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In the realistic simulation of physical systems whether In 2-D or 3-D 

there arise often situations where the fluid flow has a preferred direction. 

Ai example of this is a magnetically confined plasma where the flow is 

predominently along the magnetic field lines. lb avoid a large nmerical 

diffusion and hence inaccuracy, It is often necessary to adopt a flux 

coordinate systen with coordinates following closely the contours given 

naturally by the physics of the problem, an example for this is shown in fig . 

i . In this system radial motion is measured by the flux function 

4> = jiB'dA, where § is the magnetic field and "Ji an enclosed area whose boundary 

is traced out by the intersections of a magnetic field line with a poloidal 

plane. The angular variable 6 is measured from the axis tfhich is at the 
o 

center of the set of nested <|< surfaces . This point at <l> = 0 corresponds to 

multivalues of G and this causes most general numerical methods to break o 
down . However we 5-hall show here that It is possible and efficient in 

computer time to overlay the <J;,9 mesh with a rectangular x,y mesh near the 
o 

or ig in . Vth this transformation the pecul iar i t ies of the singular point 

disappear and ordinary numerical techniques can be carried through . 
Ke shall use as an example a problem we have encountered In our 
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simulation of a plasma in an asymmetric torus fl • 2] . Here the fact that a 

flux surface is also an equipotential surface gives additional incentive for 

the use of flux coordinates . The equations for the drift motion of ions in a 

magnetic field can be cast in a very simple Hamlltonian form which can he 

easily integrated [2] if the flux coordinates 6 ,cjj y are used. re ,\. Is the 
o 

toroidal flux 9 a poloidal ar.gle measured from the magnetic axi ind Y Is ,i 
o * 

coordinate along the magnetic field line . Since % does not ent' into our 

essentially 2 dimensional problem we shall henceforth restrict ourselves 

to 9 ,{\i only . o 
":ie drift equations are: 

d9 
o _ cH5 8$ 

d t c)i|< ~ oljT 

* t - / 25_ (1) 
d t 59 K ' 

o 

where B is the magnetic field and 

2 A = u + p B, where ^ = the magnetic moment, 
p = the parallel Larmor radius, and 

<£(<ti) = electric potential . 

Mien these equations are integrated very close to <(* = 0, the singularity at 

the axis manifests itself most commonly as the unphysical condition ip < 0 when 

an integration scheme like the 4th order Range-Kutta is used . Although the 

probability of this occuring is in general of the order of the ratio of a few 
9 times itVit) to the total flux area, where Vcji is the change in (|> in one time 

-4 
step, (in our case this ratio is around 10 ) , it is very inconvenient 
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especially when particles have long confinement times and the runs abort 

before data collection is complete . 

In our method we transform to an x,y system using circularized flex 

surfaces: 

1/2 x = (2i|,) cos 9 0 

y = (2(101/2 sin 9 . (II) 

Me then advance the x,y coordinates in time instead of the 9 ,4. coordinates 
o 

using the equations: 

d8 
£ - — 1 cos 9 (<£) - (2*) 1 / 2 sin 6 (_£) dt ,,, ,1/2 o dt o^dt (2q>; 

,1/2 d 9-%T l - T I T sin 6 (* + (2*) l / 2 cos 9 t-f) (III) dt ,,, .1/2 o '•dt o dt' (24.) 

Since for any given x,y the corresponding 6 ,4. can be calculated everywhere 
o 

using the equations (II), we are able to derive the values of dejj/dt and 
d9 /dt from equations (I) once the gradients of B in the n H, coordinate o o' y 

system are known. Therefore: 

dx _ o SB , ,,..1/2 . „ ro$ , A BB-i 
dT I7Z~ 5 B - + ( 2 *> s l n e o Lo4T+ A 3 4 J 

(24.) o 

dy _ A s l n 6 o SB . , , , , 1 / 2 fi r o * . A 5B-1 , T „ , 
(24., o 

The magnetic f i e ld near the a x i s can be expanded in the form: 
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= 1 4>!' ,1' /2(a+b<P+c<|,2 . . . ) cos(wx-m9 ) (V) 
n,m 

where n = t o r o i d a l mode number 
m = p o l o i d a l mode number 
oj = (n - mv ) /g 

g = t o t a l p o 1 j i d a l c u r r e n t 
\ = r o t a t i o n a l t ransform 

from which 

8B „ |m | /2 2 3 
jg— = )_m (|) (a + b<)> + cii> + d4> ) s in (ux -m9 0 ) 

o n ,ra 

dB r r [ml ( M - - 1) , 2 3 , , 
55T = i L-^T- * 2 ( a + ^ + c<P + di), ) cos(io X - me o) 

n,m 

|m| /2 , 2 . , . 
+ <\, (b + 2c<t» + 3d* ) cos(wx _ ™ 0 

^ ' • " ' ^ ( a + b* + c<l/- + dcl,Jl s iu{w X - ">9 K 2 1 — x)J <" n 

0 g 

For |m| = 1 the first term of the second equation in (VI) tends to Infinity 

as * goes to 0. Ihis is of course the reason why eqns (I) are ~ot useful near 

the origin. However when (VI) is lncoporated into the Cartesian formulation 
1/2 in (IV) the multiplying factor <\, removes the singularity in the first term 

of %— . This must hold for any B which is physical as Eq . (IV) is /alid so 
OCJJ 

long as B is analytic near cp = 0 . 

We have implemented the algorithm outlined above and Fig . (2) shows the 

projected trajectory in 9 ,<|i plane of a particle whose path straddles the 
o 

boundary at * = * . For <|* < I|I the particle position is advanced in x,v space 

while for the region c|i < <p < i\, the computation is entirely in 8 ,<|» space. 
-U Here 4. = 1 0 and <), = 1 . The choice of (j, depends mostly on the maximum A* 

the particle makes per time step in the region around <i> = 0 . To prevent the 
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particle from crossing the axial region in one step starting from ty > i\> , it 
c 

is desirable to make ip ,'AiJ) > 10. c ~ 

Major alteration to the computer program is only required in the 

subroutine supplying the RHS of (IV) to the Runge-Kutta control subroutine. 

In order to retain as much as possible the vectorization benefits of the CRAY-

I compiler, we make the same array store either (9 ,cj/) or (x,y) depending on 
o 

the value 0 or 1 of a switch. This switch Is used to direct the flow to 

either the (8 ,<|;) or the (x,y) blocks of code. Testing on a, to find out If 
o 

the particle has just entered or left the x,y computational region given 

by 4< < (p is performed once per time step in the main program . c 
An alternative solution when eqns (IV) are only used when <J> << 1 is to 

c 

drop a l l higher terms in the polynomial for B, (V), keeping only the c o n s t a n t 

terra . This was found to reduce the computer time requ i red for one t i raes tep 

by 207 . 
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Figure Captions 

Fig . 1 . Schematic diagram of a 2-D f lux coord ina te system 8 1(\i . 
o 

Fig. 2. Projections of a trajectory of a particle in an asymmetric toroidal 

plasma device. Points inside the circle <|* = C|J are calculated in ( x y ) system 

and points outside in (6 ,ty} system . o 
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Fig . 2 


