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Calculation of higher orders of the perturbation theory is con-

sidered for screened Coulomb potentials. Particular cases of such

potentials are the Yukawa potential, a familiar object of nuclear

physics, and the funnel-shaped potential, applied to analysis of

heavy quark-antiquark systems. The calculation of higher perturbati-

onal orders is reduced to recursive relations, quite appropriate

for computer. The Pad4 approximants and a modified Pade" - Borel

summation method are applied for calculation of sums of diverging

PT series. A transformation of the variable, removing the nearest

singularity of the Borel transform to infinity, is also used. The

method enables one to calculate the energy eigen-value E(g) with

a good accuracy for all physical values of the coupling constant

g , including the case g-*-««. Thus we show that in the considered

problems higher orders of the perturbation theory determine the

behaviour of E(g) in the region of strong coupling.

[Cj Институт теоретической и экспериментальной физкки , 1.9Р2



1. Introduction

In some recent works /1-t3/ the perturbation theory ( PT ) was

developed to high orders in the quantum-mechanical problem of

screened Coulomb potential ,

Treating u. as a small parameter, one can construct perturbational

series for the exrergy eigen-values,

and for the wave functions. Here n = 1, 2,... is the principal

quantum number, 1 is the orbital momentum, 0^1^n-1 , and к is

the PT order. To calculate Б^ we use the logarithmic perturbation

theory ( LPT ), for its use is quite suitable for nodelesa states

( see in /2-9/, and ±n the following Section ). This method en-

ables us, with account for th.; available computer facilities,, to

calculate easily 100 - 200 orders of PT for a number of problems:

the enharmonical oscillator, </(x ) , in space of an arbitrary di-

mensionality D, Я =2, 3,..., see the -.vorks /5,6/; the Stark /7/

and Zeeinan /9/ effects in t,ae hydrogen atom; the screened Couloob
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potential /2,3/, etc.

However, зисЬ calculations do not solve «he important ргоЫеш

of determination of the energy eigaa-valu^s,, since the real phy-

sical problems are relevant to the region of u~1» or even у-»Л

( like the region of strong coupling in quantum field theory ).

Meanwhile, the PT coefficients E^ • as a rule, have a factorial

increase with k-»»e,

»here zls. P(z+1) » and o(>O , ft . jft and c
o
 are some constants

that can be calculated. The reason of this rise is that in the

situation, typical in quantum mechanics and field theory, the per-

turbation operator haa a stronger singularity than the unperturbed

Hamiltonion H
o

Because of the estimate (1.4), the PI series (1.3) have zero

convergence radius; in other words,they are only asymptotical.

Therefore,in order to reconstruct the eigen-value E(ii) with the

FT coefficients &_ one has to apply the special methods cf summa-

tion of diverging series /10/.

In the present work we consider calculation of higher FT or-

ders E^, their a&ynptotics E^ , and summation of diverging F?

series for screened Coulomb potentials. The results of the summa-

tion are compared with the values of the energy obtained by means

of other methods '. The comparison shows that in spite of the fac-

torial rise of the PT coefficients B^, the summation methods con-

sidered enable one to reconstruct the energy eigen-values with a

fair accuracy even far beyond the region of the weak coupling.

This fact excites a hope that the method can be applied success-

fully to other problems of quantum mechanics and field theory.
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2. Logarithmic perturbation theory

Calculation of higher FE orders in quantum mechanics has been

considerably advanced during the recent years as a result cf the

development of LPT ( a few comments on the history are given in

Appendix A). Using LPT one can reduce the calculation of higher

PT orders for polynomial potentials to recursive relations, that 3fe

quite convenient for computer calculations.

Let us consider iu brief the idea of Shis method,taking the

screened Coulomb potential (1.1) as an example. Here we restrict

ourselves to the states with l=n-1, the correaponding radial wave

functions have no nodes^ . The application of LPT to this case is

especially simple.

The substitution

transforms the Schroedinger equation to the fora

where f£ f(w*P ) ; R is the radial wave function. Expanding £. and

у in formal power series,

one has the lowest orders of PT. Z
o
~ J

o
 = 1 , £ 1=

and for k^2 one gets a differential equation for any J-J^C

which i3 easily solvable by quadrature. It ia easily зееп

y. is a polynomial of degree <k-t) :



the highest coefficient here is C^ = n
k + 1

f
k
 , and ether coeffi-

cients are determined by th: recursive relations

(k)

J^k-2 . Lowering the Jubecript consecutively, at the last step,

, one gets the correction ro u,
k
 to the energy eigeE-value,

E - {- if*
1 n
'

K/2
 "

(k) C2
-
5)

?-
4
,s completes the k-th order P7 calculation.

' A few conaeents ere appropriate here.

1) Sqs.(2.4) hold for arbitrary screening function t(u.r).

In order to get the formal PT series one has just to assume that

Taylor's series {1.2) exists for f(x) near the point x=0.

2) In the end, the quantities с ^ and E^ are expressed in

terms of Taylor'"s coefficients I. of the screening function. For

instance,

at

3) The first two orders of the PT expansion are E,

. The higher terms are

end Q^ is a polynomial of degree k-3 trith respect to n. It con-
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tains terms of the form ffy.,.,1. , where a+b+..c+c=k , and

every subscript a,b,... ,c^>2. For example,

It is not difficult to go on with these computations, using a

routine for algebraic programming by means of computer. One should

have in mind, however, that with increasing к the explicit exp-

ressions for Q- in terms of f become too cumbersome rapidly

(cf. also in /14,15/ ). A more suitable way is to calculate higher

orders in PT for any particular screening function, using Eqs.(2.4)
J

(2.5) i substituting the corresponding coefficients fj_.

4) The above equations determine the perturbative expansion

not only for the level energy, but also for the wave function. The

relevant formulae are presented in Appendix 3.

Let us consider some examples. Start from the Yukawa potential.

1

 ( 2
.

7 )

Replacing the coefficients in (2.3) by c*j
k>
 »

(it)
one has A^_^ = 1 , and

(и)

Clearly, all A> ' are positive integers, so the computer calcula-

tions do not lead to a loss of the accuracy. The result i*

B<j« 1, Bg*-jfcn( 2n+1) , and for

к/
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The quantity iX*' is a polynomial of degree k-3 with respect

to n. ,

+60

32.0 n V 7 S 540 r>ft

4-19 500 n

fe bare calculated 25 PT orders using the algebraic programing

system RECUCE-2. The results are in agreement with a previous pa-

per /14-/, where first 4 ordere were calculated for states with

l«n-1 ( аее Eq.(57) in /16/ ). Comparing our procedure here with

that in Hef.16 , one sees to what extent LPT simplifies the calcu-

lations.

For the ground state, n=1 , the PT coefficients (2.9) are in

agreeaent with those given in preceding works /1,2/; see Table 1

in Rsf.1 , where 100 FT orders are presented i

The screening function for the Bultaen potential is

where B^ are the Bernoulli numbers /17/. Since f(-x)-f(x) * x,

here f,* f
c
« f

T
*...-0 , and all odd PT orders, starting from the

third order, are zero. By means of gqs.(2.4) we get at once:

(2.11)



where

c Рог the ground 1ет*1 S^sO at iĉ >3 . in agreeaeat with toe

exact eolation. /18/ of the Schroedinger equation,

The last example to be considered here ia the potential"

which fits the pattern (1.1) with ̂ ш
 g

1
/(I+D

 f f ( x
j ,

Orly integer powers of g are present in the expaaeion of В , so

aon-ranishing terae in the series E *2*\)*-
 aT9

 **»eee with
 u

k- 1+1,2(H+1),3(H+D «tc. It is »ore reasonable to write the PT

aeries directly in powers of g , not u, ,

k
 k

n

for k^1. Substituting these expansions in the Riccati equation

we get the recursive relations



в
where А, 3t^ 1 . With these relations one is able to decrease j

at any fixed к , and Bj=(-1) (п+£)Ц ^ . However, one has first

to find the higher coefficient in the polynomial у^(r)with ;j=>)cH.

With a provisional notation <*
k
= a£jj, we obtain from (2.13) a

closed equation

Because of this relation, the generating function for these num-

Ъегв, G(*) « 2/4L» , satiefiee the equation G = 4nG + nz . Its

solution is G(e) * •£< 1-(1-2п£в)*) , so

k * ky

«here Cjj. are the Catalan numbers, used is the oombinatorial analy-

si«: &^С
2
~ I, (5jK 2, бд* 5, C

5
» 14 etc. As usual, we get the

•г k̂3
correction to the level energy at the last step j*1,E

lc
=(-1) (n+})a

1
.

The substitution

redness the problem to recursive equations with, integers,

(2.16)

g <'g
-1 . fhe firot-order PT correction to the energy of the

(n,n~1) level is



and i'cr

Ck)

It is noteworthy that the nonlinsarity Я 1з not present explicit-

ly in Sqs.(2.i6). It determines the number of the recursive rela-

tions for a given ord-эг of PT, k. A similar situation takes place

also in the case of the anharmonical oscillator /6/, that is the

system with the Hamiltortian

C2.I9)

Thus LPT is an effective metbod fcr calculation of higher orders

in the PT expansions for tie screened Coulomb potential, aa well

as in other quantum-mechanical problems /5-9/. Bqs.(2.i6) were

used already /jj/ for calculation of the coefficients E. for the

cases N = 1 , 2 .

We do not concern here an interesting variant of LPT, intro-

duced in Ref.4 ( there it is called "perturbation theory in devia-

tion from the asymptotics"). In that case the expansion is not in

powers of the coupling constant g, but in more complicated func-

tions of g. The choice of the zero approximation takes into acco-

unt the behaviour of the exact wave function at singular points of

the potential V(r), say at г = 0,"°. The method leads to itera-

tions ionvergin£ rapidly, as it was shown in a number of examples:

the anharmonical oscillator /4,21,22/, the Stark effect in the hy-

drogen atom /23/ etc. The fact essential for the calculations i&

that the k-th order in the perturbation theory is expressed Ъу means

of quadratures of the preceding order. Further deteils of tne method

are given in Refs.21,22.
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3, У О Method and asyaptoties of higher PT orders

bet ия consider the Hamiltonian ' H * £p2 - 1/r + gv{r). It
i3 known /24/ that in order to calculate the к-**» asymptotics of

the FT coefficients Б, one has to find the discontinuity of the

level energy at the cut g < 0 ,

4 £ * -̂
and to apply the dispersion relations:

where A=-g , and к is the number of subtractions.At g < 0 the poten-

tial barrier tunnelling becomes possible for the pa: wide, see Fi-

gure 1, and the bound state is transformed into quasi-stationary,

of a complex energy В =• £ Q -iJf/2. The asymptotics, E. , is deter-

mined by the behaviour of the level width "t at g-»~O , and the

WKB method is quite appropriate for the problem. The result is

where

3 W - f IfUr , |P(r)|=^E -^ + ^ -j

(3.3)
-in

Л * I * 0 for the 3 states», Л * l+| at l|tO
r
 r are the turning

points. Some details on the derivation of these formulae may be

found ia Bef.£. One should have in mind that the accuracy of iSq.(3.2)
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is asymptotical in the Halt A-^0* The formula can be reinfifctea.

also la another form.

ft*.) «A %£e*f{~zf\p(r)Ur]

where

<>>d-i\ A «

and 6*2.71828... . The physical meaning of Bq.(3.4) ia quite clear.

Note that W c l = 25Г/Т , where T •
<
jT'2|^/

3
)"* = 2 f n

3
 ia the period

2of the classical particle motion on the pier ellipse, E=-1/2n .

So cJ
cl
/23r' is the frequency of the particle impacts against the po-

tential barrier at r => r^ , and the exponent in (3*4) is the proba-

bility of tunnelling at every impact. If the 1KB approximation

would be exact for arbitrary quantum numbers n and 1, the coef-

ficient A would be just 1. This is the case for large quantum num-

bers, since at x-mmm the expansions take place

However, the deviation of i. from 1 is small also for n, 1 not very

large, see Table 1. Sven for the ground state A = 2Te"
2
=O.85O3...

Thus the domain of applicability of the 1KB method is extended to-

ward n*v1 < as it was observed in a number of other physical prob=»

lems, see e.g. Refs.25.25e).
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The function gr(r), perturbation to the Coulomb potential.wae

not specified until now. Consider the potential (2.12). Ic this

о м е , the integral D (Я) i s e-eiiy calculated fcr 1=0, see Appen-

dix B. Parameter» of the a»ymptotics (1.4) are

where

The coefficient oQ in (1.4) for toe funnel-shaped potential i s

(3.6)

Рог the ground «t»tp in the case of en arbitrary aonlinearitj H>£

tt U

с;--2

Bow we turn to tte cag^ler «oeentue dependence of the

tics I
k
. The 1-dependence of the pre-exponential factor in Eq,(3.2)

is тегу elight, it is

for n»1 , 1 / 0 . The ieviation from 1 ie maximal for l»n-1 ,wnen

U182, n-2 ,

Ы 4 5 , n»3 , (3.9)

>
J
= 1.075.... n~»*o .

Is to the integral 3 ( Л ) , its 1-dependence for H>1 manifests
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itself only in the terms, vanishing at A-J»O , see Appendix 3 .

If H*1, the constant b- in Eq.(C7 ) depends on 1. To conclude,

the parameters Ot.fi and a in the asymptoties (1*4) do not de-

pend on 1.

Finally, let us consider the Yukawa potential (2.7). Calculate

the integral %(% ) at <A-j*+O , substitute it in the dispersion

integral (3.1), and apply the steepest descent method to find the

asymptotics for ns states /3/. The result, is

L, . i кk!
 (b)

 k (3
*
J0)

( some details of the calculation ere given in Appendix C). Tha

obtained asymptotics is somewhat unusual, it is not E ^ k J a ,as

for a polynomial perturbation.

In the examples considered, higher orders of the perturbation

theory rise as factorials at к *»a . rherefore to reconstruct the

energy E(g) , having known the PT coafficlents, one has to apply

special netirxods of summation of divergent series.

4. Summation of PT series

The summation of the PT series will be applied to the Yukawa

and funnel-shaped potentials . We will show that, with a number

of PT coefficients, E
k
 calculatad exactly, and with their asymptotics

EL , it is possible to reconstruct the energy £(g) not only for

g-*-0 , but also in the strong coupling region, g^l.

оtart from the Yukawa potential (2>7). This is an example of

especial physical importance, as it is involved very often in ato-

mic and nuclear physics, theory of solid state, plasjna physics

< the Debye screening ) etc. As it is seen from (3.10), the PT aeries
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in this case ie asymptotical, not converging. For the emulation we

nee the Pade approximate ( PA ), [li/jr](^O • PM(^-)/Q^(^-). Here

?H and Q̂  are polynomials of orders M and B, respectively, that are

determined unambiguously from first 14+S+1 coefficients of the FT

expansion, toy means of the condition

( explicit expreaaions for P
M
 and Qj are presented, say, in Ref.

28 ). We use diagonal PA , i.e. m*K.

the results of summation of PT series are shown in Figures 2

and 3, respectively, for the cases 1*0 (the ground state) and 1*

«it-1, n ^ 2 . A rapid convergence of PA [н/5Г](^ч) with increase in H

is seen in Figure 2 ( outre details can be found in Table 2 ).

With rising w , the bound energy is increased, and A falls.

At certain value of м * j*
c r
 the quantities £ and >A are equal to zero,

and the real bound state disappears с As it is seen from Figure 2 .,

PA provide with the SUB of the PT series not only for Д > 0 , but

also for A < 0 ( this region corresponds to a virtual level in the

ease 1*0 }. It is interesting to compare Figure 2 with a problem

having an exact solution. In the oase of the Hulthen potential /18/

one has for ns states

Я - -£- - $
Thus % "^~^ne^ is * ̂ .i&ear function of the screening parameter

/* in this case. For the Уика^ь. potential the ̂ -dependence of

> is also close to linear for /t^/*
c r
. see Figure 2 . Besides,

the n-dependence of /
c r
(na> is also similar to (4.2), see Figure 4

As for the states with ДО, ell curves corresponding to 2<l<10

in Figure 3 lie between the curves for 1«2 and 1«ю. Thus the angu-

lar moaeotum dependence of С is rather slow, in the reduced va-



riaoles £• 2n 2 l ( a l ) and f^^
9

The calculated mgnitudee of ^ o r ere given in Table 3. Shere
Is a slight loss of the accuracy in calculation of /*-cr by i

of PA when we go from 1*0 to 1»1, tben the accuracy la iaprovvd

again. The agreement batmen th» suaaatioa of the ТЧ series asd

the nuaeri$al eolation of the Schroedinger equation for this caee/11/

is perfect.

If 1^0 , then for Р-^У^сг
 tfae

 bound state ia replaced by the

Breit-Wigner resonance: 2 » B
Q
- il /2 ,

Heamrhile, for a states on» has for i*~ near the critical •aloe

Лег»

This is an effect of a qualitatire difference between the states

with 1*0 and 1<р1 that is due to & presence of a centrifugal bar-

rier in the latter case, which is essential for slow pcrticles.

For the ftranel-ahaped potential (2.12), the problee of recent

structlon of the energy S(g) from the FT coefficients is reasonable

in the whole region 0<g<«* * but its solution requires логе po-

werful methods than PA. Such a method, and тегу suitable for phy-

sical applications, is the Fade" - floral asteod ( see e.g. lefa.29,

30). If at k-**®the asyaptotics is B^^dcflt)!, •* put

where
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Because of (1.4), the nearest singularity of the Borel transform

B(x) is situated at the point *0=a , and B(x)«-<a(x-x0) at s.-^x

Substituting in the integral (4.5) the function B(x) by a PA

fii/IJlx), constructed with the coefficients b^, we get an appro-

ximate for the energy . £ (g). As it is well known /26/, a use

of FA enables one to reconstruct B(i) outside the circle of con-

vergence .

Sote that the behaviours of the functions £(g) and B(x) at

infinity ere essentially identical. Actually, the asyraptotics

corresponds to

WO -

( her» ^>-1 , 0 <"J1 < >)+1 ). Talcing this fact into account one

can ue« the following equality in order to find the index of the

•eyaptotice <) in Eq.(4.7):

V » iim X bf(x)/B(X)

шл well as the following identity, for
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numerators and denominators in. these fraction* were replaced «1th

the diagonal PA's [L/L](I) . To calculate the index V one has to

find the limit of ^ ̂ (х) at H—«*• and fixed x, and then let x

tend to infinity. For illustration, tbe corresponding quantities

at r=10Q, calculated by means of (4*10), are given in Table 4. For

L>)0 the convergence of ^j. ia rapid enough. The averaged value

^ , calculated over the l&st five iterations "0^ , deviates froa

the exact quantity <J=f by a small number of 0«5 %. thus this simple

method enables one to determine the index of tiie asysptoties of the

energy eigen-value B(g) at g-^oe, basing on the coefficients £y

of the diverging PT aeries. Eq.(4.9) leads to similar results, though

the convergence of л), with rising L is some'fhat slower. The result
L
 /26/

la i -0.70+U.02 for L = 10-14.

More sophisticated methods are necessary to calculate the coef-

ficient c^'. We use the substitution

where a is the same parameter, aa in Sq.(1.4). The substitution

(4*11) removes the nearest singularity of the Borel transfora B(x)

to infinity: y~»«o when z-#x
o
« a . Besides, B(x)«a x <̂ »y at

x *од, and such a behaviour is easily reproduced by means of PA

[N+1/NJ(y) for any ~? . These pade approximants are determined from

the coefficients £. of the series rearranged in ter&s of powers of

the new variable у ,

^ ^ (4.12)

( see Appendix D ). As one should expect, the transformation (4.11)

leads to a sharp decrease in the coefficients. Рог instance, for

U=1 we have Е
1 0
=-3.28Ы0

8
, b

1Q
=-90.4 end £10»0.0883 , and for

H»2 ; E1(j^8.58T10
18, b1Q« -3.53 and, f 10«-0.00137Jsor nigner M
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orders the decrease in the coefficients ia even more manifest,see

?igure 5. Therefore the series Л И Д ^ is summed up easily. It

follows from Bqs.(4.8) and (4И1) that

f
4

Рог the funnel potential, Sq.(2.12) with W«1, we get c^,=1.764 at

M*15
t
 to be compared with the exact quantity 0^=1.855 756...

( see Appendix В ).

How we turn to calculation of the energy S(g) at finite velues

of the coupling conatant g. In the case K=1 we have E^o^k! ,i.e.

p£«1 in (4.5). Substituting B(x) in (4.5) by its PA fb+1/M](y} and

calculating the integral numerically» one obtains E(g). As it is

seen from Table 5, at И » 15 e M g^lOOO , the error in E(g) does

not exceed 2 % , and the accuracy ia sherply ioproved for lower g.

The method used here to sum up the diverging PI eeries, enables one

to obtain the ground 3tate energy with a good accuracy for all phy-

sical magnitudes of the coupling constant, 0<g<*9.

The summation of the FT series for the oscillator well, £q.(2. •?.)

with H=2, wa*s carried out in the same manner. In this case E.co(2k)!

and the divergence of the FT series even worse, so the reconstruct

tion of the energy B(g) in the strong coupling region basing on the

coefficients K^ is more difficult. In particular the index of the

ftsymptotics v* ie found with a poorer accuracy than in the preceding

< see Table 4 ). Since &=2, the Borel integral (4.5) at g>^1

Sl&fler than in the case cC=t. This fact, in turn, requi-

res a calculation of the Borel transform B(x) for higher values of

the vuriable x.

The results of calculation1 ' of the energy K(g) are siven in

Tuble 6, and it is seen that the usual PA [Vb+if)(g) ure invalid

evea for g<*/0.15. Using the Pade - Borel approxiaants one gets E(g)
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at g<**0.1 with a high accuracy and the results are satisfactory

up to g*5. In the examples considered the diagonal approximate

[L/L] converge to the limit most rapidly, a similar situatiot waa

found а1зо in a number of other problems /27/.

The effectiveness of the Fade - Borel summation method can be

appreciated properly comparing it with the conventional perturba-

tion theory. The PT polynomials

for N=1 and 2 are shown in Figure 5- The boundaries .of the domain

of applicability for PT are at g~o.1 and g~0.01 , respectively.

The estimate is in agreement with the formula /31/

о* Г i.81L"
4
, for ir»i

)

With rising L, the number of terms in the PT series, taken into ac-

count in (4.14)» the domain of the approximation of S(g) by means

of the polynomials P-r(g) is contracted, so it is necessary to aban-

don the usual PT and to apply the special summation methods. The be-

haviour of the PT polynomial* in other problems is analoguoua. Sec

e.g. Figure 6, relevant to the Yukawa potential (the comparison to

Figure 2 illustrates the effectiveness of the use of PA instead of

the standard PT poiynomiala).

Mote that for the potentials of the type (2.12) the PT series

is aummable by means of the Borei method /32/. In this caae higher

PT orders contain an information on the behaviour of the exact solu-

tions in the region of atrong coupling, in spite of the factorial

increase in the coefficients E^. An effective method for the recon-

struction of E(g) for g»1 was considered above. From the examples
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considered it is evident , however, that to apply the method success-

fully one needs a sufficiently high number of PT coefficients cal-

culated exactly .

The authors are grateful to K.G.Borealcov and V.I.Lisin for use-

ful discussions of computational problems, and to S.F.Alliluev and

V.L.Eletsty for discussions of the obtained results.
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Appendix A

There is an increasing interest in calculations of higher

perturbational orders during the past few years. The structure of

PT series was investigated thoroughly for energy levels in oue-

dimensional /24/ and multidimensional/4,6 / anharmonical oscilla-

tors and for a number of other quantum-mechanical problems^-9/.

Bender and Wu- /24/ establishes a relation between the asymptotlca

of the energy coefficients E, , for k. —• — , and the width of ihe un-

stable state, appearing when the coupling constant g gets the op-

posite sign; they have also shown that the 1KB method is applicable

to the calculation. Extension of these methods to quantum field

theory was originated by Lipatov /34/, who developed a aemiclaasi-

cal method for calculation of the functional Integral and applied

this technique to a renormalizable scalar field theory wi;h the

interaction

_ JL
n.'

( in particular, for D=4 we have the <f> field theory ). Further

this region was elaborated intensively by a number of authors; see

for example£efs30,35-37 and the reviews /38,39/.

The standard quantum-mechanical FT methods require a knowledge

of the whole зреехгит of the unperturbed Hamiltonian, for the PT

orders higher than the first one. The main difficulty in such

calculations lies usually in calculation of spectral sums that ere

involved in formulae of the Rayleigh - Schroedinger perturbation

theory. One of the possible ways to avoid the difficulty is to for-

mulate the FC expansion in terms of the logarithmic derivative of

the wave function, that is a solution of the Riccati equation.
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It is for a long time that this method has been applied to one-

dimensional problems . Zeldovich /40/ ( see also in the book,

/41/,p. 143 ) was first who has» indicated that the whole perturba-

tion theory for a state belonging to the discrete spectrum can be

constructed with the unperturbed wave function for only the level,

corrections to which are to be found. The following expression was

obtained for the second correction to the energy of the bound state,

by means of the Lagrange method,

The calculation of higher PT orders based on the Riccati equa-

tion was considered exhaustively by Polikanov /42/. The author has

shown that any PT order for the energy elgen-value in the discrete

spectrum can be calculated, in principle, in terms of the wave func-

tion of the zeroth approximation. The method was applied to the

Dirac equation in Bef.43 • The particular scheme for calculation

of k-th order of the perturbation theory, developed in fiefs.42,43»

is rather cumbersome for k > 2 . For instance, one has to normalize

the wave function with the accuracy up to it. for the k-th PT or-

der, to exponentiate power series etc. In Ref.42 seven lower PT

orders were calculated for the ground state energy in the Yukawa

potential. The coefficients Eg and E-, in that work do not coincide

with those in £q.(2.9) and are wrong.

The method of construction of the perturbation theory basing

on the Riccati equation, instead of the Schroedinger equation, was

rediscovered recently /4,8» 9/. For the one-dimensional p-oblems it

was shown that the k-th PT order is expressed in terms of the lo-

wer corrections by means of quadratures in a closed form. For the

*et«ntial8 of the type
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( in particular, for polynomial potentials ) the method is further

simplified. The calculation of ^s©r $Q orders is reduced to simple

recursive relations. Thla approach to PT ia rataer ©ftseiive, аз

it was shown in Section 2. The same method «as applied to higher Pf

corrections for anbarmonioel oscillator, the perturbation is g(i )

H»2, 3,.»., in apace of arbitrary dimensionality^.^/, for the

Stark effect / 7 / , Zeeman effect / 9 / in hydrogen atom, the atom in

crossed fields /9 / etc. She nee of the recursive relations enables

one to calculate easily a great number of FT orders, that are inao-

eeseible for the rtandard variant /13/ of PT.

The application of LPT is especially successful for node-less

states. If the wave function has a node the problem is somewhat aore

complicated. The logarithmic derivative of a function R(r)<v>(r-r
o
)

n

has the pole,

and the singularity is present in the Riccati equation. Various ве-

thoda to overcome this difficulty, and an extension of LPf to excit-

ed states with nodes, are considered in Refa.7.9 . In particular,

it is shown in Eef.7 for the example of the Stark effect for ex-

cited states of hydrogen atom that the calculation of highei FT or-

ders ia reduced to recursive relations also in this case. It was

also shown there that the summation of the PT series enables one to

determine the Stark shift and the width of the atomic levels in

strong electric fields.

Note, finally, that the LPT method 0an be extended to multidi-

mensional problems/8,9,22/. Introducing the vector
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for the wave function ^>(r), one gets a chain of equations similar

to those for the one-dimensional case, but with partial derivatives.

These equations are identical to the equations of electrostatics in

a medium with a variable dielectric permeability. However, unlike

the one-dimensional case, the solution of the equations is not re-

duced to quadratures. Development of effective numerical methods

for solution of such equations is rather interesting, it would en-

able one to solve an ample class of physical problems.

Appendix В

Eqs.G?.3)-(2.6) determine an iterative procedure for expan-

sion of the quantities y( Pit*-) and E(/O in PT series. Hence one

easily gets the corresponding expansion for the wave function.

Prom (2.1),(2.4) we obtain

Я = vxu£-p~Lexx>\-0 +S(-/л) fzC.)-£— I (3.D

p« r/n. The following method is appropriate for exponentiating

power series. Let f(z) = expfg(z)J,

the

Evidently, f'= fg<; so aQ=1, ak = k " 1 ^ i a i c - i b i » k > 1

this formula to Eq.(B.1), one gets

{ B . 2 )

where
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and for lc^4 the p. lynamiela Uj-d) are determined eaail^ fros the

recursive relations - .

?or example.

etc. Hote that the principal quan.ua number n is not present exp-

licitly in<taeee equations . For nd we reconstruct the formulae

of Ref.i.

The FS expansion for the «rave function atarts from the terrs

л>£ь , because at J-t-̂ O

ao the first-order perturbation in u. results juat in a a*iift of

the level spectrum and does net change the wave functions.

Appendix С.

Here we present a derivation of she aeyaptoties S^» for the

potential (2.72), the cbaoge of the integration •«riable,r»(

results in the expression
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<с.о

where

(C.2)

Below we list the results for some particular esses.

1. For the e-levele в** 0,

(C.3)

0,

where

are Interested In the behaviour of the lategral 3(>\) for

, i.«. I • I( ̂  ) for ^-*K>. Divide the integration region in

) in two perta: I( ̂  ) * !.,+ I
2
 . Here I

1
 ie the integral fro»

x_ up to x , and I
2
 - from x up to x

+
 , and x is an intermediate

point* x_«ix<tx
4
 . Then



la order to calculate

powers of ^ ,

27

it is helpful to expand the integrand in

Die carding the terms *о-«?
с
 and replacing z by 1, one makes a neg-

ligible error •**» -Э •" . With account for

/ | f ) 4 / £ e ~ ~ ^

one

At V ^ 1 , one aay put £_^г£_=п in Eq.(CI). If 11=1 , one must

take into account the shift of nl-level in the first order in the coup-

ling S=-A,

s -

(С6)

Finally, we have

«here

(c.7)
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Putties (C.7) and (3.2) into the dispersion integral (ЗИ) and cal

culating it by means of the steepest descent method , one gets-

the parameters of the aaymptotica <=£•>&, A,C 0 given in

Eqa.(3.5)-(3.7).

2. Dependence oa tha angular momentum 1. the calculation of

the integral (C.2) is substantially aore complicated if 1ДО.

At %-+Q
t
 aowever, -*?,-«/j

1
^ and в-«—А

2/
^, зо the account of the

term <Tx in (C.2) contribute* a correction «^A • to I , i.e.

proportional to /\
1yl
^-to 3 ( A ) . In tae lioit A"*0 these term*

vanish, so the coefficients b
1
, b

2
 and o^ in the expansion (C.7)

are independent of 1 in the case S > 1 . Thus the. 1-dependence of

the level width ^ ( Л ) ie completely due to the pre-exponential

factor -t
Q
 , and ie. rather slow { see Section 3 ).

If H»1 , then ^ ( Д )
ж £ I/*2,and one baa to take into account

the first term in theocpansion (C.6). How V -=*.кг\*\

(C.6)

In this ease the constants оС,Ё> and a are still independent of 1.

However, exp(-2 9C\)) contains the factor expfl(l+1)/n] , the va-

riation of which is from 1 up to exp(n-1), when 0^l<n-1. The

sane Independence is present in the cocstant o
Q
 and in the

totice \.
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3. The cases H = 1 und 2 { funnel-shaped and oscillator poten-

tials) are nost interesting from the physical point of view. For

1=0 the function К ^ ) can be calculated in a closed form. Vi'e will

use this opportunity to test the above approximations . Рог Ы=1,

x
+
 e
iO+/>~*V ). Using the formula 3.141 (35) of the handbook by

Credshteyn and Hyzhik /17/ * one gets

( O
.

9
,

where

In the limit 9-a>-0 , we obtain

fe'Vv -нал-...

« |. ц-

in agreement with Bq.{C5).

=2, ire use the notation

T as Гn
 x

It follows from (C.4) that I(S>) = I ^ ^ I Q - I,. Integration by

parts with account for q(x ) = 0 , Iead3 to the identity

X. X- '

hence I(^ ) = yiy I
1
, Excluding I, from two above equalities,

one gets

'We are grateful to V.L,iSletsky for verification of the subsequent

formulae.



where

К and XL are the complete elliptic integrals of the first and third

kind, respectively /17/» In the limit V-^0 the parameter» n end к

are close to 1 i

Hence

(C.11)

and one gets the asymptotica (1.4) «ith the following parameters

( cf. (3.5) for tho case S=2, n*1.).
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We have shown thus , that the exact calculation of the func-

tion tl(50» possible for H = 1 and 2, confirms the result of the

approximate method of <C 1.

_£. Consider, finally, the Yukawa potential. Inversion of the

sign of the screening parameter yu. produces a potential with а

barrier,

where the bound state decays by means of the tunnelling. For the

s states.

where «i= 2A/£.= 2n Д+..., x
+
 are the turning points, determine*

from the equation tcexp(-gc) в п. :

(C.12)

The function e /x has a minimum at the point x=1, and is monotonous

in the intervals C\1) and (1,oo). Therefore, j ( A ) * ( 3.,+

1

S
and З2 -̂

s t a e
 iategral from 1 up to x

+
 .v Since x ^.1 at

we introduce an intermediate point « , such that K x « . x
+
 . Then



Next, we change the Integration variable, "С — у &

where f =• 9 e*/x » an*1 w i s a function ot t , determiaed bj the

equation &ёхрС1/и) * t / n . Since w .̂1 , we write the expansion

of Q(x) in pb'Wjerd" of w. Tae resul t i s ^<A>= ~j_ [x+-2(1-la2)+.

and , with account for £q . (C12) :

(C.13)

Put this expression into Eq.(3«1 ) and calculate tae integral by

means of the steepest descent method. The saddle pciat, A = A ,

is determined from the equation 1п(1/Л )+ lnln(1/A }

hence

-TTL к * и к Л к * - 0 ecu)

The result i s Bq.(3.1O) of Section 3.
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Behaviour of the energy eigen-values E(g) far the Htur.iltcnian

in the strong coupling limit can be found by means of a acLlinr

transformation . Performing a change of the variable in (J.i),

xi-*(2g)~
1/(N+2)xi , one gets

where

! * (D.2)

As oi-*0 at g-»ee, we obtain £q.<4.7), where

"2 T"

and £ is the eigenvalue of a simple Hamiltonian K(G)=p +r .

In some cases £ and c w axe determined without numerical calcula-

tions.

JT. For the s-states in the funnel potential, B*i , the solution

falling at infinity, is expressed in terms of the Airy function:

V(r) = const.Ai(T-S ). The energy spectrum is determined from ihe

condition У (0)=0. Let -z
n
 be the n«th zero of the function Ai(z),

then

There is a table of the roots /33/. For instance, at n=1 (the ground

state) 2^2.338107 and 0^=1.855756 • and for n»1 we have

2*. If »«2 , then

г (*З) t (D.5)
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J}. Рог а»1 tne quantities 8^ and c ^ can be found approxi-

mately from the Bohr - Sommerfeid quantization condition. In par-

ticular, for ns-statea we have

For example, A = НЭТГ)^ , A « 2
3 / 2

 and A • i'K
2
 tor S-1, 5*2 and

N-*-
<
=«, respectively
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footnotes

1) Here end in the following we put t » » « e » 1 ( the atomic

unite). For a more general potential, V(r) * «Zr^ftyir) , the scale

trasefoxnatzon т-*&г in the Schroedinger equation leads to the

corresponding transformation of the energy eigen-value E*
n
 '{Z,^)=

* Z
2
*E^

nl
^{1,/*-/Z). Here Z is the nuclear charge,^-"

1
 is the screen-

ing radius of the Coulomb field. So we put Throughout the paper

Z=1. note that the PT series (1.3) corresponds to the expansion in

1/Z in tne atomic physics.

2) Burnerical uaicuxations of tee tfchroedinger equation for the

entis

/13/

Yukawa ' ' and funnel-shaped' ' potentials.

3) For instance, for u=0 one has

where p » r/n , and 0 » 2 ^ " \{ 2n-1) l] ~* is the normalization

constant. The case l=n-1 corresponds to the deepest level with the

angular momentum 1.

4) By means of a somewhat different method, Privman^' has

calculated 40 PT orders for the Yukawa potential and 20 PT orders

for the funnel-shaped potential (2.12). Note that the normaliza-

tion of the Hemiltonian in his work was not identical to the

ours. The relations are as follows: 2Л = 2 E^ in the case of the

Yukawa potential, E£* 2^ N + 1 ̂ Jc"*1Ek for the potential in (2.12),

where E£ are Privman's coefficients, and E. are defined above.

With account for these relations the results of the cited works'1"*'

are in a complete agreement.

5) Such a potential with N«1 is used in the phenomenological

calculation of the level spectrum for heavy quarkoniua/12
Л Cf.

also in recent reviews on potentials for heavy quark-antiquark
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. рог I»2 one has a model potential, which is rather

like the potential for the Zeeman probles for hydrogen.

6) For example» т(г) * r fur the funnel-shaped potential (2.12).

In the case of the screened Coulonb potential (1.1) the screening

parameter u. stands for g , and » »[1-f(x)J/x , x =^r .

7) A brief presentation of the results given in this Section

was published in the prerious papers' • .

8) On the other hand, [n/l](x)c«»x*""* at x-**o . Therefore, PA

a transformation of the type (4.12) can not reproduce taorrec-

tJy the Borel transform &(x) for large x , unless the Index of

the asymptocica ^ is an integer.
/oa/

9) The recent worlc by Sei'geev and Sherstyuk contains tables

to our tables 2 and 3»

10) Let из make a few technical remarks. In the case of oC**S2

it ia convenient to rewrite eq.(4.5) as

(•)

о

with the power singularity at X~* 0 excluded. The Borel trans-

form B(JA replaced here by PA P*/fc*"̂ j which results in the

value:; of E (ft; , presented in table 6.

\Je used the [l»/t+^ J approximants with L — 0 , £ 1 .The

sequence of diagonal approximante (j=0) exhibits the fastest con-

vergence to £C<l) which is the cace for ordinary PA. The values

of PA (V'X'Hj ore unstable at Xi,O,Z due to influence of

neighbouring poles.

In our attempt to use the transformation (4*12) for the po-

tential yif)**—? +4>r we encountered with a technical

restriction: the accuracy of computation of A decreases
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rapidly with increasing k. This fact is connected with l

range of /3. values. Рог instance, Jb. -- 1.5, J\n~

= -2.156.1О"7 and J ^ o = 1.382Л0" 1 4 Tor N=2. On the other

hand, Д « 1.5, . J ^ = -0.0434 and

= 0.0O13 for B=1.

As a result, the summation of divergent PT series for the

furmel^shaped potential (2.12) with 11=2 determines В (й.) in

a considerably smaller region of Л, , as compared to that

with U=1, see tables 5 and 6. We guess that this fact is connec-

ted with the faster increase of higher P? orders in the K=2 case.

11) To compute the PA flr/Wj one should know I*LH-1 or-

ders of PT. In particular, determination of index V with a per

cent precision in the B=1 case requires about 25 exact coeffici-

ents B^, see table 4.

12) This trick is effective for power potentials ana was

originally demonstrated for the enharmonic oscillator by K.Syiian-

zxk, see ref. i n
/ 4 4

' p.85.



Tab!» 1

X

1.0

1.5

2.0

2.5

3.0

4.0

5.0

10

аи)
0.9221

0.9467

0.9595

0.9674

0.9727

0.9794

0.9635

0.9917

1.0405

1.0275

X.Q20S

I.0167

I.0139

I.0104

1.00335

I.004I7



Converge*! -a of diagonal PA N/Nfoli> for states with l«n-1 in Yukawa potential.

V

6

7

8

9

10

15

18 "'

{

/Г ш Q.5

14.81I72I8

I4.8II704I

14.8117024

14.8117022

14.8117022

14.Ш7022

14.8117022

= 0

A
I .

I .

I .

I .

I .

I .

I .

r« i.o t

0318

029II

02866

02859

02858

02858

02858

N

6

7

8

9

10

15

20

/*

4

4

4

4

4

4

4

r

?* O.IO

.653442434

.653438968

.653438936

.653439088

. 6 6 * 3 * * *

.653439049

.653439049

N

6

8

10

12

15

18

20

€

f"
2.

2.

2.

2.

2.

2.

2.

— T

0.15

II076858

II0458I6

II048937

11048846

11048689

I1048889

I1048889

/(= 0.20

0.4182

0.4076

0.4101

0.4099

0.4I0I

0.4102

0.4102

Footnote. She presented values are 1O0*E



Table 3

Determination of ЛЛ
С Г
 by means of diaconal PA.

6

8

10

12

14

16

18

20

according
to ref. '

according
to i*ef»

0

I.1896

I.1S06

I.I906II

I.I906I2

1.190612

1.190612

1.190612

1.190612

1.19061

1.1906214

I

0.2220

0.2189

0.2198

0.2197

0.22u0

0.2199

0.2201

0.2201

0.2202

0.2L0

2

9.II8-I0"2

9.108

9.127

9.140

9.132

9.134

9.133

9.134

9.135-I0~2

0.0913

5

2.I505-I0"2

2 Л 532

2.I52I

2.1524

2 Л 525

2.1524

2.1524

2.1525

0.021525-10"2

—

10

6.24644-I0"3

6.24988

6.24924

6.24997

6.25004

6.25001

6.25005

6.25005

—

—
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gable 4

The index V of aeyaptotic (4.7) for the ground etete.

Yd*)'-

L

£

6

ID

U

Ц

13

14

15

I€

5

exact
value

V^ according
eq. (4.Ю)

0.915

0.560

0,565

0^670

0.670

0.662

o.ee?
0.666

— . •

0.667tP«J003

V̂  according
eq. (4.S)

0.453

0.336

0Л71

0.400

0.423

0.508

0.479

0.46^0.04

^ according
eq. (4.1С)

—

0.296

0.855

0.39C

0.582

—

0.669

0.4X5

0.503

0.51+0.10

0.5.



Table 5

Suramation of P'i
1
 series for the funnel-shaped potential by Fado-Borel method.

3

5

7

9

11

13

15

according
to xTtti*'

0.976 562 . . .

0.554 641

0.556 523

0.556 744

0.556 ?61

0.556 763

0.556 764

0.556 764

0.556 767

4.0

-

2.79384

2.79515

2.79556

2.79566

2.79573

2.795754

62.5

-

24.503

24.634

24.716

34.763

24.792

24.8563

100

32Л5

33.56

34.25

34.47

34.61

34.70

34.75

-

300

69.85

71.76

73.59

74.21

74.66

74.95

75.15

-.

500

98.9

101.7

Ю4.4

105.4

106.1

106.6

106.9

108.366

1000

157.9

162.5

167.1

168.7

170.0

170.8

171.4

-

. The enclosed values are refered to the ground atate energy for Vw-г"

The last row repreeente results of numerioal solution' ̂  of the Sohrodinger equation

with Я»2
г / З

в"
1 / З

»1.6, 1.0, 0.4 and 0.2 .



*.'•'" Table 6

PT eeriea suramatlon for the ground atate energy in V=.-Vr*gr2 potential,

PachS approximate

ь
8

16
12
14
15
16
I?

WLl
-0.2984
-0.2976
-0*2971
«0.2968
-0*2967
-0*2966
-C.2966

• 0.1

-0.2986
-0.2945
-0*2950
-0.2958
-0.2954
-0.2955
-0.2956

-0.2740 '
-0.2863
-0.2920
-0.2936
-0.2940
-0.2944
-0.2946

-0.168
-0.163
-0.161
-0.159
-ОД58
-0.15?
-0.15?

f 0,2

U/L-tJ Ц/WJ

-0.184
-0*189
-0*142
«ОЛ44
-0Л44
-0Д45
-0.146

-0*886
-0.652

0.008
-0.082
-0.099
-0.109
-0*11?

PndeS-Borol

Ь
8

10
12
14
15
16
17

-0*296
-0*296
-0*296
-0*296
-0.296
-0.296
-0.296

f
J
098
087
088
088
088
088
088

• 0Д

Vull
-0.296
-0.296
-0.296
-0.296
-0.225
-0.296
-0.296

-

078
070
087
086
087
088
088

-0.151
-0.151
-0.I5I
-0.151
-0.I5I
-0.I5I
-0.151

\

26
08
11
10
10
10
10

0.2

(X/WJ
-0.B0
-0.150
-0.I5I
-0.I5I
-0.151
-0.I5I
-0.151

81
n
08
01
08
10
10

0.1767
0.1802
0.1794
0.1797
0.1795
0.1796
0.1795

- 0 . 5

U<{W)
0Л848
0.216
0.1809
0.182
0.1806
0.1798
0.1798

0,577
0.597
0.592
0.594
0.592
0.593
0.592

[.0

0.618
0.643
0.604
0.621
0*605
0.596
0.595

iW
USD
1*75
1.70
1.73
1.70
I.7I
1.70
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Figure i. Shape of the potential in (2.1*:). Рог g < 0 the poten-

tial has a maximum at the point г =("Hs) \ and V(r ) o»

a r e
t u r n i n g

 p
O i n t 3 r o r t n e s 3

tates.
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-5

-6

-7

Tigurei. Screening peĵ eeeter (u) dependence of Д-1-2Е)* for

the ground state in the Ytdcvwa potential. Suabers at the curree

indicate the ralues of I. The cuma with I « 18 - 22 coincide

within the accuracy of the drawing.



Figure 3« Screening pareineter (u) ue?en<Uae# of tb« binding

energy f o r t h e s t a t e w i t h l * a - 1 . fh* v a r i a b l e * a r c f 2 1 ^

and
cr

, t h e c u r v e s a r e c a l c u l a t e d b y o e a a a o f Pi. « i t b
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10

Figure 4. Values of
er

tor as states in the Yukawa po-

tential.



-OA

-OJ5

Figure 5. FP polynomials for the ground level energy in

the funnel-ahaped potential, a) N=1, and b) H=2. Cuxvea are

labeled by t, , see eq.(4.14).
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/10

/ /8

Figure 6. FS polynomials for the ground atate in the

Yukawa potential. !The comparison of thia figure vrlth. fig.2

demonstrates the advantage of PA.
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