs are not completely defined in Ref. 5.

Organ	1/tissue	Сотро	Page	Original macs (g)	Revised mass (g)
1	Total body	Ca	296	1.OE+3	1.2E+3
		N	310	1.8E+3 _b	1.7E+3
		P	310	5.8E+2	5.8E+2
		S	316	1.4E+2	1.5E+2
la	Total soft tissue	N	310	1.5E+3	1.4E+3
7	Adrenals	0	310	8.2E+0	8.0E+0
9	Aorta-blood content	H	302	2.0E+1	1.9E+1
12	Blood-erythrocytes	н	302	2.1E+2	2.2E+2
		0	310	1.4E+3	1.5E+3
13	Blood vessels	С	296		2.OE+1
		н	302		2.5E+1
		N	310		7.7E+0
		0	310		1.4E+2
33	Central nervous system-fluid content	N	310	5.4E-3	4.8E-3
43	GI Tract-intestine	С	296	9.4E+1	1.2E+2
		õ	310	7.7E+2	7.4E+2
		-			/
60	Lower large intestine-rectum	H	302	1.2E+O	2.1E+0
61	Hair	0	310	6.0E+0	5.7E+0
62	Heart	Na	314	4.0E-1 ^c	4.0E-1
66	Liver	С	296	2.6E+2	2.8E+2
		Na	314	1.8E?	1.8E+0
83	Prostate	H	302	1.5E+0	1.6E+0

·

Table 8. Summary of revisions to Table 108 of ICRP-1975 Reference Man Report

Table 8 (cont'd.)

Organ/tissue		Compo	Page	Original mass (g)	Revised mass (g)	
88	Skeleton	Са	296	1.0E+3.	1.2E+3	
		P	310	5.0E+3 ^b	5.0E+3	
		S	316	1.7E+1	3.1E+1	
89	Skeleton-total bone	Ca	296		1.2E+3	
		С	296	7.4E+2	6.6E+2	
		C1	298		5.0E+0	
		Mg	306		1.OE+1	
		N	310	2.1E+2	1 .9 E+2	
		P	310	5.0E+2	5.OE+2	
		K	312		6.OE+0	
		Na	314		2.OE+1	
		S	316		1.5E+1	
90	Skeleton-cortical	Ca	296	8.0E+2	9.6E+2	
	bone	C1	298		4.OE+0	
		H	302	1.8E+2	1.4E+2	
		K	312		4.8E+0	
		Na	314		1.6E+1	
91	Skeleton-trabecular	Ca	296		2.4E+2	
	bone	C1	298		1.0E+0	
		Mg	306		2.1E+0	
		0	310	$2.6E+2_{b}$	4.6E+2	
		P	310	1.0E+2	1.0E+2	
		K	312		1.2E+0	
		Na	314		4.0E+0	
		S	316		3.0E+0	
92	Skeleton-red marrow	Ca	296		2.1E-2	
		C1	298		2.2E+0	
		Fe	304		7.7E-1	
		Mg	306		5.6E-2	
		N	310	4.8E+1	4.6E+1	
		0	310	5. 2E+2	6.7E+2	
		P	310		6.2E-1	

Table 8 (cont'd.)

Organ/tissue		Compo	Page	Original mass (g)	Revised mass (g)
92	Skeleton-red marrow	K	312		2.8E+0
		Na	314		5.6E-1
		S	316		3.0E+0
93	Skeleton-yellow	0	310	3.4E+2	3.5E+2
	marrow	K	312		4.2E-1
102	Teeth-Enamel	С	296	1.0E-1 ^C	6.2E-2
		Н	302	$4.0E-2^{C}$	4.OE-2
		N	310	$1.0E-1^{c}$	1.9E-2
103	Teeth-Dentin	С	296	4.2E+0 ^C	4.0E+0
		H	302	$9.6E - 1^{C}$	9.6E-1
		N	310	$1.2E+0^{c}$	1.2E+0
		0	310	1.4E+1	1.5E+1
107	Thyroid	С	296	2.1E+0	3.0E+0
114	Urinary bladder-	С	296	3.4E-1	3.2E+0
	contents	0	310	9.0E+1	8.6E+1

^aSee pages 290 to 324 of Ref. 5.

^bSee Errata on page iii of Addendum to Ref. 12. ^cSee Errata on page iii of Addendum to Ref. 11.

Element	Mass (g)							
	Skeleton	Total bone	Cortical bone	Trabecular bone	Red marrow	Yellow marrow	Cartilage	Peri- articular
H	7.2E+2	1.9E+2	1.4E+2	4.3 E+1	1.52+2	1.7E+2	1.1E+2	8.8E+1
С	2.5E+3	6.6E+2	5.5E+2	1.3E+2	6.2E+2	9.5E+2	1.1E+2	8.2E+1
N	3.0E+2	1.9E+2	1.6E+2	3.8E+1	4.8E+1	9.6E+0	2.9E+1	2.2E+1
0	4.7E+3	2.1E+3	1.7E+3	4.6E+2	6.7E+2	3.5E+2	8.0E+2	6.6E+2
Na	3.2E+1	2.0E+1	1.6E+1	4.0E+0	5.6E-1	6.6E-1	6.0E+0	4.9E+0
Mg	1.1E+1	1.0E+1	8.4E+0	2.1E+0	5.6E-2	2.6E-2		
P	5.0E+2	5.0E+2	4.0E+2	1.0E+2	6.2E-1	2.1E-1		
S	3.1E+1	1.5E+1	1.2E+1	3.0E+0	3.0E+0	1.1E+0	6.6E+0	5.4E+0
Cl	1.4E+1	5.0E+0	4.0E+0	1.0E+0	2.2E+0	1.6E+0	2.8E+0	2.3E+0
K	1.5E+1	6.0E+0	4.8E+0	1.2E+0	2.8E+0	4.2E-1		
Ca	1.2E+3	1.2E+3	9.6E+2	2.4E+2	2.1E-2	2.9E-2		
Fe	8.1E-1				7.7E-1	3.2E-2		

Table 9. Summary of revised data on twelve-element composition for various skeletal components of Reference Man

^aSee Tables 3, 4, 5, and 8 of this report.

	I	Percent by weight				
Element	Total body	Skeleton	Total soft tissue			
Н	10.052	7.279	10.514			
C	22.922	24.644	22.631			
N	2.442	3.057	2.339			
0	61.289	46.884	63.686			
Na	0.144	0.322	0.114			
Mg	0.027	0.111	0.013			
P	0.835	5.027	0.134			
S	0.216	0.312	0.202			
C1	0.137	0.141	0.136			
К	0.202	0.151	0.202			
Ca	1.728	12.065	0.024			
Fe	0.006	0.008	0.006			

Table 10.	Elemental	composition	for various	total-body
compor	nents of Re	eference Man	calculated	by using
	RMCOM	P/BAS compute	er program	

Flamont	Percent by weight						
ь 16 me n f	Total bone	Cortical bone	Trabecular bone	Red marrow	Yellow marrow		
H	3.735	3.605	4.218	10.594	11.622		
С	13.485	14.104	12.908	41.011	63.984		
N	3.908	4.097	3.741	3.105	0.643		
0	43.110	42.210	44.910	44.618	23.478		
Na	0.407	0.410	0.390	0.037	0.044		
Mg	0.224	0.215	0.205	0.004	0.002		
P	10.177	10.243	9.742	0.041	0.014		
S	0.305	0.307	0.292	0.201	0.074		
C1	0.102	0.102	0.097	0.147	0.107		
К	0.122	0.123	0.117	0.187	0.028		
Ca	24.425	24.583	23.380	0.001	0.002		
Fe				0.052	0.002		

Table 11. Elemental composition for various	skeletal
components of Reference Man calculated by	using
RMCOMP/BAS computer program	

	Percent by weight						
Element	Skin	Musc le	Brain	Lungs	Intestine		
н	9.934	10.218	10.620	10.212	10.499		
С	22.576	11.119	12.854	10.241	11.707		
N	4.590	2.755	1.267	2.910	2.111		
0	62.161	75.006	74.000	75.630	75.093		
Na	0.180	0.075	0.180	0.185	0.102		
Mg	0.006	0.019	0.015	0.007	0.013		
P	0.033	0.179	0.345	0.080	0.086		
S	0.157	0.240	0.173	0.226	0.112		
C1	0.264	0.079	0.230	0.267	0.142		
К	0.084	0.301	0.302	0.195	0.122		
Ca	0.015	0.003	0.009	0.009	0.010		
Fe	0.001	0.004	0.005	0.037	0.002		

Table 12. Elemental composition for various soft-tissue components of Reference Man calculated by using RMCOMP/BAS computer program

			Percent	by Weight		
Element	ICRP- revised	ICRP- 1975	Kim 1974	Tipton- 1969	ICRU- 1964	Woodard- 1962
H	3.6 ^b	3.8 ^b	5.6 ^c	4.1 ^d	6.4 ^e	3. 39 ^f
С	14.1	14.8	9.3	16	27.8	15.5
N	4.1	4.3	3.3	4.3	2.7	3.97
0	42.2	44.3	39.4	43	41.0	44.1
Na	0.41		0.4	0.62		0.06
Mg	0.22	0.23	0.4	0.22	0.2	0.21
P	10.2	10.8	13.4	10	7.0	10.2
S	0.31	0.32		0.31	0.2	0.31
C1	0.10					
К	0.12		0.2			
Ca	24.6	21.5	28.0	21	14.7	22.2

Tab le	13.	Comparison	of	data	on	elemental	composition
		for	cor	npact	bor	1e ^a	

Assumed to be wet cortical bone.

^bCalculated by using RMCOMP/BAS computer program (see Appendix A).

^CSee Kim (Ref. 31).

^dSee Tipton (Ref. 32).

^eSee International Commission on Radiological Units and Measurements (Ref. 30).

^fSee Woodard (Ref. 33).

	Pe	rcent by weig	ht
Element	ICRP- revised	ICRP- 1975	Aspden- 1972
н	10.6 ^a	10.6 ^ª	10.18 ^b
C	41.0	41.4	47.48
N	3.1	3.2	2.18
0	44.6	44.8	36.04
Na	0.037		0.008
Mg	0.004		0.0024
P	0.041		0.028
S	0.20		0.154
C1	0.15		0.100
K	0.19		0.174
Ca	0.001		0.0004
Fe	0.052		0.010
Others			3.64 [°]

Table 14. Comparison of data on elemental composition for red bone marrow

^aCalculated by using RMCOMP/BAS computer program (see Appendix A).

^bSee Aspden (Ref. 18).

^CTreated as oxygen in kerma calculations.

Element H C N O Na Mg P S C1 K	Percent by weight						
Element	ICRP- 1975	Kim- 1974	Tipton- 1969	ICRU- 1964			
н	10.2 ^a	10.3 ^b	10 ^c	10.2 ^d			
C	11.1	9 . 9	11	12.3			
N	2.8	3.2	2.6	3.5			
0	75.0	75.7	75	72 .9			
Na	0.075	0.1	0.075	0.08			
Mg	0.019		0.019	0.02			
P	0.18	0.2	0.18	0.2			
S	0.24	0.3	0.23	0.5			
C1	0.079	0.1	0.078				
К	0.30	0.3	0.30	0.3			
Ca	0.003		0.0031	0.007			
Fe	0.004						

Tab le	15.	Comparison	of	data	on	elemental	composition
		for	: m	usc le	tis	ssue	

^aCalculated by using the RMCOMP/BAS computer program (see Appendix A).

^bSee Kim (Ref. 31).

^CSee Tipton (Ref. 32).

^dSee International Commission on Radiological Units and Measurements (Ref. 30).

Photon	Kerma fa	ctor (Gy pho	$pton^{-1} cm^2$)
(MeV)	Total body	factor (Gy photon ⁻¹ cm Skeleton Total s tissu 5.55E-10 5.66E- 2.83E-10 2.84E- 1.69E-10 1.68E- 1.05E-10 7.98E- 6.24E-11 4.63E- 8.61E-11 2.98E- 6.32E-11 2.05E- 3.82E-11 1.14E- 2.55E-11 7.09E- 1.18E-11 2.98E- 6.75E-12 1.60E- 3.01E-12 6.87E- 1.71E-12 4.15E- 1.71E-12 4.15E- 1.71E-13 3.26E- 5.80E-13 4.03E- 5.80E-13 4.03E- 5.80E-13 4.03E- 5.80E-13 4.03E- 5.80E-13 4.03E- 5.80E-12 1.53E- 2.04E-12 2.09E- 2.56E-12 3.14E- 3.05E-12 3.14E- 3.05E-12 3.14E- 3.05E-12 3.14E- 3.05E-12 3.14E- 3.05E-12 4.95E- 2.04E-12 4.95E- 2.04E-12 4.95E- 2.04E-12 4.95E- 3.05E-12 3.14E- 3.05E-12 3.14E- 3.05E	Total soft tissue
1.0E-3	5.64E-10	5.55E-10	5.66E-10
1.5E-3	2.84E-10	2.83E-10	2.84E-10
2.0E-3	1.68E-10	1.69E-10	1.68E-10
3.0E-3	8.34E-11	1.05E-10	7.98E-11
4.0E-3	4.87E-11	6.24E-11	4.63E-11
5.0E-3	3.78E-11	8.61E-11	2.98E-11
6.0E-3	2.66E-11	6.32E-11	2.05E-11
8.0E-3	1.52E-11	3.82E-11	1.14E-11
1.OE-2	9.71E-12	2.55E-11	7.09E-12
1.5E-2	4.24E-12	1.18E-11	2 .98 E-12
2.0E-2	2.33E-12	6.75E-12	1.60E-12
3.0E-2	1.02E-12	3.01E-12	6.87E-13
4.0E-2	5.98E-13	1.71E-12	4.15E-13
5.0E-2	4.35E-13	1.13E-12	3.21E-13
6.0E-2	3.73E-13	8.43E-13	2.95E-13
8.0E-2	3.67E-13	6.17E-13	3.26E-13
1.0E-1	4.28E-13	5.80E-13	4.03E-13
1.5E-1	6.68E-13	7.19E-13	6.60E-13
2.0E-1	9.4/E-13	9.59E-13	9.45E-13
3.0E-1	1.525-12	1.50E-12	1.53E-12
4.0E-1	2.08E-12	2.04E-12	2.09E-12
5.05-1	2.625-12	2.56E-12	2.63E-12
0.UE-1	3.13E-12 4 07E 10	3.05E-12	3.14E-12
8.0E-1	4.0/E-12 4.02E 10	3.9/E-12	4.09E-12
1.0E+0	4.935-12 6 798 10	4.80E-12	4.95E-12
1. JE+U	0./0E-12 9 20E 12	0.60E-12	6.81E-12
2.05+0	0.JUE-12	8.10E-12	8.33E-12
3.0E+0	1.096-11	1.0/E-II	1.106-11
4.0E+0	1.548-11	1.316-11	1.33E-11
5.05+0 6 0F+0	1.75P11	1.748-11 1.778-11	1.758-11
8.08+0	1.755-11 2.168-11	1.//E=11 2 21E=11	1./JE-11 9 158_11
1.0E+1	2.104-11 2.57R_11	2,210-11 9 676-11	2.176-11 9.558_11
1.5841	2. 57 4-11 3. 67 F-11	2.0/6-11	2.JJG-11 2.59F_11
2. 0E+1	4.71E-11	5.12E-11	5. 562-11 4. 65E-11
~	40117-11	J. 120-11	4.070-11

Table 16. Kerma factors for photons in various total-body components of Reference Man^a

^aBased on photon cross-section data from Hubbell (Refs. 48-50) and on mass fractions from Table 10 of this report.

Photon		Kerma factor (Gy photon ^{-1} cm ²)							
(MeV)	Total bone	Cortical bone	Trabecular bone	Red marrow	Yellow marrow				
1.0E-3	5.97E-10	5.95E-10	5.98E-10	4.95E-10	4.05E-10				
1.5E-3	3.09E-10	3.08E-10	3.10E-10	2.44E-10	1 .9 4E-10				
2.0E-3	1.87E-10	1.86E-10	1.87E-10	1.44E-10	1.14E-10				
3.0E-3	1.38E-10	1.38E-10	1.36E-10	6.79E-11	5.25E-11				
4.0E-3	8.35E-11	8.35E-11	8.20E-11	3.93E-11	2.97E-11				
5.0E-3	1.47E-10	1.48E-10	1.42E-10	2.52E-11	1.88E-11				
6.0E-3	1.09E - 10	1.10E-10	1.05E-10	1.73E-11	1.29E-11				
8.0E-3	6.68E-11	6.71E-11	6.45E-11	9.68E-12	7.04E-12				
1.0E-2	4.51E-11	4.53E-11	4.35E-11	6.04E-12	4.35E-12				
1.5E-2	2.12E-11	2.13E-11	2.04E-11	2.54E-12	1.80E-12				
2.0E-2	1.22E-11	1.23E-11	1.17E-11	1.37E-12	9.64E-13				
3.0E-2	5.44E-12	5.47E-12	5.24E-12	5.95E-13	4.26E-13				
4.OE-2	3.06E-12	3.08E-12	2.95E-12	3.68E-13	2.78E-13				
5.0E-2	1 .98 E-12	1.99E-12	1.91E-12	2.93E-13	2.38E-13				
6.0E-2	1.42E-12	1.42E-12	1.37E-12	2.77E-13	2.41E-13				
8.0E-2	9.22E-13	9.25E-13	8.97E-13	3.17E-13	3.00E-13				
1.0E-1	7.64E-13	7.66E-13	7.50E-13	3.97E-13	3.88E-13				
1.5E-1	7.79E-13	7.79E-13	7.75E-13	6.58E-13	6.59E-13				
2.0E-1	9.73E-13	9.72E-13	9.73E-13	9.45E-13	9.51E-13				
3.0E-1	1.47E-12	1.47E-12	1.47E-12	1.53E-12	1.54E-12				
4.0E-1	1.98E-12	1.98E-12	1.99E-12	2.09E-12	2.11E-12				
5.0E-1	2.48E-12	2.48E-12	2.49E-12	2.63E-12	2.65E-12				
6.0E-1	2.95E-12	2.95E-12	2.97E-12	3.14E-12	3.17E-12				
8.0E-1	3.84E-12	3.83E-12	3.85E-12	4.09E-12	4.13E-12				
1.OE+0	4.64E-12	4.63E-12	4.66E-12	4.95E-12	5.00E-12				
1.5E+0	6.38E-12	6.37E-12	6.41E-12	6.81E-12	6.88E-12				
2.0E+0	7.85E-12	7.84E-12	7.88E-12	8.33E-12	8.40E-12				
3.0E+0	1.05E-11	1.05E-11	1.05E-11	1.09E-11	1.10E-11				
4.0E+0	1.30E-11	1.30E-11	1.30E-11	1.32E-11	1.33E-11				
5.0E+0	1.54E-11	1.54E-11	1.55E-11	1.54E-11	1.54E-11				
6.0E+0	1.79E-11	1.79E-11	1.79E-11	1.74E-11	1.74E-11				
8.0E+0	2.29E-11	2.29E-11	2.29E-11	2.13E-11	2.12E-11				
1.0E+1	2.81E-11	2.81 E-11	2.80E-11	2.52E-11	2.49E-11				
1.5E+1	4.19E-11	4.19E-11	4.17E-11	3.51E-11	3.43E-11				
2.0E+1	5.68E-11	5.68E-11	5.64E-11	4.54E-11	4.40E-11				

Table 17. Kerma factors for photons in various skeletal components of Reference Man

^aBased on photon cross-section data from Hubbell (Refs. 48-50) and on mass fractions from Table 11 of this report.

Photon		Kerma factor (Gy photon ⁻¹ cm ²)							
(MeV)	Skin	Muscle	Brain	Lungs	Intestine				
1.0E-3	5.66E-10	6.11E-10	6.03E-10	6.14E-10	6.09E-10				
1.5E-3	2.84E-10	3.09E-10	3.05E-10	3.11E-10	3.08E-10				
2.0E-3	1.68E-10	1.83E-10	1.81E - 10	1.85E-10	1.83E-10				
3.0E-3	7.99E-11	8.71E-11	8,74E-11	8.83E-11	8.60E-11				
4.0E-3	4.58E-11	5.10E-11	5.13E-11	5.12E-11	4.95E-11				
5.0E-3	2.94E-11	3.27E-11	3.30E - 11	3.29E-11	3.17E-11				
6.0E-3	2.02E-11	2.26E - 11	2.28E-11	2.27E-11	2.18E-11				
8.0E-3	1.12E-11	1.25E-11	1.27E-11	1.27E-11	1.21E-11				
1.0E-2	6.94E-12	7.82E-12	7.92E-12	7 .9 2E-12	7.50E~12				
1.55-2	2.91E-12	3.29E-12	3.34E-12	3.34E - 12	3.14E-12				
2.0E-2	1.56E-12	1.76E-12	1.80E-12	1.79E-12	1.68E-12				
3.0E-2	6.69E-13	7.55E-13	7.70E-13	7.69E-13	7.19E~13				
4.05-2	4.04E-13	4.51E - 13	4.59E-13	4.58E-13	4.31E-13				
5.0E-2	3.14E-13	3.42E - 13	3.48E-13	3.47E-13	3.30E-13				
6.0E-2	2.90E-13	3.09E-13	3.13E-13	3.12E-13	3.01E-13				
8.0E-2	3.22E-13	3.33E-13	3.36E-13	3.35E-13	3.29E-13				
1.0E-1	4.00E-13	4.07E-13	4.09E-13	4.08E-13	4.05E-13				
1.5E-1	6.56E-13	6.60E-13	6.63E-13	6.61E-13	6.61E-13				
2.0E-1	9.40E-13	9.44E-13	9.47E-13	9.44E-13	9.45E-13				
3.0E-1	1.52E-12	1.52E - 12	1.53E-12	1.52E-12	1.53E-12				
4.0E-1	2.08E-12	2.09E-12	2.09E-12	2.09E-12	2.09E-12				
5.0E-1	2.62E-12	2.63E-12	2.63E-12	2.62E-12	2.63E-12				
6.0E-1	3.12E-12	3.13E-12	3.14E-12	3.13E-12	3.14E-12				
8.0E-1	4.07E-12	4.08E-12	4.09E-12	4.08E-12	4.0 9 E-12				
1.0E+0	4.92E-12	4 .9 4E-12	4.95E-12	4.94E-12	4 .95 E-12				
1.5E+0	6.77E-12	6.79E-12	6.81E-12	6.79E-12	6.81E-12				
2.0E+0	8.29E-12	8.31E-12	8.34E-12	8.31E-12	8.33E-12				
3.0E+0	1.09E-11	1.09E-11	1 .10E-11	1.09E-11	1.10E-11				
4.0E+0	1.32E-11	1.33E-11	1.33E-11	1.33E-11	1.33E-11				
5.0E+0	1.54E-11	1.55E-11	1.55E-11	1.55E-11	1.55E-11				
6.0E+0	1.74E-11	1.76E-11	1.76E-11	1.76E-11	1.76E-11				
8.0E+0	2.14E-11	2.16E-1 1	2.17E-11	2.16E-11	2.16E-11				
1.0E+1	2.54E-11	2.57E-11	2.58E-11	2.57E-11	2.57E-11				
1.5E+1	3.57E-11	3.62E-11	3.62E-11	3.62 E-11	3.61E-11				
2.0E+1	4.63E-11	4.71E-11	4.71E-11	4.72E-11	4.70E-11				

Table 18. Kerma factors for photons in various soft-tissue components of Reference Man^a

^aBased on photon cross-section data from Hubbell (Refs. 48-50) and on mass fractions from Table 12 of this report.

Photon	Kerma factor (Gy photon $^{-1}$ cm ²)							
(MeV)	ICRP- revised	ICRP- 1975	Kim- 1974	Tipton- 1969	ICRU- 1964	Woodard- 1962		
1.0E-3	5.95E-10	5.91E-10	5.86E-10	5.83E-10	5.44E-10	5.94E-10		
1.5E-3	3.08E-10	3.03E-10	3.07E-10	3.03E-10	2.75E-10	3.05E-10		
2.0E-3	1.86E-10	1.82E-10	1.86E-10	1.82E-10	1.65E-10	1.83E-10		
3.0E-3	1.38E-10	1.38E-10	1.51E-10	1.35E-10	1.11E-10	1.36E-10		
4.0E-3	8.35E-11	8.28E-11	9.22E-11	8.07E-11	6.57E-11	8.15E-11		
5.0E-3	1.48E-10	1.35E-10	1.66E-10	1.33E-10	9.83E-11	1.37E-10		
6.0E-3	1.10E-10	1.00E-10	1.24E-10	9.81E-11	7.24E-11	1.02E-10		
8.0E-3	6.71E-11	6.13E-11	7.60E-11	5.99E-11	4.40E-11	6.22E-11		
1.0E-2	4.53E-11	4.13E-11	5.14E-11	4.04E-11	2.95E-11	4.19E-11		
1.5E-2	2.13E-11	1.94E-11	2.42E-11	1.89E-11	1.38E-11	1.97E-11		
2.OE-2	1.23E-11	1.11E-11	1.39E-11	1.09E-11	7.87E-12	1.13E-11		
3.OE-2	5.47E-12	4.95E-12	6.22E-12	4.84E-12	3.51E-12	5.04E-12		
4.0E-2	3.08E-12	2.79E-12	3.49E-12	2.72E-12	1.98E-12	2.83E-12		
5.0E-2	1.99E-12	1.80E-12	2.25E-12	1.77E-12	1.30E-12	1.83E-12		
6.0E-2	1.42E-12	1.30E-12	1.60E-12	1.27E-12	9.60E-13	1.32E-12		
8.0E-2	9.25E-13	8.58E-13	1.03E-12	8.45E-13	6.80E-13	8.69E-13		
1.0E-1	7.66E-13	7.24E-13	8.33E-13	7.17E-13	6.17E-13	7.30E-13		
1.5E-1	7.79E-13	7.63E-13	8.15E-13	7.61E-13	7.30E-13	7.63E-13		
2.0E-1	9.72E-13	9.64E-13	1.00E-12	9.65E-13	9.61E-13	9.62E-13		
3.0E-1	1.47E-12	1.46E-12	1.50E-12	1.47E-12	1.49E-12	1.46E-12		
4.0E-1	1.98E-12	1.98E-12	2.02E-12	1.98E-12	2.02E-12	1.97E-12		
5.0E-1	2.48E-12	2.48E-12	2.52E-12	2.49E-12	2.54E-12	2.47E-12		
6.0E-1	2.95E-12	2.95E-12	3.00E-12	2.96E-12	3.03E-12	2.94E-12		
8.0E-1	3.83E-12	3.84E-12	3.90E-12	3.85E-12	3.93E-12	3.82E-12		
1.0E+0	4.63E-12	4.64E-12	4.72E-12	4.65E-12	4.76E-12	4.62E-12		
1.5E+O	6.37E-12	6.38E-12	6.48E-12	6.40E-12	6.55E-12	6.36E-12		
2.0E+0	7 .8 4E-12	7.85E-12	7.98E-12	7.87E-12	8.03E-12	7.82E-12		
3.0E+0	1.05E-11	1.05E-11	1.07E-11	1.05E-11	1.07E-11	1.04E-11		
4.0E+0	1.30E-11	1.29E-11	1.33E-11	1.30E-11	1.31E-11	1.29E-11		
5.0E+0	1.54E-11	1.54E-11	1.58E-11	1.54E-11	1.54E-11	1.53E-11		
6.0E+0	1.79E-11	1.78E-11	1.83E-11	l.79E-11	1.77E-11	1.77E-11		
8.0E+0	2.29E-11	2.27E-11	2.35E-11	2.27E-11	2.22E-11	2.27E-11		
1.0E+1	2.81E-11	2.78E-11	2.90E-11	2.77E-11	2.69E-11	2.78E-11		
1.5E+1	4.19E-11	4.12E-11	4.33E-11	4.11E-11	3.91E-11	4.13E-11		
2.0E+1	5.68E-11	5.57E-11	5.89E-11	5.54E-11	5.21E-11	5 .58 E-11		

Table 19. Comparison of kerma factors for photons in compact bone^a

^aBased on photon cross-section data from Hubbell (Refs. 48-50) and on mass fractions as calculated by using the RMCOMP/BAS computer program in the case of the ICRP-revised and ICRP-1975 formulations and mass fractions from Table 13 of this report in the case of the other formulations for compact bone.

Photon energy	Kerma fac	tor (Gy phot	$on^{-1} cm^2$)
(MeV)	ICRP-	ICRP-	Aspden-
	revised	1975	1972
1.0E-3	4.95E-10	4.94E-10	4.75E-10
1.5E-3	2.44E-10	2.43E-10	2.37E-10
2.0E-3	1.44E - 10	1.43E-10	1.37E-10
3.0E-3	6.79E-11	6.55E-11	6.40E-11
4.0E-3	3.93E-11	3.69E-11	3.70E-11
5.08-3	2.52E-11	2.34E-11	2.36E-11
6.UE-3	1.73E-11	1.60E-11	1.62E-11
5.0E-3	9.688-12	8.//E-12	8.95E-12
1.0E-2	0.04E-12	5.41E - 12	5.56E-12
1.56-2	2.346-12	2+248-12 1 20F-12	2.336-12
2.02-2	1.J/E-12 5 05F-13	1.206-12 5 17F-12	1.276-12
4.0E-2	$3.68\pi - 13$	3.24E - 13	3 308-13
5.0E-2	2.93E-13	2.65E - 13	2 75F-13
6.0E-2	2.77E - 13	2.58 E - 13	2.75E-13 2.64F-13
8.0E-2	3.17E - 13	3.07E - 13	3.09E-13
1.0E-1	3.97E-13	3.91E - 13	3.92E - 13
1.5E-1	6.58E-13	6.56E-13	6.54E-13
2.0E-1	9.45E-13	9.44E - 13	9.41E-13
3.0E-1	1.53E-12	1.53E-12	1.52E - 12
4.0E-1	2.09E-12	2.09E-12	2.08E-12
5.0E-1	2.63E-12	2.63E-12	2.62E-12
6.0E-1	3.14E-12	3.14E-12	3.13E-12
8.0E-1	4.09E-12	4.09E-12	4.08E-12
1.0E+0	4.95E-12	4.96E-12	4.94E-12
1.5E+0	6.81E-12	6.82E-12	6.79E-12
2.0E+0	8.33E-12	8.33E-12	8.30E-12
3.0E+0	1.09E-11	1.09E-11	1.09E-11
4.0E+0	1.32E-11	1.32E-11	1.32E-11
5.0E+0	1.54E-11	1.54E-11	1.53E-11
6.0E+0	1.74E-11	1.74E-11	1.73E-11
8.0E+0	2.13E-11	2.13E-11	2.12E-11
1.0E+1	2.52E-11	2.52E-11	2.51E-11
1.5E+1	3.51E-11	3.50E-11	3.48E-11
2.0E+1	4.54E-11	4.52E-11	4.49E-11

Table 20. Comparison of kerma factors for photons in red bone marrow

^aBased on photon cross-section data from Hubbell (Refs. 48-50) and on mass fractions as calculated by using the RMCOMP/BAS computer program in the case of the ICRP-revised or ICRP-1975 formulations and from Table 14 in the case of Aspden's formulation for red marrow.

Photon	Ker	ma factor (G	y photon ⁻¹	cm ²)
(MeV)	ICRP- 1975	Kim- 1974	Tipton- 1969	ICRU- 1 96 4
1.0E-3	6.11E-10	6.14E-10	6.13E-10	6.04E-10
1.5E-3	3.09E-10	3.11E-10	3.10E-10	3.05E-10
2.OE-3	1.83E-10	1.84E-10	1.84E-10	1.81E-10
3.0E-3	8.71E-11	8.81E-11	8.73E-11	8.71E-11
4.OE-3	5.10E-11	5.16E-11	5.11E-11	5.10E-11
5.0E-3	3.27E-11	3.31E-11	3.28E-11	3.28E-11
6.0E-3	2.26E-11	2.29E-11	2.26E-11	2.27E-11
8.0E-3	1.25E-11	1.27E-11	1.26E-11	1.26E-11
1.OE-2	7 .8 2E-12	7.92E-12	7.83E-12	7.85E-12
1.5E-2	3.29E-12	3.33E-12	3.29E-12	3.30E-12
2.OE-2	1.76 E-12	1.79E-12	1.77E-12	1.78E-12
3.OE-2	7 .55 E-13	7.65E-13	7.55E-13	7.61E-13
4.OE-2	4.51E-13	4.56E-13	4.50E-13	4.54E-13
5.0E-2	3.42E-13	3.45E-13	3.42E-13	3.44E-13
6.0E-2	3.09E-13	3.11E-13	3.09E-13	3.11E-13
8.0E-2	3.33E-13	3.34E-13	3.32E-13	3.33E-13
1.0E-1	4.07E-13	4.07E-13	4.06E-13	4.07E-13
1.5E-1	6.60E-13	6.61E-13	6.59E-13	6.60E-13
2.0E-1	9.44E-13	9.44E-13	9.42E-13	9.44E-13
3.0E-1	1.52E-12	1.52E-12	1.52E-12	1.52E-12
4.0E-1	2.09E-12	2.09E-12	2.08E-12	2.09E-12
5.0E-1	2.63E-12	2.63E-12	2.62E-12	2.62E-12
6.0E-1	3.13E-12	3.13E-12	3.13E-12	3.13E-12
8.0E-1	4.08E-12	4.08E-12	4.07E-12	4.08E-12
1.0E+0	4 .9 4E-12	4.94E-12	4.93E-12	4.94E-12
1.5E+0	6.79E-12	6.80E-12	6.78E-12	6.79E-12
2.0E+0	8.31E-12	8.32E-12	8.30E-12	8.31E-12
3.0E+0	1.09E-11	1.09E-11	1.09E-11	1.09E-11
4.0E+0	1.33E-11	1.33E-11	1.33E-11	1.33E-11
5.0E+0	1.55E-11	1.55E-11	1.54E-11	1.54E-11
6.0E+0	1.76E-11	1.76E-11	1.75E-11	1.76E-11
8.0E+0	2.16E-11	2.17E-11	2.16E-11	2.16E-11
1.0E+1	2.57E-11	2.57E-11	2.57E-11	2.57E-11
1.5E+1	3.62E-11	3.62E-11	3.62E-11	3.61E-11
2.0E+1	4.71E-11	4.72E-11	4.71E-11	4.71E-11

Table 21. Comparison of kerma factors for photons in muscle tissue

^aBased on photon cross-section data from Hubbell (Refs. 48-50) and on mass fractions as calculated by using the RMCOMP/BAS computer program in the case of the ICRP-1975 formulation and from Table 15 in the case of the other formulations for muscle tissue.

		Kerma :	factor (G	y photon ⁻¹ cm	n ²)	
Photon energy (MeV)	IC	RP-revised	·····]	ICRU-1964	
	Trabecu lar bone	Red marrow	Ratio	Compact bone	Muscle tissue	Ratio
1.0E-3	5.98E-10	4.95E-10	1.21	5.44E-10	6.04E-10	0.90
1.5E-3	3.10E-10	2.44E-10	1.27	2.75E-10	3.05E-10	0.90
2.OE-3	1.87E-10	1.44E-10	1.30	1.65E-10	1.81E-10	0.91
3.0E-3	1.36E-10	6.79E-11	2.00	1.11E-10	8.71E-1 1	1.27
4.0E-3	8.20E-11	3.93E-11	2.09	6.57E-11	5.10E-11	1.29
5.0E-3	1.42E-10	2.52E-11	5.63	9.83E-11	3.28E-11	3.00
6.0E-3	1.05E - 10	1.73E-11	6.07	7.24E-11	2.27E-11	3.19
8.0E-3	6.45E-11	9.68E-12	6.66	4.40E-11	1.26E-11	3.49
1.0E-2	4.56E-11	6.04E-12	7.55	2.95E-11	7.85E-12	3.76
1.5E-2	2.04E-11	2.54E-12	8.03	1.38E-11	3.30E-12	4.18
2.OE-2	1.17E - 11	1.37E-12	8.54	7.87E-12	1.78E-12	4.42
3.0E-2	5.24E-12	5.95E-13	8.81	3.51E-12	7.61E-13	4.61
4.0E-2	2.95E-12	3.68E-13	8.02	1.98E-12	4.54E-13	4.36
5.0E-2	1.91E-12	2.93E-13	6.51	1.30E-12	3.44E-13	3.78
6.0E-2	1.37E-12	2.77E-13	4.95	9.60E-13	3.11E-13	3.09
8.0E-2	8.97E-13	3.17E-13	2.83	6.80E-13	3.33E-13	2.04
1.0E-1	7.50E-13	3.97E-13	1.89	6.17E-13	4.07E-13	1.52
1.5E-1	7.75E-13	6.58E-13	1.18	7.30E-13	6.60E-13	1.11
2.0E-1	9.73E-13	9.45E-13	1.03	9.61E-13	9.44E-13	1.02
3.0E-1	1.47E-12	1.53E-12	0.96	1.49E-12	1.52E-12	0 . 9 8
4.0E-1	1.99E-12	2.09E-12	0.95	2.02E-12	2.09E-12	0 . 9 7
5.0E-1	2.49E-12	2.63E-12	0.95	2.54E-12	2.62E-12	0 . 9 7
6.0E-1	2.97E-12	3.14E-12	0.95	3.03E-12	3.13E-12	0 . 9 7
8.0E-1	3.85E-12	4.09E-12	0 .9 4	3.93E-12	4.08E-12	0.96
1.0E+0	4.66E-12	4.95 E-12	0.94	4.76E-12	4.94 E-12	0 .96
1.5E+0	6.41E-12	6.81E-12	0.94	6. 55E-12	6.79E-12	0 . 9 7
2.0E+0	7.88E-12	8.33E-12	0.95	8.03E-12	8.31E-12	0 .9 7
3.0E+0	1.05E-11	1.09E-11	0.96	1.07E-11	1.09E-11	0 . 98
4.0E+0	1.30E-11	1.32E-11	0.99	1.31E-11	1.33E-11	0 . 99
5.0E+0	1.55E-11	1.54E-11	1.01	1.54E-11	1.54E-11	1.00
6.0E+0	1.79E-11	1.74E-11	1.03	1.77E-11	1.75E-11	1.01
8.0E+0	2.29E-11	2.13E-11	1.08	2.22E-11	2.16E-11	1.03
1.0E+1	2.80E-11	2.52E-11	1.11	2.69E-11	2.57E-11	1.05
1.5E+1	4.17E-11	3.51E-11	1.19	3.91E-11	3.61E-11	1.08
2.0E+1	5.64E-11	4.54E-11	1.24	5.21E-11	4.71E-11	1.11

Table 22. Comparison of kerma factors for photons in bone and softtissue compositions developed for use in red-bone-marrow dosimetry^a

^aSee discussion in text and data in Tables 17, 19, and 21 of this report.

Neutron	Energy	Kerma fac	tor (Gy neu	$tron^{-1} cm^2$)
(Mev)	(MeV)	Total body	Skeleton	Total soft tissue
2.53E-8		1.97E-13	2.45E-13	1.89E-13
3.60E-8	2.00E-8	1.67E-13	2.10E-13	1.60E-13
6.30E-8	3.40E-8	1.26E-13	1.58E-13	1.21E-13
1.10E-7	6.00E-8	9.56E-14	1.20E-13	9.15E-14
2.00E-7	1.20E-7	7.11E-14	8.95E-14	6.80E-14
3.60E-7	2.00E-7	5.30E-14	6.67E-14	5.06E-14
6.30E~7	3.40E-7	4.02E-14	5.10E-14	3.84E-14
1.10E-6	6.00E-7	3.04E-14	3 .88 E-14	2.90E-14
2.00E-6	1.20E-6	2.28E-14	2.93E-14	2.18E-14
3.60E-6	2.00E-6	1.73E-14	2.23E-14	1.64E-14
6.30E-6	3.40E-6	1.34E-14	1.74E-14	1.28E-14
1.10E-5	6.00E-6	1.08E-14	1.39E-14	1.03E-14
2.00E-5	1.20E-5	9.32E-15	1.16E-14	8.9 5E-15
3.60E-5	2.00E-5	9.14E-15	1.05E-14	8.9 1E-15
6.30E-5	3.40E-5	1.06E-14	1.09E - 14	1.05E-14
1.10E-4	6.00E-5	1.43E-14	1 . 32E-14	1.45E-14
2.00E-4	1.20E-4	2.27E-14	1.89E-14	2.33E-14
3.60E-4	2.00E-4	3.86E-14	3.03E-14	3 .99 E-14
6.30E-4	3.40E-4	6.52E-14	4.94E-14	6.78E-14
1.10E-3	6.00E - 4	1.12E-13	8.35E-14	1.17E-13
2.00E-3	1.20E - 3	2.01E - 13	1.48E-13	2.10E-13
3.60E-3	2.00E-3	3 .58E- 13	2.64E-13	3.74E-13
6.30E-3	3.40E-3	6.15E-13	4.51E-13	6.43E-13
1.10E-2	6.00E-3	1.04E - 12	7.60E-13	1.09E-12
2.00E-2	1.20E-2	1.81E-12	1.32E-12	1.89E-12
3.608-2	2.00E-2	2.99E-12	2.19E-12	3.12E - 12
6.30E-2	3.40E-2	4.64E-12	3.40E-12	4.85E-12
8.20E-2	4.00E-3	5.61E-12	4.11E-12	5.86E-12
8.60E-2	4.00E-3	5.80E-12	4.26E-12	6.06E-12
9.00E-2	4.00E-3	5.996-12	4.39E-12	6.25E-12
9.406-2	4.006-3	6.1/E-12	4.52E-12	6.44E-12
9.00E-2	4.00E-3	6.34E-12	4.658-12	6.62E-12
	1.005-2	5.04E-12	4.8/E-12	6.93E-12
1.156-1	1.005-2	7.056-12	5.1/6-12	7.36E-12
1 250-1	1.006-2	7.445-12	2.405-12 5.7/m 10	/.//E-12
1.556-1	1 005-2	/•016-12 9 176-10	J. /45-12	8.15E-12
1 558-1	1.00E-2 1.00E-2	0.1/E-12 9 518-10	0.005-12 6 057 10	0.53E-12
	1.005-2	0.000 10	0.235-12	0.00E-12
1.076-1	1.006-2	0.026-12	0.486-12	9. 21E-12

Table 23. Kerma factors for neutrons in various total-body components of Reference Man⁴

Kerma factor (Gy neutron $^{-1}$ cm²) Neutron Energy energy interval (MeV) (MeV) Total Total soft Skeleton body tissue 1.75E-1 1.00E-2 9.14E-12 6.73E-12 9.55E-12 1.85E-1 1.00E-2 9.43E-12 6.93E-12 9.85E-12 1.95E-1 1.00E-2 9.72E-12 1.02E-11 7.14E-12 2.00E-2 2.10E-1 1.01E - 117.46E-12 1.06E-11 2.30E-1 2.00E-2 1.07E-11 7.86E-12 1.12E-11 2.50E-1 2.00E-2 1.12E - 118.22E-12 1.16E-11 2.70E-1 2.00E-2 1.17E-11 8.63E-12 1.22E-11 2.90E-1 2.00E-2 1.22E-11 8.97E-12 1.27E-11 3.10E-1 2.00E-2 1.27E-11 9.31E-12 1.32E-11 3.30E-1 2.00E-2 1.30E-11 9.62E-12 1.36E-11 3.50E-1 2.00E-2 1.36E-11 9.99E-12 1.41E-11 3.70E-1 2.00E-2 1.40E-11 1.03E-11 1.46E-11 3.90E-1 2.00E-2 1.46E-11 1.08E-11 1.53E-11 4.20E-1 4.00E-2 1.58E-11 1.17E-11 1.65E-11 4.60E-1 4.00E-2 1.61E-11 1.19E-11 1.68E-11 5.00E-1 4.00E-2 1.59E-11 1.17E-11 1.66E-11 5.40E-1 4.00E-2 1.64E-11 1.21E-11 1.71E-11 5.80E-1 4.00E-2 1.70E-11 1.25E-11 1.77E-11 6.20E-1 4.00E-2 1.76E-11 1.30E-11 1.83E-11 6.60E-1 4.00E-2 1.82E-11 1.34E-11 1.90E-11 7.00E-1 4.00E-2 1.87E-11 1.38E-11 1.95E-11 7.40E-1 4.00E-2 1.92E-11 1.42E-11 2.00E-11 7.80E-1 4.00E-2 1.98E-11 1.46E-11 2.06E-11 8.20E-1 4.00E-2 2.02E-11 1.49E-11 2.11E-11 8.60E-1 4.00E-2 2.08E-11 1.53E-11 2.17E-11 9.00E-1 4.00E-2 2.14E-11 1.58E-11 2.23E-11 9.40E-1 4.00E-2 2.23E-11 1.65E-11 2.33E-11 9.80E-1 4.00E-2 2.39E-11 1.77E-11 2.49E-11 1.05E+0 1.00E-1 2.43E-11 1.80E-11 2.54E-11 1.15E+0 1.00E-1 2.42E-11 1.79E-11 2.53E-11 1.25E+0 1.00E-1 2.53E-11 1.87E-11 2.63E-11 1.35E+0 1.00E-1 1.93E-11 2.61E-11 2.72E-11 1.45E+0 1.00E-1 2.66E-11 1.97E-11 2.78E-11 1.55E+0 1.00E-1 2.73E-11 2.02E-11 2.85E-11 1.00E-1 1.65E+0 2.84E-11 2.10E-11 2.96E-11 1.75E+0 1.00E-1 2.88E-11 2.13E-11 3.00E-11 1.85E+0 1.00E-1 2.99E-11 2.22E-11 3.12E-11 3.02E-11 1.95E+0 1.00E-1 2.23E-11 3.15E-11 2.10E+0 2.00E-1 3.12E-11 2.32E-11 3.25E-11

Table 23 (cont'd.)

Table 23 (cont'd.)

Neutron Energy		Kerma fac	Kerma factor (Gy neutron $^{-1}$ cm ²)			
(MeV)	(MeV)	Total body	Skeleton	Total soft tissue		
2.30E+0	2.00E-1	3.17E-11	2.35E-11	3.30E-11		
2.50E+0	2.00E-1	3.30E-11	2.46E-11	3.43E-11		
2.70E+0	2.00E-1	3.45E-11	2.58E-11	3.59E-11		
2.906+0	2.00E-1	3.60E-11	2.73E-11	3.75E-11		
3.10E+0	2.00E-1	3.71E-11	2.80E-11	3.86E-11		
3.30E+0	2.00E-1	4.04E-11	3.08E-11	4.20E-11		
3.50E+0	2.00E-1	4.14E - 11	3.17E-11	4.30E-11		
3./UE+0	2.00E-1	4.23E-11	3.24E-11	4.39E-11		
3.90E+0	2.00E-1	4.17E-11	3.20E-11	4.33E-11		
4.20E+0	4.00E-1	4.2/E-11	3.27E-11	4.44E-11		
4.60E+0	4.00E-1	4.2/E-11	3.26E-11	4.44E-11		
5.00E+0	4.00E-1	4.48E-11	3.42E-11	4.66E-11		
5.405+0	4.00E-1	4.40E-11	3.36E-11	4.58E-11		
5.80E+0	4.00E-1	4.595-11	3.51E-11	4.//E-11		
6.20E+0	4.00E-1	4./3E-11	3.63E-11	4.916-11		
0.00E+0	4.00E-1	4.80E-11	3.6/E-11	4.996-11		
7.000+0	4.00E-1	4.99E-11 5.07E 11	3.81E-11	5.186-11		
7.405+0	4.00E-1	5.2/E-11	4.06E-11	5.4/8-11		
7.00ETU	4.00E-1	5.20E-11	4.10E-11	5.4/8-11		
0.20E+0	4.00E-1	5.205-11	4.02E-11	5.40E-11		
0.00E+0	4.00E-1	5.32E-11	4.11E-11	5.526-11		
9.00610	4.00E-1	5.56 T	4.25E-11	5.668-11		
9.405+0	4.00E-1	5.0E	4.346-11	5.748-11		
9.00570	4.00E-1	5.52E-11	4.39E-11	5.83E-11		
1.158+1		J./46-11 6 128 11	4.496-11	5.958-11		
1.15671		0.13E-11 6 16E 11	4.81E-11	6.35E-11		
1.25671	1.000+0	0.104-11 6 20E 11	4.896-11	6.38E-11		
1.35671		0.394-11 6 658 11	5.086-11	6.618-11		
1.43671		0.076-11 6 95F-11	5.51E-11	5.8/E-11		
1.555+1		0.034-11 6 07E 11	5.0E-11	7.082-11		
1.03671 1.75811	1.000+0	0.9/6-11 7 06E-11	J. 025-11	7.20E-11		
1 95F1	1.005+0 1.005±0	/•V06-11 7 168-11	J.008-11 5 70p 11	7.205-11		
1.05571 1.05571	1.005+0 1.005+0	7.105~11 7.992_11	J./05-11 5 00p 11	7.595-11		
1.73671		/.206-11	2.006-11	1.525-11		

^aBased on mass fractions from Table 10 of this report and on kerma factors for neutrons from Caswell, Coyne, and Randolph (Ref. 29). Also see their calculations for ICRP-1975 Reference Man.

Neutron		Kerma factor (Gy neutron $^{-1}$ cm 2)					
(MeV)	Total bone	Cortical bone	Trabecular bone	Red marrow	Yellow marrow		
2.53E~8	3.12E-13	3.27E-1 3	2.99E-13	2.49E-13	5.61E-14		
3.60E-8	2.68E-13	2.80E-13	2.57E-13	2.11E-13	4.75E-14		
6.30E-8	2.02E-13	2.12E-13	1.94E-13	1.60E-13	3.59E-14		
1.10E-7	1.53E-13	1.60E-13	1.46E-13	1.21E-13	2.72E-14		
2.00E-7	1.15E-13	1.20E-13	1.10E-13	8.96E-14	2.02E-14		
3.60E-7	8.55E-14	8.95E-14	8.20E-14	6.68E-14	1.51E-14		
6.30E-7	6.56E-14	6.86E-14	6.29E-14	5.06E-14	1.14E-14		
1.10E-6	5.01E-14	5 .24 E-14	4.80E-14	3.83E-14	8.71E-15		
2.00E-6	3.80E-14	3 .97 E-14	3.64E-14	2.86E-14	6.52E-15		
3.60E-6	2 . 90E-14	3.03E-14	2.78E-14	2.15E-14	5.17E-15		
6.30E~6	2.26E-14	2 .36 E-14	2.17E-14	1.66E-14	4.33E-15		
1.10E-5	1.80E-14	1.87E-14	1.73E-14	1.33E-14	4.01E-15		
2.00E-5	1.45E - 14	1.51E-14	1.41E-14	1 .1 1E-14	4.38E-15		
3.60E-5	1.23E-14	1.27E - 14	1.20E-14	1.06E-14	5.75E-15		
6.30E-5	1.13E - 14	1.16E-14	1.12E-14	1 .18 E-14	8.56E-15		
1.10E-4	1.16E-14	1.17E - 14	1.18E-14	1.56E-14	1.38E-14		
2.00E-4	1.39E-14	1.38E-14	1.46E-14	2.43E-14	2.42E-14		
3.60E-4	1.94E - 14	1 .9 1E-14	2.08E-14	4.10E-14	4.30E-14		
6.30E-4	2.90E-14	2.84E-14	3.18E-14	6.90E-14	7.44E-14		
1.10E-3	4.66E-14	4.53E-14	5.16E-14	1.19E-13	1.29E-13		
2.00E-3	8.04E-14	7.80E-14	8 .96 E-14	2.13E-13	2.33E-13		
3.60E-3	1.41E-13	1.37E-13	1.57E-13	3.79E-13	4.16E-13		
6.30E-3	2.39E-13	2.31E-13	2.67E-13	6.51E-13	7.15E-13		
1.10E-2	4.01E-13	3.89E-13	4.49E-13	1.10E-12	1.21E-12		
2.006-2	6.97E-13	6.75E-13	7.81E-13	1.91E-12	2.10E-12		
3.605-2	1.15E-12	1.12E-12	1.29E-12	3.17E-12	3.48E-12		
6.30E-2	1.79E-12	1.74E-12	2.01E - 12	4 .9 2E-12	5.41E-12		
8.206-2	2,1/E-12	2.11E-12	2.43E-12	5.94E-12	6.54E-12		
8.6UE-2	2.256-12	2.18E-12	2.52E-12	6.15E-12	6.76E-12		
9.00E-2	2,32E-12	2.25E-12	2.60E-12	6.34E-12	6.97E-12		
9.406-2	2.39E-12	2.31E-12	2.67E-12	6.53E-12	7.18E-12		
9.80E-2	2.46E-12	2.38E-12	2.75E-12	6.71E - 12	7.38E-12		
1.UDE-1	2.5/8-12	2.49E-12	2.88E-12	7.03E-12	7.73E-12		
1.156-1	2./35-12	2.65E-12	3.06E-12	7.47E-12	8.21E-12		
1 258-1	2.696-12	2.60E-12	3.23E-12	7.88E-12	8.67E-12		
1.576**1 1.658-1	3.005-12	2.96E-12	3.41E-12	8.27E-12	9.10E-12		
1.476-1	J. 186-12	3.09E-12	3.56E-12	8.65E-12	9.51E-12		
1 658-1	J. JZB-12	3.225-12	3./1E-12	9.01E-12	9.91E-12		
1.010-1	3.44 5≁12	3• 34E-12	3.85E-12	9.35E-12	1.03E-11		

Table 24. Kerma factors for neutrons in various skeletal components of Reference Man^a

Table 24 (cont'd.)

Neutron		Kerma fac	tor (Gy neut	(1 cm^2)	
(MeV)	Total bone	Cortical bone	Trabecular bone	Red marrow	Yellow marrow
1.75E-1	3.59E-12	3.48E-12	4.01E-12	9.68E-12	1.07E-11
1.85E-1	3.69E-12	3.57E-12	4.12E-12	9.99E-12	1.10E-11
1.95E-1	3.80E-12	3.68E-12	4.24E-12	1.03E-11	1.13E-11
2.10E-1	3.98E-12	3.86E-12	4.44E-12	1.07E-11	1.18E-11
2.30E-1	4.19E-12	4.07E-12	4.68E-12	1.13E-11	1.24E-11
2.50E-1	4.43E-12	4.29E-12	4.93E-12	1.18E-11	1.30E-11
2.70E-1	4.63E-12	4.49E-12	5.16E-12	1.24E-11	1.36E-11
2.90E-1	4.82E-12	4.67E-12	5.37E-12	1.29E-11	1.41E-11
3.10E-1	5.00E-12	4.85E-12	5.58E-12	1.34E-11	1.47E-11
3.30E-1	5.21E-12	5.05E-12	5.79E-12	1.38E-11	1.51E-11
3.50E-1	5.42E-12	5.26E-12	6.03E-12	1.43E-11	1.56E-11
3.70E-1	5.64E-12	5.47E-12	6.27E-12	1.47E-11	1.61E-11
3.90E-1	5.93E-12	5.76E-12	6.58E-12	1.53E-11	1.66E-11
4.20E-1	6.64E-12	6.45E-12	7.33E-12	1.64E-11	1.75E-11
4.60E-1	6.63E-12	6.44E-12	7.34E-12	1.68E-11	1.81E-11
5.00E-1	6.28E-12	6.09E-12	6.99E-12	1.68E-11	1.85E-11
5.40E-1	6.45E-12	6.26E-12	7.19E-12	1.75E-11	1.93E-11
5.80E-1	6.71E-12	6.51E-12	7.47E-12	1 .81 E-11	1.99E-11
6.20E-1	6.99E-12	6.79E-12	7.78E-12	1 .87 E-11	2.06E-11
6.60E - 1	7.24E-12	7.03E-12	8.05E-12	1 .93 E-11	2.12E-11
7.00E-1	7.43E-12	7.22E-12	8.27E-12	1 .99 E-11	2.19E-11
7.40E-1	7.62E-12	7.39E-12	8.48E-12	2.04E-11	2.24E-11
7.80E-1	7.86E-12	7.63E-12	8.74E-12	2.10E-11	2.31E-11
8.20E-1	8.05E-12	7.82E-12	8.96E-12	2.15E-11	2.36E-11
8.60E-1	8.31E-12	8.07E-12	9.24 E-12	2.20E-11	2.41E-11
9.00E-1	8.64E-12	8.39E-12	9.59E-12	2.26E-11	2.47E-11
9.40E-1	9.15E-12	8.89E-12	1.01E-11	2.34E-11	2.54E-1 1
9.80E-1	1.01E - 11	9.84E-12	1.12E-11	2.47E-11	2.64E-11
1.05E+0	1.02E - 11	9.90E-12	1.13E-11	2.53E-11	2.71E-11
1.15E+0	9.85E-12	9.57E-12	1.09E-11	2.55E-11	2.79E-11
1.25E+0	1.03E - 11	9 .9 7E-12	1.14E-11	2.66E-11	2.90E-11
1.35E+0	1.07E-11	1.04E-11	1.18E-11	2.75E-11	3.00E-11
1.45E+0	1.07E-11	1.04E-11	1.19E-11	2.82E-11	3.09E-11
1.55E+0	1.10E-11	1.07E-11	1.23E-11	2.89E-11	3.17E-11
1.65E+0	1.15E-11	1.12E-11	1.28E-11	2.99E-11	3.27E-11
1.75E+0	1.17E-11	1.13E-11	1.29E-11	3.05E-11	3.35E-11
1.85E+0	1.22E-11	1.19E-11	1.35E-11	3.16E-11	3.45E-11
1.95E+0	1.22E-11	1.18E-11	1.35E-11	3.20E-11	3.51E-11
2.10E+0	1.26E-11	1.23E-11	1.40E-11	3.32E-11	3.67E-11

Table 24 (cont'd.)

Neutron	Kerma factor (Gy neutron $^{-1}$ cm ²)					
(MeV)	Total bone	Cortical bone	T ra becular bone	Red marrow	Yellow marrow	
2.30E+0	1.27E-11	1.24E-11	1.41E-11	3.39E-11	3.75E-11	
2.50E+0	1.34E-11	1.30E-11	1.48E-11	3.52E-11	3.91E-11	
2.70E+0	1.43E-11	1.39E-11	1.58E-11	3.69E-11	4.09E-11	
2.90E+0	1.52E-11	1.48E-11	1.67E-11	3.89E-11	4.35E-11	
3.10E+0	1.59E-11	1.55E-11	1.75E-11	3.95E-11	4.34E-11	
3.30E+0	1.81E-11	1.77E-11	1.97E-11	4.29E-1 1	4.71E-11	
3.50E+0	1.87E-11	1.83E-11	2.04E-1 1	4.43E-11	4.88E-11	
3.70E+0	1 .93 E-11	1.89E-11	2.10E-1 1	4.50E-11	4.94E-11	
3.90E+0	1.89E-11	1.8 5E-11	2.06E-11	4.46E-11	4.92E-11	
4.20E+0	1,96E-11	1.92E-11	2.14E-11	4.53E-11	4.93E-11	
4.60E+0	1.94E-11	1.90E-11	2.12E-11	4.51E-11	4.92E-11	
5.00E+0	2.07E-11	2.02E-11	2.25E-11	4.69E-11	5.06E-11	
5.40E+0	1.99E-11	1.94 E-11	2.18 E-11	4.65E-11	5.10E-11	
5.80E+0	2.11E-11	2.06 E-11	2.30E-11	4.82E-11	5.24E-11	
6.20E+0	2.19E-11	2.14E-11	2.38E-11	5.00E-11	5.47E-11	
6.60E+0	2.24E-11	2.18E-11	2.44E-11	4.99E-11	5.37E-11	
7.00E+0	2.36E-11	2.31E-11	2.57E-11	5.14E-11	5.47E-11	
7.40E+0	2.55E-11	2.50E-11	2.76E-11	5.45E-11	5.81E-11	
7.80E+0	2.54E-11	2.49 E-11	2.74E-11	5.60E-11	6.14E-11	
8.20E+0	2.50E-11	2.44E-11	2.70E-11	5.45E-11	5.92E-11	
8.60E+0	2.59E-11	2.53E-11	2.80E-11	5.51E-11	5.90E-11	
9.00E+0	2.68E-11	2.62E-11	2.89E-11	5.73E-11	6.22E-11	
9.40E+0	2.73E-11	2.67E-11	2.94E-11	5.88E-11	6.46E-11	
9.80E+0	2.80E-11	2.74E-11	3.01E-11	5.88E-11	6.36E-11	
1.05E+1	2.89E-11	2.83E-11	3.11E-11	5.98E-11	6.42E-11	
1.15E+1	3.18E-11	3.12E-11	3.41E-11	6.33E-11	6.72E-11	
1.25E+1	3.23E-11	3.17E-11	3.45E-11	6.46E-11	6.97E-11	
1.35E+1	3.39E-11	3.34E-11	3.62E-11	6.69E-11	7.18E-11	
1.45E+1	3.57E-11	3.51E-11	3.79E-11	6.98E-11	7.51E-11	
1.55E+1	3.71E-11	3.65E-11	3.93E-11	7.26E-11	7.89E-11	
1.65E+1	3.76E-11	3.71E-11	3.98E-11	7.43E-11	8.12E-11	
1.75E+1	3.81E-11	3.76E-11	4.03E-11	7.52E-11	8.20E-11	
1.85E+1	3.88E-11	3.82E-11	4.10E-11	7.64E-11	8.33E-11	
1.95E+1	3.97E-11	3.91E-11	4.19E-11	7.75E-11	8.44E-11	

^aBased on mass fractions in Table 11 of this report and on kerma factors for neutrons from Caswell, Coyne, and Randolph (Ref. 29).

Neutron	Kerma factor (Gy neutron $^{-1}$ cm ²)					
(MeV)	Skin	Muscle	Brain	Lungs	Intestine	
2.53E-8	3.66E-13	2.21E-13	1.06E-13	2.35E-13	1.71E-13	
3.60E-8	3.10E-13	1.88E-13	8.95E-14	1.99E-13	1.45E-13	
6.30E-8	2.34E-13	1.42E-13	6.76E-14	1.50E-13	1.10E-13	
1.10E-7	1.77E-13	1.07E-13	5.1%E-14	1.14E-13	8.29E-14	
2.00E-7	1.32E-13	7 .95 E-14	3.80E-14	8.43E-14	6.15E-14	
3.60E-7	9.80E-14	5.93E-14	2.83E-14	6.28E-14	4.58E-14	
6.30E-7	7.43E-14	4.49 E-14	2.15E-14	4.76E- 14	3.47E-14	
1.10E-6	5.61E-14	3.40E-14	1.63E-14	3.60E-14	2.63E-14	
2.00E-6	4.19E-14	2.54E-14	1.22E-14	2.69E-14	1.97E-14	
3.60E-6	3.14E - 14	1.91E-14	9. 32E-15	2.02E-14	1 .49 E-14	
6.30E-6	2.40E-14	1. 48 E-14	7.42E-15	1.56E-14	1.16E-14	
1.10E-5	1.88E-14	1.19E-14	6.28E-15	1.25E-14	9.44E-15	
2.00E-5	1.52E-14	1.01E - 14	5.94E-15	1.05E-14	8.28E-15	
3.60E-5	1.35E-14	9.67E-15	6.68E-15	1.00E-14	8.40E-15	
6.30E-5	1.37E-14	1.10E - 14	8.86E-15	1.12E-14	1.01E-14	
1.10E-4	1.66E-14	1.47E-14	1.33E-14	1.49E-14	1.42E-14	
2.00E-4	2.42E-14	2.31E - 14	2.25E-14	2.32E-14	2.30E-14	
3.60E-4	3.97E-14	3.90E-14	3.96E-14	3.94E-14	3 .96 E-14	
6.30E-4	6.55E-14	6.59E-14	6.77E-14	6.61E-14	6.73E-14	
1.10E-3	1.12E-13	1.13E-13	1.17E-13	1.13E-13	1.16E-13	
2.00E-3	1.99E-13	2.03E-13	2.11E-13	2.03E-13	2.09E-13	
3.60E-3	3.55E-13	3.63E-13	3.77E-13	3.63E-13	3.73E-13	
6.30E-3	6.09E-13	6.23E-13	6.47E-13	6.23E-13	6.40E-13	
1.10E-2	1.03E-12	1.05E-12	1.09E-12	1.05E-12	1.08E - 12	
2.00E-2	1.79E-12	1.83E-12	1.90E-12	1.83E-12	1.88E-13	
3.60E-2	2.96E-12	3.03E-12	3.14E-12	3.03E-12	3.11E-12	
6.30E-2	4.60E-12	4.70E-12	4.88E-12	4.70E-12	4.83E-12	
8.20E-2	5.568-12	5.68E-12	5.90E-12	5.68E-12	5.83E-12	
8.6UE-2	5./5E-12	5.8/E-12	6.10E-12	5.87E-12	6.03E-12	
9.006-2	5.93E-12	6.06E-12	6.29E-12	6.05E-12	6.22E-12	
9.40E-2	6.11E-12	6.24E-12	6.48E-12	6.24E-12	6.41E-12	
9.80E-2	6.28E-12	6.42E-12	6.66E-12	6.41E - 12	6.59E-12	
1.056-1	6.5/E-12	6./2E-12	6.97E-12	6.71E-12	6.90E-12	
1.156-1	6.98E-12	7.13E-12	7.40E-12	7.13E-12	7.32E-12	
1.206-1	/.JOE-12	7.538-12	/.81E-12	7.52E-12	7.73E-12	
1.336-1	/./JE-12	7.90E-12	8.20E-12	/.89E-12	8.11E-12	
1.406-1	8.098-12	8.20E-12	8.58E-12	8.26E-12	8.48E-12	
1.000-1	8.425-12 9.7/m 10	8.01E-12	8.93E-12	8.6UE-12	8.83E-12	
1.026-1	8./4E-12	8.93E-12	9.26E-12	8.92E-12	9.16E-12	

Table 25. Kerma factors for neutrons in various soft-tissue components of Reference Man^a

Table 25 (cont'd.)

Neutron		Kerma faci	tor (Gy neu	$tron^{-1} cm^2$)	
(MeV)	Skin	Musc le	Brain	Lungs	Intestine
1.75E-1	9.05E-12	9.25E-12	9.60E-12	9.24E-12	9.50E-12
1.85E-1	9.34E-12	9.54E-12	9.90E-12	9.54E-12	9.79E-12
1.95E-1	9.63E-12	9.84E-12	1.02E-11	9.83E-12	1.01E-11
2.10E-1	1.01E-11	1.03E-11	1.07E-11	1.03E-11	1.05E-11
2.30E-1	1.06E-11	1.08E-11	1.12E - 11	1.08E-11	1.11E-11
2.50E-1	1.10E-11	1.13E-11	1.17E - 11	1.13E-11	1.16E-11
2.70E-1	1.16E-11	1.19E-11	1.23E - 11	1.19E-11	1.22E-11
2.90E-1	1.21E-11	1.23E-11	1.28E - 11	1.23E-11	1.27E-11
3.10E-1	1.25E-11	1.28E-11	1.33E-11	1.28E-11	1.32E-11
3.30E-1	1.29E-11	1.32E-11	1.37E-11	1.32E - 11	1.36E-11
3.506-1	1.34E-11	1.37E-11	1.42E-11	1.37E-11	1.41E - 11
3.70E-1	1.39E-11	1.42E-11	1.47E-11	1.42E-11	1.46E-11
3.908-1	1.45E-11	1.49E-11	1.54E-11	1.49E-11	1.53E-11
4.205-1	1.5/6-11	1.63E-11	1.68E-11	1.63E-11	1.66E-11
4.60E-1	1.596-11	1.64E-11	1.70E-11	1.64E-11	1.68E-11
5.00E-1	1.5/6-11	1.60E-11	1.66E-11	1.60E-11	1.64E-11
5.40E-1	1.636-11	1.66E-11	1.72E-11	1.65E-11	1.70E-11
5.00E-1	1.006-11	1./IE-11	1./8E-11	1.71E-11	1.76E-11
0.20E-1 6.60E-1	1.746-11	1.//5-11	1.84E-11	1.77E-11	1.82E-11
0.00E-1	1.00E-11	1.836-11	1.90E-11	1.83E-11	1.88E-11
7.006-1	1.005-11	1.892-11	1.966-11	1.89E-11	1.94E-11
7.40E-1 7.90F-1	1.906-11	1.945-11	2.01E-11	1.946-11	1.996-11
9 20E-1	1.906-11	2.00E-11	2.0/6-11	1.996-11	2.05E-11
8 60F-1	2.01E-11 2.06E-11	2.05E-11		2.046-11	2.10E-11
9 00E-1	2.006-11	2.105-11	2.10 <u>5</u> -11	2.106-11	2.166-11
9.005 1	2.125-11	2.1/6-11	2.255 11	2.1/E-11	2.226-11
9.80E - 1	2.216-11 2.37E-11	2.2/5-11	2.33E-11 2.54R-11	2.2/E-11 2.46E 11	2.338-11
1.05E+0	2.3/6 11	2.40E-11 2 /0E-11	2.J4G-11 2.578-11	2.40E-11 2.40E-11	2. 52E-11
1.15E+0	2.40E-11	2.490-11 9 46F-11	2.J/G-11 2.558_11	2.49E-11 2.46E-11	2.336-11
1.25E+0	2.50E-11	2.40E-11 2.56F-11	2. JJE-11 2. 66E-11	2.40E-11 2.56E-11	2.525-11 2.62F-11
1.35E+0	2.59E-11	2.65F - 11	2.00E-11 2.74F-11	2.JOE-11 2.65F_11	2.036-11 2.72F-11
1.45E+0	2.64E-11	2.69E-11	2.79F-11	2.695-11	2.725-11
1.55E+0	2.71E - 11	2.76E-11	2.86E-11	2.09511 2.76E-11	2.70E-11 2 8/F-11
1.65E+0	2.81E-11	2.87E-11	2.98E - 11	2.705 11 2.87E-11	2.045-11 2 05E-11
1.75E+0	2.86E-11	2.91E-11	3.01E-11	2.075 - 11 2.91E - 11	2.998E-11
1.85E+0	2.97E-11	3.03E-11	3.14E-11	3.03E-11	3.11E-11
1.95E+0	2.99E-11	3.05E-11	3.16E-11	3.04E - 11	3.12E - 11
2.10E+0	3.09E-11	3.14E-11	3.25E-11	3.13E-11	3.22E-11

Table 25 (cont'd.)

Neutron	Kerma factor (Gy neutron $^{-1}$ cm ²)					
(MeV)	Skin	Musc le	Brain	Lungs	Intestine	
2.30E+0	3.14E-11	3.18E-11	3.30E-11	3.18E-11	3.26E-11	
2.50E+0	3.27E-11	3.31E-11	3.43E-11	3.30E-11	3.39E-11	
2.70E+0	3.42E-11	3.46E-11	3.58E-11	3.45E-11	3.54E-11	
2.90E+0	3.58E-11	3.59E-11	3.72E-11	3.58E-11	3.68E-11	
3.10E+0	3.68E-11	3.73E-11	3.86E-11	3.72E-11	3.82E-11	
3.30E+0	4.01E-11	4.06E-11	4.19E-11	4.06E-11	4.15E-11	
3.50E+0	4.12E-11	4.14E-11	4.27E-11	4.13E-11	4.24E-11	
3.70E+0	4.20E-11	4.24E-11	4.38E-11	4.24E-11	4.34E-11	
3.90E+0	4.15E-11	4.17E-11	4.31E-11	4.17E-11	4.27E-11	
4.20E+0	4.25E-11	4.30E-11	4.44E-11	4.30E-11	4.40E-11	
4.60E+0	4.24E-11	4.31E-11	4.45E-11	4.31E-11	4.41E-11	
5.00E+0	4.45E-11	4.56E-11	4.70E-11	4.56E-11	4.66E-11	
5.40E+0	4.36E-11	4.44E-11	4.59E-11	4.43E-11	4.54E-11	
5.80E+0	4.55E-11	4.65E-11	4.80E-11	4.64E-11	4.76E-11	
6.20E+0	4.68E-11	4.76E-11	4 .92E-11	4.75E-11	4.87 E-11	
6.60E+0	4.76E-11	4.89 E-11	5.05E-11	4.89E-11	5.01E-11	
7.00E+0	4 .94 E-11	5.11E-11	5.26E-11	5.11E-11	5.22E-11	
7.40E+0	5.23E-11	5.38E-11	5.54E-11	5.38E-11	5.50E-11	
7.80E+0	5.23E-11	5.29E-11	5 .46 E-11	5.28E-11	5.41E-11	
8.20E+0	5.15E-11	5.26E-11	5.43E-11	5.25E-11	5.38E-11	
8.60E+0	5.27E-11	5.43E-11	5.59E-11	5.42E-11	5.55E-11	
9.00E+0	5.41E-11	5.51E-11	5.69E-11	5.51E-11	5.64E-11	
9.40E+0	5.49E-11	5.55E-11	5.73E-11	5.54E-11	5.68E-11	
9.80E+0	5.58E-11	5.69E-11	5.86E-11	5.68E-11	5.81E-11	
1.05E+1	5.70E-11	5.83E-11	6.00E-11	5.83E-11	5 .95 E-11	
1.15E+1	6.09E-11	6.25E - 11	6.42E-11	6.24E-11	6.37E-11	
1.25E+1	6.13E-11	6.22E-11	6.39E-11	6.21E-11	6.34E-11	
1.35E+1	6.36E-11	6.46E-11	6.63E-11	6.45E-11	6.58E-11	
1.45E+1	6.62E-11	6.70E-11	6.88E-11	6.70E-11	6.83E-11	
1.55E+1	6.83E-11	6.86E-11	7.04E-11	6.85E-11	6 .99 E-11	
1.655+1	6.95E-11	6.95E-11	7.13E-11	6 .94 E-11	7.08E-11	
1./5E+1	7.04E-11	7.04E-11	7.22E-11	7.02E-11	7.17E-11	
1.85E+1	7.15E-11	7.14E-11	7.32E-11	7.13E-11	7.27E-11	
1.956+1	7.28E-11	7.27E-11	7.45E-11	7.25E-11	7.40E-11	

^aBased on mass fractions in Table 12 of this report and on kerma factors for neutrons from Caswell, Coyne, and Randolph (Ref. 29).

	Kerma factor (Gy neutron $^{-1}$ cm ²)						
Neutron energy (MeV)	ICR	P-revised]	CRU-1964		
	Trabecular bone	Red marrow	Ratio	Compact bone	Muscle tissue	Ratio	
2.53E-8	2.99E-13	2.49E-13	1.20	2.16E-13	2.79E-13	0,77	
3.60E-8	2.57E-13	2.11E-13	1.21	1.86E-13	2.37E-13	0.78	
6.30E-8	1.94E-13	1.60E-13	1.22	1.40E-13	1.79E-13	0.78	
1.10E-7	1.46E-13	1.21E-13	1.22	1.06E-13	1.35E-13	0.79	
2.00E-7	1.10E-13	8.96E-14	1.23	7.93E-14	1.00E-13	0.79	
3.60E-7	8.20E-14	6.68E-14	1.23	5.92E-14	7.48E-14	0.79	
6.30E-7	6.29E-14	5.06E-14	1.24	4.53E-14	5.67E-14	0.80	
1.10E-6	4.80E-14	3.83E-14	1.25	3.46E-14	4.29E-14	0.81	
2.00E-6	3.64E-14	2.86E-14	1.27	2.62E-14	3.21E-14	0.82	
3.60E-6	2.78E-14	2.15E-14	1.29	2.00E-14	2.41E-14	0.83	
6.30E-6	2.17E-14	1.66E-14	1.31	1.57E-14	1.86E-14	0.84	
1.10E-5	1.73E-14	1.33E-14	1.30	1.27E-14	1.47E-14	0.86	
2.00E-5	1.41E-14	1.11E-14	1.27	1.06E-14	1.22E-14	0.87	
3.60E-5	1.20E-14	1.06E-14	1.13	9.71E-15	1.13E-14	0.86	
6.30E-5	1.12E-14	1.18E-14	0.95	1.00E-14	1.22E-14	0.82	
1.10E-4	1.18E-14	1.56E-14	0.76	1.21E-14	1.56E-14	0.78	
2.00E-4	1.46E-14	2.43E-14	0.60	1.71E-14	2.38E-14	0.72	
3.60E-4	2.08E-14	4.10E-14	0.51	2.69E-14	3.93E-14	0.68	
6.30E-4	3.18E-14	6.90E-14	0.46	4.40E-14	6.62E-14	0.66	
1.10E-3	5.16E-14	1.19E-13	0.43	7.42E-14	1.14E-13	0.65	
2.00E-3	8.96E-14	2.13E-13	0.42	1.32E-13	2.04E-13	0.65	
3.60E-3	1.57E-13	3.79E-13	0.41	2.33E-13	3.63E-13	0.64	
6.30E-3	2.67E-13	6.51E-13	0.41	3.99E-13	6.23E-13	0.64	
1.10E-2	4.49E-13	1.10E-12	0.41	6.73E-13	1.05E-12	0.64	
2.00E-2	7.81E-13	1.91E-12	0.41	1.17E-12	1.83E-12	0.64	
3.60E-2	1.29E-12	3.17E-12	0.41	1.94E-12	3.02E-12	0.64	
6.30E-2	2.01E-12	4.92E-12	0.41	3.01E-12	4.70E-12	0.64	
1.05E-1	2.88E-12	7.03E-12	0.41	4.31E-12	6.71E-12	0.64	
1.25E-1	3.23E-12	7.88E-12	0.41	4.84E-12	7.52E-12	0.64	
1.45E-1	3.56E-12	8.65E-12	0.41	5.32E-12	8.25E-12	0.64	
1.95E-1	4.24E-12	1.03E-11	0.41	6.33E-12	9.82E-12	0.64	
2.50E-1	4.93E-12	1.18E-11	0.42	7.31E-12	1.13E-11	0.65	
3.50E-1	6.03E-12	1.43E-11	0.42	8.88E-12	1.37E-11	0.65	
5.00E-1	6.99E-12	1.68E-11	0.42	1.04E-11	1.60E-11	0.65	
7.00E-1	8.27E-12	1.99E-11	0.42	1.23E-11	1.89E-11	0.65	

Table 26. Comparison of kerma factors for neutrons in bone and softtissue compositions developed for use in red-bone-marrow dosimetry^a

63	- 4	Ļ
63	-6	4

Table 26 (cont'd.)

	Kerma factor (Gy neutron $^{-1}$ cm ²)					
Neutron energy (MeV)	ICRP-revised			ICRU-1964		
	Trabecu lar bone	Red marrow	Ratio	Compact bone	Muscle tissue	Ratio
1.05E+0	1.13E-11	2.53E-11	0.45	1.60E-11	2.48E-11	0.65
1.25E+0	1.14E-11	2.66E-11	0.43	1.66E-11	2.56E-11	0.65
1.45E+O	1.19E-11	2.82E-11	0.42	1.75E-11	2.69E-11	0.65
1.95E+0	1.35E-11	3.20E-11	0.42	1.99E-11	3.04E-11	0.65
2.50E+0	1.48E-11	3.52E-11	0.42	2.20E-11	3.31E-11	0.66
3.50E+0	2.04E-11	4.43E-11	0.46	2.87E-11	4.15E-11	0.69
5.00E+0	2.25E-11	4.69E-11	0.48	3.08E-11	4.55E-11	0.69
7.00E+0	2.57E-11	5.14E-11	0.50	3.42E-11	5.09E-11	0.69
1.05E+1	3.11E-11	5.98E-11	0.52	4.08E-11	5.82E-11	0.70
1.25E+1	3.45E-11	6.46E-11	0.53	4.49E-11	6.22E-11	0.72
1.45E+1	3.79E-11	6.98E-11	0.54	4.90E-11	6.70E-11	0.73
1.95E+1	4.19E-11	7.75E-11	0.54	5.47E-11	7.27E-11	0.75

^aBased on mass fractions from Table 11 of this report in the case of the ICRP-revised formulations and from Tables 13 and 15 of this report in the case of the ICRU-1964 formulations of interest and on kerma factors for neutrons from Caswell, Coyne, and Randolph (Ref. 29). Also see their calculations for the above ICRU-1964 compact-bone and muscle-tissue formulations. APPENDIX A

RMCOMP/BAS Computer Program

.

```
100 DIM A$(12), B$(5), F(5,4), M(5), W(12), P(12)
105 DATA "H ", "C ", "N ", "O ", "Na", "Mg", "P ", "S ", "C1", "K ", "Ca", "Fe"
110 DATA "Water", 0.11, 0, 0, 0.89
115 DATA "Fat", 0.12, 0.77, 0, 0.11
120 DATA "Protein", 0.07, 0.52, 0.16, 0.23
125 DATA "Carbohydrates", 0.06, 0.42, 0, 0.52
130 DATA "Bone Ash", 0, 0, 0, 0.40
135 FOR I = 1 TO 12
140 READ A$(I)
145 NEXT I
150 FOR I = 1 TO 5
155 READ B$(I)
160 \text{ FOR } J = 1 \text{ TO } 4
165 READ F(I,J)
170 NEXT J
175 NEXT I
180 SYSTEM "CLS"
185 PRINT "DESCRIPTION OF ORGAN OR TISSUE OF REFERENCE MAN IN ICRP REPORT 23"
190 INPUT C$
195 PRINT
200 PRINT "MASS OF ORGAN OR TISSUE IN GRAMS FROM TABLE 105 ON PAGES 280-285"
205 INPUT M
210 SYSTEM "CLS"
215 PRINT "MASS OF VARIOUS GROSS COMPONENTS OF ORGAN OR TISSUE IN GRAMS FROM"
220 PRINT "TABLE 105 ON PAGES 280-285"
225 PRINT
230 FOR I = 1 TO 5
235 PRINT B$(I); " = ";
240 INPUT M(I)
245 NEXT I
250 PRINT
255 PRINT "CONTINUE (Y/N)";
260 INPUT R$
265 IF R$ = "N" THEN 210
270 SYSTEM "CLS"
275 PRINT "MASS OF VARIOUS MINERALS AND TRACE ELEMENTS OF ORGAN OR TISSUE IN"
280 PRINT "GRAMS FROM TABLE 108 ON PAGES 290-328"
285 PRINT
290 FOR I = 5 TO 12
295 PRINT A$(I); " = ";
300 INPUT W(I)
305 NEXT I
310 PRINT
315 PRINT "CONTINUE (Y/N)";
320 INPUT R$
325 IF R$ = "N" THEN 270
330 FOR I = 1 TO 4
335 W(I) = 0
```

```
340 \text{ FOR } J = 1 \text{ TO } 5
345 W(I) = W(I) + M(J) * F(J, I)
350 NEXT J
355 NEXT I
360 S = 0
365 \text{ FOR I} = 1 \text{ TO } 12
370 S = S + W(I)
375 NEXT I
380 T = 0
385 \text{ FOR I} = 1 \text{ TO } 12
390 P(I) = 100 \times W(I) / S
395 T = T + P(I)
400 NEXT I
405 D = 100 * (M - S)/M
410 ;
         ***********
                              #.##!!!!
415;
             ##
                       #.###!!!!
                                     ##.###
420;
                       #.###!!!!
                                    ###.###
            Total
425 LPRINT CS
430 LPRINT
435 LPRINT
440 LPRINT "MASS IN GRAMS OF GROSS COMPONENTS OF ORGAN OR TISSUE"
445 LPRINT
450 LPRINT "
                 COMPONENT
                                       MASS"
455 LPRINT
460 \text{ FOR I} = 1 \text{ TO } 5
465 \text{ IF } M(I) = 0 \text{ THEN } 475
470 LPRINT USING 410, B$(I), M(I)
475 NEXT I
480 LPRINT
485 LPRINT
490 LPRINT "CALCULATED MASS IN GRAMS AND PERCENT BY WEIGHT OF VARIOUS"
495 LPRINT "ELEMENTS FOR ORGAN OR TISSUE OF REFERENCE MAN"
500 LPRINT
505 LPRINT "
                  ELEMENT
                                 MASS
                                            PERCENT"
510 LPRINT
515 FOR I = 1 TO 12
520 LPRINT USING 415, A$(I), W(I), P(I)
525 NEXT I
530 LPRINT
535 LPRINT USING 420, S, T
540 LPRINT
545 LPRINT
550 LPRINT "DIFFERENCE IN PERCENT BETWEEN STANDARD MASS IN GRAMS OF": M
555 LPRINT "FOR ORGAN OR TISSUE OF REFERENCE MAN AND ABOVE CALCULATED MASS"
560 LPRINT "IS "; D
565 SYSTEM "FORMS T"
570 END
```

APPENDIX B

Example of Output from RMCOMP/BAS Computer Program

#1 TOTAL BODY: ICRP-1975 REVISED

MASS IN GRAMS OF GROSS COMPONENTS OF ORGAN OR TISSUE

COMPONENT	MASS
Water	4.20E+04
Fat	1.33E+04
Protein	1.06E+04
Carbohydrates	4.00E+02
Bone Ash	2.70E+03

CALCULATED MASS IN GRAMS AND PERCENT BY WEIGHT OF VARIOUS ELEMENTS FOR ORGAN OR TISSUE OF REFERENCE MAN

ELEMENT	MASS	PERCENT
н	6.982E+03	10.052
С	1.592E+04	22 .9 22
N	1.696E+03	2.442
0	4.257E+04	61.289
Na	1.000E+02	0.144
Mg	1.900E+01	0.027
P	5.800E+02	0.835
S	1.500E+02	0.216
C1	9.500E+01	0.137
К	1.400E+02	0.202
Ca	1.200E+03	1.728
Fe	4.200E+00	0.006

Total 6.946E+04 100.000

DIFFERENCE IN PERCENT BETWEEN STANDARD MASS IN GRAMS OF 70000 FOR ORGAN OR TISSUE OF REFERENCE MAN AND ABOVE CALCULATED MASS IS 0.776857