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In the realistic simulation of physical systems whether in 2-D or 3-D
there arise often situations where the fluid flow has a preferred direction.
M example of this 1s a magnetically coanfined plasma where the flow f{s
predominently along the magnetic field lines. To avoid a large 1umerical
diffusion and hence 1inaccuracy, 1t 1is often necessary to adopt a. flux
coordinate system with coordinates following <closely the rontours given
naturally by the physics of the problem, an example for this is shown in fig.
1. In this system radial motion 1s wmeasured by the flux fuaction
¢ = ffﬁ-d:“, wheare § is the magnetic fleld and 'ﬁ an enclosed area whose boundary
is traced out by the iIntersactions cf a magnetic field line with a poloidal
plane. The angular variable 90 is measured from the axis w~hich is at the
center of the set of nested ¢ surfaces. This point at ¢ = O corresponds to
multivalues of 60 and this rcauses most general numerical methods to break
down . However we <chall show here that it 1s prssible and efficient 1in
computer time itz overlay the q;‘,Go mesh with a rectangular ®,y mesh near the
origin. "th this transformation the peculiarities of the singular point

disappear and ordinary numerical techniques can be carried through.

We shall use as an example a problem we have encountered 1in our

MR oy



simulation of a plasma in an asymmetric torus [l,2]. Here the fact that a
flux surface is also an equipotential surface gives additional 1incentive for
the use of flux coordinates. The equations {for the drift motion of fons in a
magnetic field can be cast In a very slmple Pamiltonian form which can be
easily integrated [2] 1f the flux coordinates eo,¢,x are used. re y Is the
toroidal flux, eo a poloidal angle measured from the magnetic axi nd y is a
coordinate along the magnetic field line. Since x does not ent: intn our
essentially 2 dimensional problem we shall henceforth restrlict ourselves
to eo,w only .

"e drift equations are:

dy _ , 2B
T A (1)
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where B 1s the magnetic field and

the magnetic moment,

A=+ pf B, where j
the parallel Larmor radius, and

y

®(¢) = electric potential .

then these equations are integrated very close to ¢ = 0, the singularity at
the axls manifests itself most commonly as the unphysical condition ¢ < O when
an integration scheme like the 4th order Range-Kutta is used. Although the
probability of this occuring is in general of the order of the ratic of a few
times nV¢2 to the total flux area, where V¢ i{s the change 1in ¢ in one time

step, (in our case this ratio 1s around 10_4), it 1s very inconveniernt



especlally when particles have long confinement times and the runs abort

before data collection is complete .

In our method we transform to an X,y system using circularized flux

surfaces:
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We then advance the x,y coordinates in time 1instead of the 8 ,¢ coordinates
o

using the equations:
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Since for any given %,y the corresponding © ,4 can be calculated everywhere
0

using the equations (II), we are able to derive the values of d¢/dt and

d9 /dt from equations (I) once the gradients of B in the g ,p coordinate
[
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system are known. Therefore:
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The magnetic ficld near the axis can be expanded in the form:




ettt

B =z ¢lm|/2(a+b¢+c¢2 ...} cos(wy-md ) (V)
n,m °
where n toroldal mode number

w = poloidal mode number
w= (n=-m)/g
g = total pol,idal current
1 = rotational transform

from which
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For |m{ = 1 the first term of the second equation in (VI) tends to infinity

as ¢ goes to 0. This 1s of course the reason why eqns (I) are -~ot useful near

the origin. However when (VI) 1s i{ncoporated into the Cartesian formulation

/2

in (IV) the multiplying factor ¢I removes the singularity in the first term
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long as B i{s analytic near ¢ = 0.

. This must hold for any B which is physical as Eq. (IV) 1is salid so

We have implementad the algorithm outlined above and Fig. (2) shows the
projected trajectory in 80,¢ plane of a particle whose path straddles the
boundary at ¢ = wc. For ¢ < b the particle position 1s advanced in x,v space
while for the region ¢c <9< ¢a the computation 1s entirely in GO,¢ space .
Here lbc = 10-4 and b, = 1. The choice of b, depends mostly on the maxlmum A4

the particle makes per time stey in the vegion around ¢ = 0. To prevent the



particle from crossing tine axial region in one step starting from ¢ > ¢c, it
is desirable to make ¢c,’A¢Z 10.

Major alteration to the computer program 1s only required in the
subroutine supplying the RHS of (IV) to the Runge-Kutta control subroutine.
In order te retaln as much as possible the vectorization benefits of the CRAY-
I compiler, we make the same array store either (60,¢) or (x,y) depending on
the value 0 or 1 of a switch. This switch is used to direct the flow to
elither the (80,¢) or the (x,y) blocks of code. Testing on ¢ to find out 1€
the particle has just entered or left the ¥,y computational region given
by ¢ < ¢c is performed once per time step in the main program.

A alternative solution when eqns (IV) are only used when ¢c << 1 1is to

drop all higher terms in the polynomial for B, (V), keeping only the constant

term . This was found to reduce the computer time required for one timestep

by 207.
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Flgure Gaptions

Fig. 1. Schematic dfagram of a 2-D flux coordinate system 8 ,¢.
G

Fig. 2. Projections of a trajectory of a particle in an asymmetric toroidal

plasma device. Poilnts inside the circle ¢ = ¢ are calculated in (x,y) system
c

and points outside in (8 ,¢) system.
Q
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