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Calculatlon of higher orders of the perturbation theory is con-
sidered for screened Coulomb potentials. Particular cases of such
potentials are the Yukawa potential, a familiar object of nuclear
physics, and the funnel-shaped potentiel, applied to analysis of
heavy quark-snticuark systems. The calculation of higher perturbasti-
onal orders is reduced to recursive relations, quite appropriate
for computer. The Padé approximants and a modified Padé - Borel
summation method are applied for calculation of sums of diverging
PT series., A transformation of the wvariable, removing the nearest
singularity of the Borel transform to infinity, is also used., The
maethod enables one to calculate the energy eigen-value E(g) with
8 good accuracy for sll physical values of the coupling counstant
€ , including the case g-w»oco., Thus we show that in the considered
problems higher orders of the perturbation theory determine the

behaviour of E{g) in the region of stronz coupling.
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1. Introduction

In gsome recent works /1-3/ the periurbation theory ( PT ) wes
developed to high orders in the quantum-mechanical problem of

gcreened Coulomb potential 1),

2
i i
H-.—%:'“F‘S(J“r) ’ (1.1)

§O=322 60", 54 x=pur (1.2)

Treating M as a small parameter, one cam condiruct perturbational

seriea for the erergy eigen-values,

(A oo n,
Ey (JV\)..—.. E‘E(kﬂ‘/\qk {1.3)

and for the wave functions. Here n = 1, 2,... is the principal
quantum number, 1 is the orbital momentum, 0Ll -1 , and x is
the PT crder. To calculate Ek we use the logarithmic perturbation
theory ( LPT ), for its use i3 quite suitable for nodeless states
( see in /2-9/, and in the following Section }. This metbod en-
ables us, with account for th. avesilable computer facilities, to
calculate easily 100 -~ 200 orders of PT for a number of problems:

the anharmonical cscillator, g(i’a)n, in space of an arbitrary di-
mension:iity D, N =2, 3,..., see the works /5,6/3 the Sterk /7/

and Zeeman 9/ effects in tiae hydrogen atom; the screened Coulomb



potential /2,3/, etc.
However, 3uch calculetions do not solve the 1mp6rtant problen

of determination of the energy eigen-values,since the real phy-
gsical problems are relevant to the region of f‘“" or even ;Q;>1
( 1ike the region of strcng coupling in quantum field theory ).
Meanwhile, the PT coefficients Ek , 88 & rule, have a8 factorial

increase -with k-=vo,
fim E./E, =1 . E&=(ko<)! ot L‘Pc, (1.4)

vhere z!= P(z+1) , and >0 , P » 8 and c_ are some constants
that can be cslculated. The reason of this rise is that in the
situation, typical in quentum mechenics and field theory, the per~
tnfbation operator haa h stronger singularity than the unperturbed
Hamiltonian H, . '
Because of the e¢stimate (1.4), the PP series (1.3) heve cero
convergence radius; in other words,they are only asymptotical.
Therefore,in order to reconstruct the sigen~valne E(}L) with the
P? coefficienta Ek one hes to apply the special methods ¢f summa-
tion of diverging series /10/. ' '
In the present work we consider calculation of higher PT or-
ders E,, their asymptotics E; , end sumration of diverging PT
series for screened Coulomb potentinls. The results of the summa-
tion are compared with the values of the energy obtained by means

2}, fne comparison shows that in spite of the fac-

¢f other methods
torial rige of the PT coefficients Ey» the summation methods con-
sidered enable one to reconstruct the energy eigen-values with a
fair accuracy even fsr teyond the region of the week ccupling.

Phis fact excites a hope that the method can be applied success-

fully to othér‘problems of quantum mechanics and field theory.
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2. Logarithmie parturbaiion theory

' Caleulstion of higher PT orders in quantum mechanics has Leen
considerably advanced during the recent yeers as a result of the
development of LP? ( a few comments on the history are given in
Appendix A). Using LPT one can reduce the calculation of higher
PT orders for polynomial potentials to recursive relations, that are
guite convenient for computer calculations.

Let us consider iu brief the idea of this method,taking the
screened Coulomb potentiel (1.1) as an example, Here we reatrict
ourselves to the states with l=n-1, tke corresponding radial wave
functions have no nodesB). The application“of LPT tb this case is

egpecielly simple.
The substitution

‘P
R(ry= cm.at-‘pn*i %p{-§ %(f') JJJ’}
p=r/n, =-€/2n

trensforms the Schroedinger equation to the form

‘i;% =-£ + %P'—'-(f—g,) + g

where £z f(nfj:) ; R i8 the radial wave function. Expanding € and

(2.1)

¥ in formal power series,
) k o k
£= - =4 — p
_ ':{;( M e, ylpm=1 M ey 2

ope has the loweat orders of PT, ao.-.» Y, = 1, £1= 2n2f1, y,;-o,_
and for k2Z2 one gets a differentiél equation for eny kao ),
which is easily solvable by quadrature. It is essily seen thadt
¥ s a polynomial of degree (k-1) :

E
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Yy (p)= } p", k22 (2.3)

k+1f , and cther coeffi-

the highest coefficient here is C(k) X

cients are determined by th: recursive relations

k Ll (K ez e
C})=(H+L§"")C- @ -t

(2.4)
1€J k-2 . Lowering the subseript consecutively, at the last step,
J=1, ome gets the correction c\aj‘, to the energy eiger-value,
Ek=(.1)k"" M—iz/z o | (2.5)
) n i
r-%s completes the k-th order P? calculation.
" A few comments are appropriste here.
1) Egs.(2.4) hold for arbitrary screening functiom f(par).
In order to get the formal PT series one has just to asasume that
Taylor's series (1.2) exists for f(x) near the point x=G,
2) In the end, the quantities c(g) and Ek are expressed in
terms of Taylor's coefficlents :k of the screening function. For

instance,
(k) bl k-2
C . =5%n [@n+k-y
=70 [ Bornz2 65 1
(kY ky '
C 4 ==(71*'i) ::2 ' at k>3 .

3) The first twc orders of the PT expansion ere E=1,,
32.-n(n+i)f2 + The higher terms are

-
Ek= ﬂﬁi’%%fi‘.-l(.n) ‘Qk Ck»3 - @8

and Qk is & polynomial of degree k-3 with respect to n. It con-

LS
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taing terms of the form fa!b...rc , wWnere a+b+...+c=k , and _

every subscript a,b,...,cp»2. Por example,
@y =75, , @4 =(2,n+3)f4 +n _Ezz
Qg = @n+3)(2n+4)5 +2ntin+53§, £, , ...

It is not difficult to go on with these computations, using a
routine for algebraic programming by means of computer. One snould
have in mind, however, that with increasing k the explicit exp-
resgsions for Qk in terme of fn become too cumbersome rapidly

{(cf. also in /14,15/ ). A more suitable way ia to calculate higher
orders in PT for any particuiar screening function, using Eqs.(2.4),

{2.5), substituting the corresponding coefficients fk‘
4) The ebove equations determine the perturbative expansinsn

not only for the level energy, but also for the wave function. The

relevant formulae are presented in Appendix B.
Let us congider some examples. Start from the Yukawg potentisl,

fy=¢e* | fk=.(k!)—1 (2.7)

Replacing the coefficients in (2.3) by cgk) = 2dt1=k( gy~ k”A(."Z
(k)

one has - = 1 , and

k-2
__(2n +;.+4.)A +n§:(k)z A Ad“t) (2.8)

Cleariy, all A§k) are positive integers, so the computer s2alcula-
tions do not leed to a loss of the accuracy. The result is

E,= 1, By=—4n(20+1) , and for k»3 ,

ket hed chy
s T D +0@QN+)
k 1) 2 k! A, (2.9)
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The guantity Aék) is e poiynomisl of degree ' k-3 with respect
te n, '

1) &)
A L=8n+5, A, =84 n*+144n +12 ,

(6)

A, =1408n°+ 2868 n*+ 4464 n +60 |

AT =28 240n"+85 320n*+ 78 540 "

+18 500 +360,

¥e have calculated 25 PT orders using the slgebraic programming
system REDUCE—Z. The results are in agreement with a previous pa-
per /14/, where firet 4 orders were calculated for states with
1ep-1 ( see Eq.(57) in /16/ ). Comparing our procedure here with
that in Ref.16 , one sees to what extent LPT simplifies the calcu-~
lations.

Por the grounéd atete, n=1 , the PT coefficients (2.9) are in
agreepent with those given in preceding works /1,2/; see Taﬁle 1
in R2f.7 , where 100 PT orders are presented 4?

The screening function for tke Hulthen potential is
o X -1 k
- fo=x(e"~4Y", §, =61 B, /k! (2.10)

where B, are the Bernmoulli numbers /17/. Simce £(-x)-f(x) = x,
here f.,= f = f,=...-0 , and all odd P? orders, starting from the

third order, are zero. By means of Eqs.(2.4) we get at once:

\n 1) '
. (M) = -5%; b — g n(nﬂ/z)yM” -

(2.11)

480 1)("'4'1/2)[}’\ +a.‘f\ +a jA-Q» ]



T
where

0 = gz (64 P 35n ~60) |
etec, Por the éround level xkso at k;pJ s In agreement with the
exact solution /18, of_the Schroedinger equation,
. .
Eo(m) = =5 @-m)

The 1last example to be considered here ia the potentialsr

V(r)z":;:“"g-r'”’ A/==i,2., .. . (2.12)

which fits - the patterm (1.1) with pa= g'/ (M) | p(g) & 17,
Orly integer powers of g are present in the prannion of B, so
non-vanisﬁing terms in the series B =:£§;)~k are those with v
k= N+1,2(8+1),3(B+1) etc. It is more reasonable to write the PT

geries directly in powerz of g , not /Py ’
k

Y a_-i‘;tn;r""&@)}= ég&)&—g)" ,
fo=

2

- (k)
EE::
= = %

for k2>1. Substituting these expansions in the Riccati egquation -

%Yi

4 tRET 4 =2(E+F-gr¥)

we get the recursive relations

- (k)
4 (k-
o = 2,[(1“+}+i)0- Jrz:z:_‘f it ol R RTY
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where A.‘Z}1 . ¥ith these relations ome is able to decremse 3

at any fixed k , and E, =(-1 )k(-n+§)agk) . However, one has first
to find the higher coefficient in the polynomisl y ()with jak.
ith a provisional motaticn Q&= sg? we obtain from (2.13) &
closed equation

of =D k-1
k= 2 E °<Z ’(k..g . °41=h
Because of thia relation, the generating function for tihese num-
Lers, G(s) = Zf'iz . sstiafiea the equation G = &nﬁz +nz. . Ita
solution is G(z) = -—( 1=(1= 2n2z)i') , 80
k-1

o(kn 0.::3 -E-;———- C
shere C'k are the Catalan numbers, uaed in the combinatorial enaly-
si;u d d (‘q 2, Cf=5 c=14etc. As usual, we get the
sorrection to the level energy at the last step as‘l,Ek-( -1) (n+})ai)

(2.14)

The substitution
® nW+a.)i=-;-4 (K

CL* = KT E} (2.15)

reduces the problem to recursive eguations with iutegers,

(kY
— (2k-2)!
=__,__4.
2"‘” C, k! (k=t) °
(2.16)
k) ' R = (™)
‘ '.z, 3

= H *
3# (2n+j+1) £Jﬂ+ E{ &

1 £ 4kE-1 . The firgt-order PP correction to the energy of the
(n,n—1) level is

ﬂ . ' V
E, =n"(r+Z)n+%8 . (n+4) | 2an



and 1'¢cr k2,

ked n(m-q.}k—z (k)

E, = (1) W(mﬂ)(n-t— -%)’1;9‘ (2.18)

It is noteworthy that the nonlineerity KN i3 not present explicit-
ly in Bqs.(2.16). It determines the number of the recursive rels-
tions for a givem order of PT, k. A similar situation takes place
also in the case of the anharmonical oscillator /6/, that is the
system with the Hamiltonian '

H=p +F*+g ey | #*o = (2 (2.19)
: i=el

Thus LPT is an effective metbod fcr mlculation of higher orders
in the PT expangions for the acreened Coulomb potential, as well
as in other quantum-mechanical problems /5-9/. Bqa.(2.76) were
used already /2/ for calculation of the coefficients Ek for the
cases N= 1, 2.

We do not voncern here an interesting variant of LPT, intro-~
duced in Ref.4 ( there it is called "perturbation theory in devia-
tion from the esymptotica™). Ih tkat case the expamnsicn iB 20t in
powers of the coupling constant 8, but in more complicated func-
tions of g. The choice of the zero approximation takes into acco~-
unt the behaviour of the exact wave function 2t singular peints of
. the potential V(r), say at r = 0,°9, The methoil leads io itera-
tions converging rspidly, as it was shown in a number of exsmples:

the anhsrmonicel oscillator /4,21,22/, the Stark effect ir ithe hy-
drogean atom /23/ etc. The fact essentiai for the csalculations ix
"that the k-th order in the perturbation theory is expressed by means

of quadretures of the preceding crder. Puriber detelis of the methed

are given in Refs.Z2t,22.
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3. WEB wmethod and esymptotics of higher PT orders

Let us conzsider the Iiamiltonia;ne) HE= ipzh - 1/ + gv(r). It
is known /24-7 thaet in order to calculate the koo asymptotics of
the PT coefficients Ek one has tc Tind the discuntinuity of the

level energy at the cut g<0,

2E = [E(g+10-E(3-i0)) = £ /- 3)

and tc apply the dispersion relations:

k¢ oo : '
_ =t an {3.1)
E, *—-&73{:- §imf(’\-), ke >k,

where A=-g , and k_ is the number of subtractions.it g<0 the poten-
tisl barrier tunneliling becomes posaible for the pa-ticle, see Pi-
gure 1, end the bound state is itranaformed into quasi-stationery,

of a complex energy &K = to -if/?. The asymptotics, ’Ek’ ia deter-
nined by the behaviour of the level width 1 at g-»-0 , and the
WKBrethod isquite appropriste for the problem. The result is

iy =Y exp{-2000)} ' 3.2)
where v .
Joy=F - 2 14
'S:’ PIJ" ’ ‘P(?‘)!-—-{-Z,E ,*—%_. + %_1. "'{LA.V({")}

g (3.3)

nrA et &
Y = +A) —(n=A) -2n
* e DI-2-1) 0t

A= 1 =0 for the § states, A= 1+% at 140, r, are the turning
points. Some details on the derivation cf these formulae may be
found im Ref.2, One shouid have in mind that the acourscy of Lg.(3.2)
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18 asymptotical in the limit A~»0. The formuls can be rewsittea

alao in another form,

| e
f(A) =A2d Wi‘zél P dr § (2.4)
where
f Rm* =
“"d’f"-s, A = ] , £=0

4(n+A)gin-A) , L24

- _ fTmT(x/e)" _gREsed)
Q(x)._ T(x+) ° VOO =

and e=2,71828... . The phycical meaning of Eg.(3.4) is quite clear.
Note that W_j= 2%/T , where T =¥ (2[Ef%)"¥ = 20 1a the pariod
of the classical particle' motion en the . pler ellipse, Eo=-1/2n2.
So 061/23" 18 the frequency of the particle impacts sgainst the po-
tential :barrier at r = :E__ , and the expoment in (3.4) is tae proba-
bility of tunnelling at every impact. If the WKB approximation
would be exact for arbitrery quantum numbers n and 1, the coef-
ficient A would be ju,st' 1. This is the case for large quantum num-

bers, since at x-see the expaﬁsions take place

Q(X):i——ﬁﬁ-mﬁ'. 5

1 . 1
93Xy = 4+ 7% T 1i52%0 +...
However,' the deviation of A from 1 is small also for m, 1 not very
large, see Table 1. Even for the ground state 4 = 2‘]’e'2=0.8503...
Thus the domain of applicability of the WKB method is extended to-
ward nes1 {( as it was observed in a number of other physical prode

lems, see e.g. Refs.25,258a).
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The function gv(r), perturbatica to the Coulomb poteniial,wae

not @pecified until now. Comsider the potemtial (2.12). Ir this
case, the integral 3 (A) 1s e-~sily calculmted fcr 1=0, see Appen-
dix B. Parameters of tbhe asymptotics (1.4) are

L=N, JBSZY\-"L, a—_:—A~n~+2' , (3.5
where
-w/z ?:N+SL\ T AN+
Ay {r(=w >3

The coefficient oo in (1.4) for the funmel-shaped potential ie

(3.6)

c N=4

o = 7 Zr@. aly ('é‘-" >

For the ground atate in the case of an arbitrary nonlinearity N>d

it ia
- *2.)!"(”%\’1) 2
f=-2* " {Sr )

Now we turz to the snguler momentum depencence of the asympto-

(3.7)

tics E_. The l-dependence of the pre-ezpopential factor in Eg.(3.2)
i very sllght, 1t is

foin, & _ wm+Mo,(n4\ L 2t |
¥, (n,0) GE AT ngge (3.8)

for np?1 , 1 £ O, The leviustion from 1 is meximal for 1lsn-1,wher

) 1.182, n=2 ,
n
Yo 3004 _ ) ri1as, e, (3.9)

L
r ( o) (T/e)ig 1.075.,-. Dy O,
48 to the integreal 5 (A), its 1-dependence for §>1 manifests
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itself only in the terms, ve.nishiné at A-»0 , sece Appendix B .
If ¥=1, the constent b, in Eq.(C.7 ) depends on 1. To conmcluds,
the parameters M,P and 3 in the asyvmptotics (1.4) do not de-

‘pend on 1.
Pinally, let us consider the Yukawa potential {2.7). Calculste

the integral *J(A) at A-»+0 , substitute it in the dispersion
integral (3.1), end apply the steepest deaceni method to find the

asymptotics for ns states /3/. The result is

k+4 n k
E, ~E0 K ('—1—2.4" ) , k> oo (3.10)

'

( some details of the calculation ere given im Appendix C). The
obtained asymptotics is somewhat unusual, it is not Ek«ak!ak ;88

for a polynomial perturbeiion.
In the exzmples corsidered, higher orders of the perturbatiom

theory rise as factorials at k-»eo. rherefore to reconstruct ihe
energy E(g) , having known the PT co2fficients, one has to apply

special metnods of summation of divergent series.

4. Summation of PT series

Tne summation of the PI series will be applied to the Yukawa
and funnél—shaped potentia.ls”. We will show thet, with a number
of PT coefficients E, calculatad exactly, snd with their asymptoties
‘E;, it is possible to reconsiruct the energy E(g) a0t only for
g+»0 , but also in the strong corpling region, g3p»l.

start from the Yukawa potential (2.7). This is an example of

éspecial physical importance, as 1t is involved very often in ato-
mic and nuclear physics, theory of solid gtate, plasma physics

{ the Debye screening ) etc. As it is seen from (3.10), the PT series
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in this case ig asymptotical, not converging. For the summztion we
use the Padé epproximants ( PA ), [g/l](r.) = Pl(r)lqﬁ()‘)° Here
!. and QN are polynomigls c¢f orders ¥ and N, respectively, ibhat are
determined unembiguously from first K+N+1 coefficients of the PT
expansion, by means of the conditiom

E(m)m3TE, mi= (i Oy 0
{ explicit expressions for P’l and QI are ?reunted, say, in Ref,

28 ). We use diagonal PA , i.e. MeN. .
Phe results of summation of P? series are shown in Figures 2

>

and 3, respectively, for the cases 1=0 (the ground state) and 1=
sn-1, np2. A repid convergence of Pi {Hﬂ_]( )-4) with increasse in ¥
is seen in Pigure 2 ( more details can be found in Table 2 ).

¥ith rising o~ the bound energy is increased, and ) falls.

At certein value of )A = Mor the quantities E and) are equal to zero,
and the real bound state disappears. As it is seen from Figure 2 .,
PA provide with the aum of the PT series not only for A >0, but
also for A( 0 ( this region corresponde to a virtual level in the
case 1=0 }. It im interesting to compare Figure 2 witk a problem
baving an exact solution. In the cmse of the Hulthen potentiasl /18/

one has for ns states

i n -
A= TN Marn(nS)=2n72 (42)
Thus A -(--'«.’Exw)i is & linear function of the screening paremeter
M in this case. For the Yuke.. potential the )= -dependence of
A is also close to linear for }f"”/‘cr' see Pigure 2 . Besides,
the n~-dependence of )‘c,(na) 18 also similar to (4.2), see Pigure 4.
As for the states with 140, all curves corresponding to 2 1<10
in Pigure 3 lie botween the curves for ls2 and 1«10. Thus the angu-

" . - .
lar momentum dependence of £ 1s rather slow, in the reduced va-
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riables &= 2:;23(”‘1) and PAph 9
The cslculated magnitudes of s .. are given in Table 3. There
i3 a slight loss of the accurscy in calculation of )‘cr by moans
of PA when we go from 1=0 ;o 1l=1, then the accurscy is improved
again. The agreement between the summation of the PT series and
the numerical solution of the Schroedinger egquation for this case/11/

is perfect.
If 140 , then for )“)/“cr the bound state is repleced by ths

Breit-Rigner resonance: E = B - 1!"/2'.

: L+1/2 :
E.~ J“"/‘u' , r N(v“—;f“cr) (4.3)

Meanwhile, for s states one has for /n.- near the critical valus

)“ cr’ ~‘ )

A W./“‘er",}"\, E M'(f‘“f“@)" (4.4)

This is an effect of a qualitative difference between the states

with 120 and 131 that is due to a pressnce of & cemntrifugal ber-

rier in the latter case, which is essential for slow porticles.
For the funnél-shaped potential (2.12), tke problem of recom<

struction of the energy B(g) from the PT coefficients is reascnable
in the whole region 0 gde®s , but iis solution requires more po-
werful methods than PA. Such a method, and very suitable for phy-
Bical appiicationa, is the Iadé - Borel method ( mee ¢.g. Refs.29,
30). If at k«woothe asymptotics is Bkal(k¢)!, we put

E(§)=E, 3“3-44"‘3""‘?«9{-%)”‘} T s

where
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B(x) «_-.?kak , 8, =E,/Tlatt) (4.6

Becauge of (1.4), the nearest singularity of the Borel transform
B(x) is situated at the point xoxa'1, and B(x)'m(x—xo)"2 at X-»X .
Substituting in the integral (4.5) the function B(x) by & P4 _
[‘n’./li](x), constructed with the coefficlents by, we zet an appfo-
ximete for the energy . E(g). As it is well known /28/ & use
of FA enables one to reconstruct B(x) outside the circle of con-
vergence,

Note that the behaviours of the functions E(g) and B(x) at
infinity are essentially identical. Actuaily, the aaymptotiée

E(g)zc,cg,"(i-k 61%"’1.‘."_)’ g s (4.7)

corresponds to

~» V4 8 -
B = e X [ * Fedompen’ )

X ~» ®o
( here ¥>-1, 0 9, { ¥+1 ). Taking this fact into acccunt vne
can use the following equality in order to find the index of the

(4.8)

ssymptotics 4 1in Eq.(4.7):

V = &X B'(x)/B(X) (4.9)

88 well as the following identity, for 9>~1 ,

-V -t lim xev(x)/fb()(')dx’ (4.10)
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Numerators and denominators in t;e;: fractions were repleced with -
the diagonal PA's [L/L](z) . To calculate the index Y one has to
find the limit of ¥ o(x) at B~ and fized x, and them let x
tend to infinity. Por illustrstion, the correspomding quantities
at x=100, calculated by means 'of (4.10), are given in Table 4. Por
L>»!0 the convergence of QL is rapid enough. The aversged value
3 ., calculated over the lsst five iterations QL » deviatea from ‘
the exact quantity V=% by a small number of 0.5 %. Thus this simple
method enables one to determine the index of tine asymptotics of the
energy eigen—value' BE(g) at g-»oo, basing on the coeffirients E!,
of the diverging PT series. Eq.(4.9) leads to similar results, trough
the—ionvergence of 91‘ with risi/nzgsﬁ is somewhat siower. The reiult
is 4 =0.7040.02 for L = 10-14. '

More sophisticated methods are necessary to calculate the coef-

ficient c_ . We use the substitution

Y =X/(4.—-a;~;)".v ' (4.11)

where a i§ the same parameter, ag in Eq.(1.4). The substitution
(4.11) removes the neareﬁt aingularity of the Borel transform B(x)
to infinity: y-moo when x-»x = a~'. Besides, B(x)eo xqﬁ"y at
x-=00, and such a behaviour is easily reproduced by means of PAB)
[N+1 /N](y) for any ¥ . These Pade approximants are determined from
the coefficients }k of the saries rearranged in terms of powers of

the new variable y ,

k k '
B(x)=3"48 x" ms— (4.12)
)_ & =AY |
( see Appendix D ). As one should expect, the trunsformationm (4.11)
leads to a sharp decressve‘ in the coefficients. Por insiunce, for
§=1 we have E,=-3.281.10%, b ;=-90.4 end B, -0.0883 , and for
Ne2 ; E;g@8.581:10'%, b o==3.53an8 P, 0=-0,00187For higher PP
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orders the decremse in the coefficients is even more manifesti,agee

Figure 5. Therefore the séries.:fjgkyk is summed up easily. It

follows frem Eqs.(4.8) and (4.11) that

¢ = v +t) oy i e (13

Por the funnel potentisl, Eg.(2.12) with N=1, we get c_ =1.764 at
%=15, to be compared with the exsct quantity ¢, =1.855 756...
( see Appendix D ).

¥ow we turn to calculetion of the energy B(g) at finite values
of the courling constant 4g. In the case N=1 we ﬁave Ekcyﬂk! -
=1 in (4.5). Substivuting B(x) in (4.5) by its.PA [h+ﬂ/ﬁ](v) and
caleulating the integral numerically, one obtains E(z). As it is
seen from Table 5, at ¥ = 15 ani g~~1000 , the error in E(g) does
not exceed 2 % , and the mccuracy is sherply improved for lower g.
The method used here to sum up the diverging Pr'series, enables one
to obtain the ground state energy wiith a good asccuracy for sll phy-
sical mgﬁitudes of the coupling constant, 0{gcea.

The summetion of the PT seriee for the oscillator well, eq.(2. 2}
withﬁ wag garried out in the game manner, In this case Ekm( 2x)!
and the divergence of the PT seriea%%ven worce, sc the recomstruc-
<ion of the energy E(g) in the atrong coupling region basing on the
soefficients Ek ig more difficult., In particulsr the index of the
saymptotics ¥ is found with a poorer accurecy than in the precedihg
ca3n { zee Table 4 ). Since ol=2, the Borel integral {(4.5) at 5}91
converges sloser than in the cuse &=1. This fact, in turn, requi-
re8 8 calculetion of the Borel transform B(x) fTor higher values of
the vuriable x«, |

The resulta of nalculation‘o) of the euergy E(g) &re given in
Tuble 6, and it is scen thut the ususl PA [LIL+{](5) tre invulid

.evenyror a~N0.15, Uaing'thc Pude ~ Borel appfcxiﬂants one geta B(g)
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at g~0.1 with a high accuracy and the results are satisfactory

up to g~ 5. In the examples considered ithe diagonsl approximants
[L/L] converge to the limit most rapidly, e aimilar aituatior was
‘found also in a number of other problems /27/.

The effectiveness of the Pade - Borel aummation method can be
appreciated properly comparing it with the conventional periurba-

tion theory..The PT polynomie’a

k
@)="E (418
Putd) = 2= =u 2
for N=1 and 2 are shown in Pigure S. The boundaries .of the domain
of applicability for PT are at g~o.1 and g~0.01 , respeciively.
The estimate is 1n agreement with the forwula /31/

o 1.84 L™, for N=t
Ale) — ' 4o1
3s “("“) { 2.28 % for F=2 . (4.13)

With rising L, the number of terms in the PT series, takem into ac¥
count in (4.14), the domain of the approximation of E(g) by means
of the polynomials ?L(s) is contrac‘ed, so 1t is necessary to aban-
don‘the usual PT and to apply the special summation methgds. The be-
haviour of the PT pulynomials in other problems is analoguous. SJee
e.g. FPigure 6, relevant to the Yukawa pofentiel {the comparisan to
Figure 2 illustrates the effectiveness of the use of PA instead of
the standard PT polynomiais).

Note that for the potentials of the type (2.12) the PT series
is summable by means of the Borel method /32/. In this case higher
PT orders contain an information on the behaviou: of the exsct zolu-
tions in the regiom of strong coupling, in spite of the factorial
increase in the coefficients Ek’ An effective method for the recon-

atruction of E(g) for g>>1 was considered above. From the examples
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considered it is evident , hoyever, that to aepply the method success-
fully one needs a sufficiently high number of PT coefficients cal-

culated exactly11).

The authors are grateful to K.G.Boreekov end V.I.Lisin for use-
ful discussions of computational problems, snd to S.P.Alliluev and

V;L.Eletsky for discussione of the obtained resultis.



Appendix A

There is an increasing interest in calculations of higher
perturbational orders during the past few yeara. The structure of
'PT geries was investigated thoroughly for energy levels in oue-
dimensional 24 / and multidimensionalV/4,6/ anharmonical oscilla-
tors and for a humbar of other gquantum-mechenical problemsa’1-9/.
Berder and Wu /24/ eatablishe. a relation between the asymptotica
of the energy coefficients E., for kK-ewee, and the width of {he un-
stable stsie, sppearing when the coupling constant g Zets the op~
posite gign; they kave also shown that the WEB method is applicable
to the calculation. Extension of these methods to quantum field
theory was originated by Lipatev /34/, who developed a semiclaasi-
cal method for calculation of the functional integral and eppiied
this tecnnique to a renormaslizable scalar field fheory wi:h the

interaction

HW:%HH‘PX . V=35
( in particuiar, for D=4 we have the qp4 field theory ). Further
this region was elaborated intensively by a number of authors; see
for example Refs30,35-37 and the reviews ,'38639/.

The svanderd gquantum-mechanical PT‘methods require a knowledge
of the whole sgpectrum of the urnperturbed Hamiltonisr, for the PT
orders higher than the first ome. The main difficulty in such
calcuiations liss usually in calculaticn of spectral sums that are
involved in formulae of the Rayleigh -~ Schroedinger perturbatiom
theory. One of the possible ways to avoid the difficulty is to for-
mulate the PT expansion in terms of the logarithmic derivative of

the wave functiorn, that is a soclution of the Riccati equasion.
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It is for & long time that this method has been applied to one-

dimensionel problems . Zeldovieh /40/ ( Bee also in the book,
J41/,p.143 ) wes first who has ;ndicated that. the whole perturba-
.tlon theory for a state belonging to the discrete specirum can be
constructed with the unperturbed wave functiom for only the level,
corrections to which are to be found. The following expression was

obtained for the Becond correction to the energy of the bound state,

by means of the Legrange method,

E,={JIE 'X:(X)] =3 — 22x)dx dx’

The calculation of higher PP orders based on the Riceati equa-
tion was considered exhasustively by Polikanov /42/. The author hes
shéwn that any PT order for the enmergy eigen-value in the discrete
spectrum cepn be calculsted, in principle, in terms of the wave func-
tion of the zeroth approximation. The method was applied to the
Dirac equation in Ref.43 . ?he particulaf scheme for calculetion
of k-tb order of the perturbation theory, developed in Refs. 42,43,
i8 rsther cumbersome for k>»2. For instance, one has to normalize
the-wave'function with the accuracy up to‘/gzk for the k-th FT or-
der, to exponentiate power series etc. In Ref.42 seven lower PT
orders were calculated for the ground state energy in the Yukawa
potential. The coeff. zients E. and E7 in that work do not coincide
with those in Eq.(2.9) &nd are wrong.

The method of comciruction of the perturbation theory basing
on the Riccati equation, instead of the Schroedinger equation, was
rediscovered recently /4,8 9/. Por the one-dimensional problems it
was shown thet the k-tk PT order is expressed in terms of the lo-~
wer corrections by means of quadratures in a closed form. For the

qntentials of the type
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. n k
== C
V) 2, X

( in particular, for polynomial potentials ) the method is further
simplified. The colculation of ' er PP orders is reduced to simple
recursive relations. This approach to PP iz rather oifective, az
it was shown in Secticn 2. The same method was applied to higner PP
corrections for anharmonical oscillator, the perturbation is g&xz)'
H=2, 3,..., in space of arbitrary dimensionality/4-¢/, for the
étark effect / 7/, Zeemsn effect / 9/ in hydrogen atom, the atom in
crogsed fields /9 / ete. The use of the recursive relations enables
one to calculate easily a great number of PT orders, that are inac-
cessible for the ~tandard veriant /13/ of PT..

The application of LPT is especially successful for nodeless
states; If‘the wave function has a node the problem is aome'hit RoTre

cuaplicated. The logarithmic derivative of a function R(r)ru(r-ro)nA

hu'the pole, .
R./R. f-f,."‘. + 01, r-r

and the singularity is present in the Ricca*i equation. Various me-
thoda to overcome th@a dirficulty, and an extension of LPY¥ to exeit-
ed siates with nodes, are considered in Refs.7.9 . In particulér.
it 1s shown in Ref.7 * for the example of the Stark effect for ex-
cited states of hydrogen atom that the calculation of highex P? oi-
ders is reduced .to recursive relations also in this cese. It was
also shown there that the summation of the PT series énables one to
determine the Stark shift and the width of the atomic levels in
strong electric fields. ‘

' Note, finally, that the LPT method can be extended to multidi-

mensional problems/8,9,22/. Imtroducing the vector F(r)s- w/ + ,
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for the wave funciion tﬁ(r), one gets & chain of equations similar
to those for the one-dimengional case, but with parfial derivatives.
These egquations are identicel to the equations of electrostatics in
a medium with & variaﬁle dielectric permeability. However, unlike
the one-dimensionel cese, the solution of the equations is not re-
duced to quadratures. Development of effective numericsl methods
for solution of such equations is rafher interesting, it would en-

sble one to solve an ample class of physical probiems.

Appendix B
Eqs.(3)-(2.6) determine an iterative procedure for expan-

gion of the quantities y(!ﬁ,ls) and E(fL) in PT series. Hence one

easily gets the corresponding expansion for tbe wave function.
Prom (2.1),(2.4) we obtein
F+i

n- - -1
R = const:p L@Ap{—p +ZZ(-JW) Z'_'.’Ci;d J‘ii } (B.1)

jo= r/n. The following method is appropriate for exponentiating the
power geries. Let f(z) = exp[g(z)],

k
§@) = Zi'.az , g(z)-—%gkz'

Evidently, f'= fg'- s0 a =1, 8 = 122: *a,_1b; , k31 . Aplying

this formule to Eg. (B'1). one gets

- e oo k
R (r) cowt e "'r" 1{1+Eé‘uk(r)(-w\) } (B.2)

where



uz.(r-).-.-.%nfblr“, g,(rs;-z.-',}fari%n”{n%ﬁ (B.3)

a.nd i'or k>4 the p. lynamicla uk(r) are determined easily from the

recursiva relat:'.ona

=2
u, ’Pa*‘ k Zlﬂe“&-z

(B.2)
k O
(™) = v-c._ r*

‘?o.r example,

z-n (h# «i—i—f )yv +[¥1 (m_m)f, +4§_'_n5i ](:L r2 VH"L f“‘l)

ete. Note that the principal quenium number n is not present exp-
licitly in-theae_ eéuations . For ne=t we reconstruct the formulae
of Ref.l. '

The PT expension for the wave function siarts from the terrs

h Nf‘z, becanéo at )4-’-0

Vr) = -,y =—§ + fm+ O
30 tﬁe firgt-ord=r perturbvation in j 8 results just in a shifi of

the level épectm and does not change the wave functions.

_mmu._,_s.._
Here we preaent a derivetion of the umtotiea Ek‘ Por the -
_potentia.l (2. 12). the change of the integration varublo,rs(alza’ x.
rosults im the exp_r_euiun
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ML
(=W, 2 | (6.1)
where .
X4
1/2
1= SO\X 'L-XN-'.;\J?--?- 6\ '
- ( X T xE (€.2)

Below we 1ist the results for some particuler cases.

1. Por the g-levels %= C,

. an-2 _-an , -2 -
L=n"""e""(ny" (.

Xy
‘ 1/2 c =
I={ax(—x=¥'=3">> V70
X_ 0, Y=y, (c.4)

where

m .
_ R TN -
Cy = 2SNt !ﬁ,'k@' ) > Yo =¥ (»ﬂ_) w

We sre interested in the behaviour of the integral J¢ A) for
A0, i.6. I = I(V) for V=0, Divide the integration region in

I(V ) in two parts: (V) a I,+ 1, . Here I, 1s the integral from
X_up t0 x, and I, - from x up t¢ x_, and x iz an intermediate

E point, x_¢3&+ . Then

I, =9 k(x_—v',\ —vhArch (x»Y= X=¥ dnx +% v —1~2tn2)+ |
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In order to celculate I, it is helpful to expand the integrand in

powers of -9,

3 v _\_’_\Uﬁ'__ / w1/ ‘J
1=X"~5 =a-X") - 2K U—x" 2 ...

Discarding the terms .-002 end replacing x iy 1, one makes a neg-

ligible error w9 3/2, with account for

4 \ :

n X 2.4n2

) x(ﬁx"”)@ =—dnx+ =75+, x>0
X

one hae

| e -
IN=c,+Fny -+ F W2y« (>
| 2/3, for EB=1, '
. c, =4 %74, for =2,
1, for N-wpo.

At ¥ >1, one may put E,Q'.Ebzn'z in Eq.(C.1). If B=1 , ome must
take into account the shift of al-level in the first order in the coup-~

ling S"'"A ]

| £ = -"‘1 {1+{5f«.’“-£(’z+1)]n"x+0(a")} N

as (C.6)
2

1
TR T 2n*%

+ f:‘ [3 n"——l(&*—iﬁ}t.. s A—>0

Finally, we have
| I =64_ x"-’t/”_‘_‘g,“&lk_‘_es“_". » A—0 (C.7)
where . : . ' |

L AR ) e
LT V2T (W22




| lﬂ. "
An(mgf*ﬁ) ) Mg

(Mg 1), w51

Putting {C.7) and (3.2) into the diayeraion integral (3 1) and ca.l-

i

cul;ting it by means of the steepest deacent method » ODe geis
the parameters of the esymptotice oX, U(& , &,Cy given in
. Bge.(3.5)~(3.T).

. 2, Dependence ou th2 _a_ngg;‘ar momentumw 1. The caleulation of

the integral (C.2) is substantiaily more complicated ir 140.
At A-»0, however, ve.. ,'i”x and G’-‘vﬁzln. so the account of tha
term €x~°2 'i.n (C.2) contribuies a correction NZZI-H to I, 1.0,
_proportional to At J(A). In toe limit A0 these terms
veuish, so the coeffisients b,, b, snd by in the expensiun (C. 7
are independant of 1 in the case ¥>1. Thus the l-dependence of
.the level width f())'is completely due to the pre-expomential
. factor 3‘0 , and is ra*her. slow { see Section 3 ).

ir §=1 , then J(A)SE. I/iz and one has to t;kc into account
the firast term in theexpansion (C.6). Now V =4n 2. +0(5L")) _

B0y = ghay +ndnd + 8, + O taA)

5_-5 =2n{24nn —In2+ 501~ L%;ﬂ)]

In this case the constants o, P and @& are 8till indepsndent of 1.
) ﬂowevcr. exp(=-2 5&)) containg the factor exp{l(lﬂ )/n] o the va~
riation of which is from 1 up to exp(n-?), when 0€1¢n-1. The

same l-dependence is preaent in the constant C, and in the amp-

. totics Bk
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3. The cases N =1 uznd 2 { funnel-shaped and oscillator poten-
tials) are most interesting from the physicul point of view. For
1=0 the function I(9 ) can be calculated in & closed form. We will
use this opportunity to test the above approximations'). For N=1,
17 - . s : . 4- ., "
x: -:(ziJ1 4y ). Using the formule 3.141 (35) of the handbook by

Credshteyn and Ryzhik /77/, one gets

v 2 k* 7%
1= W{E&) -2k p(k)} - (€.9)

where |
: 2 12, g2 A=Vi-4y
At =10

In the limit Y->0 , we ottain
2
K =y 4-2v%+...

I0Y=% ~Unfrrp)ita, -
= %—+-‘i-v&7v — (- +2n )y + OV dny) ,

in sgreement with Eq.(C.5).

For RsZ, we use the notation
%, o
I =3 gz 4*
GX) = X=X =V =X —KNX—XY (XX, +X)

It follows from (C.4) that I(¥) = I,- '910 - IB' Integraticn by
parts with account for q(x ) =0 , leads to the identity

S(@/X) ax -—-——Xwi"zx dx

hence 1(4 ) = 313- I1. Excluding 13 from two above equalities,

one gets

.‘ . - i
)We are grateful to V.L.Zletsky for verification of the subsequent

formulsae.
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. X |
I(V)s§@dx>-%ri-%qrc | o (6109
where . | ' ' : o | :

| }__dx -2 |
x+ Io= .;i F==X(X“‘P)(4."’xz+ﬁ“"x))i ih_ﬂf'K(k) _

A — 4 . -
14_.-" ;‘*]/m—fxafx*+yu-n)' T Ae2p Tz )
L op=Xax, R=Ap, {‘s[a..ﬂ)/(ﬂ—z‘j?ﬁ

- K end U are the complete elliptic integrals of the first snd third

kind, respectively /17/. In the ilimit V-»O the parameters n sad k

are cloge to 1 ) )
h; A A2 A PN YRR D S

k=4—-v+Evie |
Hence ’

L=~y +3 e, , T=75-Fmw.,

W TEN) PRl e !;;in L+ OU),
) (C.11)

2 oo i 21
[ =% exp{-R (8™} | a0
end one gets the as;ymptotics (i.4) with the following parameters
d-——z > 35‘17 a_g_% ? co_“.’-% .

- ( cf. (3.5) for the case N=2, n=1 ).
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We have shown thus , that the exact cslculetion of the func-
tion Y(A), possible for B = 1 and 2, confirms the result of the

approximate method of § 1.
4. Consider, finelly, the Yukawa potential. Inversion of the

aign of the screening parameter /* produces a potentiu: with &

barrier,
xr

— 1
Viry=-¥€e" ", z==m>0
where the bound state decays by’means of the tunnelling. For the
8 states,

1/2
)

X
Jo0 =4 S+<x)dx —4-b &
na g 9Ek . g=U-h )",
where’ll= 2A/¢e = 2n2,'\ +e.e0y X aTe the turning points, determine
from the equation wmexp(-x) = 2 :
2 2 3
X_ =‘-? +? +-2—"2 + ...

X, =Avdnh o+ O@nNA) . A=tn%>>4

The function eX/x has e minimum at the point x=1,¢e.nd is monotonous
in the intervals (7,1) and (1,00). Therefore, 3 (A) = ( 51+ ﬂa)/nA
i
= dy = i '
3 §q,dx-i+ zhinh +O0(Y)
and 52 is the integral from 1 up to x, «»Since x+»1 at '2-’0 R

we introduce an intermediate point x , such that 1Kx«x+ « Then
X X
X X '
S%dx = i—-l’e +.._dx= — -4 gJ
i §( 2X 3 X 4._*.1;§§e.3$.+0(?2)>. |

Xy

‘ }(q,dx =X X - Q) ,
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)

- X
- * r ?8’ L/% o
@ Jayl-(1-v ) )

. 4
Next, we change the integration veriable, t= ? e /gf

S i;(VLi"t

£(x
where §' ze X/x , and w ia a functicn of t , determined by the
equation ,wez.pﬂ/w) = t/2 . Since w«‘l , we write the expansion
of Q(x) in powers of w. The result is I](A)- -—X{x -2(1-1112)1»..]

and , w1+h account for Eq.(C. 12)

) o exp{- ax[ng +inint -
(C.13)
-@ -2 +24nny+ ]

Put this expz;.e?sion into Eq.(3.1 )} ard calculate the integral by
meens of the steepest descent method. The saddle peint, A =2
is determined from {he equation In(1/A )+ 1nln(1/A M-O(*l)sink} .

hence

{C.14)

| 2ndnk
L= R[4 - O(ah)]

The result is Eq.(3.10) of Section 3.
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Behaviour of the energy eigen-values E(g) for ihe Haumilitcniaun
>
= L "_... = v T
#=%p —ter | (B.1)

in the strong coupling limit can be found oy means of & :sca.lmr;

transfprmationm). Performing a change of the verieble in (;J.T).

| xi""(28)—1/(N+2) , one gets ) .

where ‘B 8 9 : \I

‘ 1 - ] 4 _
He)=p +r¥—xr* g ocxzmg—m; (D.2)

A8 o{—+0 at g-wwo, we obtain Eq.(4.7), where

Y

N
= 2 i : )
V=2 =555 0 Ce=2 LA (D.3)

and £ 418 the eigen-value of B simple Hemiltonien K{C)=p +r' .
In some cases £ and c_  are determined witnout numericsl calcula-
tionﬁ. .

A APor'the s-states in the funnel potentisgil, N§1 » the solution
falling at infinity, is expressed in terms of the Airy function:
X(;') = const.Al{r-€ ). The energy spectrum is determined from :ihe
conditionl,(o)zo. Let -z be the n-th zero of the function Ai{z),
then \

\Y =%. > V= '% - € —2'4,3 Zp (D.4)
There is & table of the roots /33/. For instance, 8t n=1 (the ground
state) 2,=2.338107 and c¢__=1.855756 , and for mn>>1 we have c;—;;'o&(Bin)?

2. If N=2 , them ‘ '

ody 4, - ' |
v zf &_ 5 c“ '—:’-—2‘ (Y‘H-%) ’ n—‘cgoﬁz,h A (D.S)
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3. For a>> the quantities & , and c can be found approxi~-
mately from the Bobr - Sommerfcid quantizuation condition. In pear-

ticular, for ns-states we have

- (no) N
coa zA'nm

+ .8)
p = (V. CRrCER ’

Fawn

For example, A = %(377)}', A= 23/2 and A = iﬂz for N=1, =2 and

N-»o0o, respectively.
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Footnotes

1) Here aend in the following we put h = m=e=1( the atomic
units). For a more gemeral potential, V(r) = ~Zr™ f£(mr) , the scale
transformation I-»i4r ion the Schroedinger equation ieads to the
correaponding transformetion of the energy eigen-value E(nl)(zdu)=
= zz-E(nl)(1,)~/z). Here Z is the nuclear charge,;»" iz the screen-
ing redius of the Coulomb field. So we put throughout the paper
Z=1. Note that the PT series (1.3) corresponds to the expansion in

1/Z in tne atomic physica.

2, BNumerical celcuiations of tre Schroedinger equation for the
Yukawa 1/ and funnel-shaped/12/ potentials. .

3) Por instance. for m=0 one nas/13/ R, p-q(¥) = nan e’
where f a r/n , and (‘ = 2nn'2[(2n-1)_] ~% is the normalization
constant. The case l=n-1 corrgsponds to the Geepest level with the
anguler momentum 1,

4) By means of a somewhat different method, Privman’sl has
calculated ‘40 PT orders for the Yukawa potential eand 20 PT orders
for the funnel-shaped potential (2.12). Note that.the normalizs~
tion of the Hemiltonian in his work  was not identical to the
ours. The relations are as follows: Eﬁ'z 2k'1Ek in the case of the
Yukawa potentisl, Ej= 2(N+1)k-1Ek for the potential in (2.12),
where Ei are Privman's coefficients, and‘Ek are defined above.
¥ith eccount for these relations the results of the cited works/1°3/
are in a complete agreement.

5) Such a potential with N=1 is used in the phenomenological
calculation of the level spectrum for heavy quarkonium/’al. cf.

alsc in recent reviews on potentials for heavy quark-antiguark
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system/ 19,20/ . Por ¥=2 one has a model potential, which is rather

" like the potential for the Zeeman problem for hydrogen.

6) Por example, 7(r) = r' for the funnel-shaped potential (2.12).
In the case of the screened Coulonb potential (1.1) the screening
parameter . stends for g, and v -[1-f(x}}/x » X 2T o

7) A brief presentation of the results given in this 3Section

was published in the previous papera/ 2,26/ .

8) On tae otaer hand, (_l/l](x)wxl" at x-»° , Therefore, PA
v.'?khout e transformation of the type (4.12) can not reproduce orrec-
tly the Borel transform B(x) for iarge x , uniess the index of

the asymptotics ¥ 13 an integer. .
9) The recent work by Sergeev and Sherstyuk/ 28/ contains tables

analogous to our tables 2 and 3,
10) Let us make a few techmical remarks, In the case of o(=2

it is convenieat to rewrite eq.(4.5) as

£ =5 Jomts A8 6 dx

with the power singularity at X— 0  excluded. The Borel trans-
form B(xd replaced here by PA [L/L"’}] which results in the
values of E (g) ’ prc¢sented in table 6,

iJe uged the [L/L“"J] spproximants with j,-‘—‘-o,:l:i . The
gequence of diagonnl approximants (j=0) exhibits the fastest con-
vergence to [E(Q) which is the cace for ordinary PA. The values
of PA [VU‘i] are unstable at X2 0.2 due to influence of
neighbouring poles, .

In our attempt to use the transformation (4.12) for the po-
tential \f(r)e.'-t:i +5. r?  we encountered with a technical

restriction: the accuracy of computation of ﬁk decreases
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rapidly vith increasing k. This fact is conmected with lerge

range of ﬁ* values, Por instance, By = 1.5, J5zo=
= -2.156.10"7 and Bio= 1.382.107H for n=2. n the other
hand, By= 1.5, . Pao = -0.0434 ona Soio™

= 0.0013 for E=1.
As a result, the summation of divergent PT geries for the

funnel-ghaped potential (2.12) with N=2 determines E (g) in

a considerusbly smeller regicr of 9. , 88 compared to that

with N=1, sece tables 5 end 6. We guess that this fact is connec-

ted with the faster increase of higher PT orders in the ¥=2 caze.
11) To compute the PA [L/M} one should imow Lsls1 or-

ders of PT, In particular, determination of index Y with a per
cent pfecision in the N=1 case requires about 25 exmct coeffici-

ents Ek' see table 4.
12) This trick is effective for power potentials and wes

originally demonctrated for the apmharmonic oscillator by K.Syncn-

zik, see rer. in’*/ p.es.
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Tab. 1
X Riéx) 2{(x)
1.0 | o0.9221 | 1.0405
I.5 | 0.9467 | 1.0275
2.0 | 0.9595 | 1.0208
2.5 | 0.9674 | I.0167
3.0 | 0.9727 | 1I.0I39
4.0 | 0.9794 | I.0Iu4
5.0 | 0.9835 | 1.00835
10 I.0(417




Table 2
Converger .2 of diagonal PA N/N9n) for states with l=n-1 in Yukawa potential,

£ =° ' £ =1
N fr =05 f=1.0 § N | A=0.10 N p= 0.5 M= 0.20
6 - 14.8117218 1.0818 6 | 4.653442434 | 6 | 2.11076858  0.4182
7 14.81I7041 1.02911 7 | 4.653438968 | 8 | 2.11045816  0.4076
8 14.8117024 1.02866 8 | 4.653438936 | 10| 2.I1048937  0.410]
9 14.8117022 1.02859 H 9 | 4.653439088 | 12| 2.1I048846  0.4099
I0 | I14.8II7022 1.02858 I0 | 4.65343904y | 15| 2.1I048589  0.4I01
15 14.3117022 1.02858 I5 | 4.653439049 | 18| 2.1I048889  0.4102
18 14.8117022 1.02858 20 | 4.653439049 | 20} 2.1I048889  0.4i02

l'ootriote. The presented values are 100'EW¢

11



Iable 3

Determination °fjv‘cr by means of diegonal PA.

Y 0 2 5 10
6 1.1896 0.2220 9.118-7072 2.1505-107% 6.24644-1075
8 1.1906 0.2189 9.108 2.1532 6.24988
10 1.190611 0.2198 9.127 2.1521 6.24924
I2 T.150612 0.2197 9.140 2.I524 6.24997
14 1.190612 0.22u0 9,132 2.1525 6.25004
16 I.190612 0.2199 . 9.134 2.1524 6.25001
I8 1190612 0.2201 9.133 2.1524 6.25005
20 1.190612 0.2201 9.134 2.1525 6.25005
::°;:‘1§}1;§ / I.I9061 0.2202 9.135-107% | 0.021625-1072 -
accordg, 1.1906214 0,220 0,0913 — -

to ref’.’ 28/
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_ Tabie 4
‘The index V of asymptotic (4.7) for the ground state.

g
Vir) = -% +ar -T‘.--k-ﬂ,rz
L 1 Y iccord.i.ng v accordi.né ¥, according
_ eq. (4.10) eg. (4.9) eq. (4.10)
8 0.560 0.453 0.298
I0 .585 0.336 0.855
o 0.670 | o471  0.33¢
12 0.670 - " 0.400 0.582
13 00& —— i‘_‘
74 0.667 0.423 0.569
15 0.666 0.508 0.425
16 - | oum 0.503
¥ | 0.66%:0.008 0.46%0.04 | 0.5140.10
exact - :
- value J\)=2/3=omsa. ¥V = 0.5




Sunmetion of PY series for the funnel~shaped poientiul by Padé-Borel

Zable 5

method,

“\ & 0,976 562 ... 4.0 62,5 100 300 |} 500 1000
3 0,554 641 - - | seas5 | es.es | 989 | 15709
5 0.556 523 - ~ {3356 | 11076 | 1017 | 1625
7 04556 T4t 2.79384 | 24.503 | 34.25 | 73.59 | vod.s | 16741
9 0,556 761 2,79515 | 24.634 | 34.47 | T4.21 | 105.4 168,7
1 0,556 763 2,79556 | 24,716 | 34.61 | 74.66 | 106,19 170,0
13 0,556 764 2.79566 | 24,763 | 34,70 | 74.95 | 106.6 | 170.8
15 0.556 764 2,79573 | 24,792 | 34,75 | 15.15 | 106.9 | i71.4
accordin
to rep!/8 lo.sss 767 2.795754] 24.8563 | - - 108.366 | -

¥9otpote. The enclosed values are refered to the ground state energy for Vb-r"@gr.

The last raw repreasents results of numerical aolution/12/ of the Schrodinger equation
with al22/38-1/3“106, 1.0, 0.4 and 0,2



_PT series sumation for the ground state

energy in v=-1/ngrz

Table 6

Padé npproximants_

potential,

&

, ‘ . &=0a g =92
e | L/l U./zr/] [z./z.ﬂ] (L/Ll /el W ferr]
1 8 | 0,298 -0.2986  ~0.2740 ~0.168  ~0.I3%  ~0,886
I0 | ~0.2976 0,294  -0.2883 ~0.168  -0.I89  -0.652
12 | -0.2971 -0.2950  =0.2920 -0.I60  -0.%42 0,008
{18 | <0.2968 -0.2958  -0.2936 0,159  «0.I44  -0.082
IS | -0.2967 -0.2954  -0.2940 -0.158 -0.IA  -0.099
116 | -0.,2966° -0.2955  -0.29% ~0.I57  ~0.J45 0,109
17 | =C.2966 <0.2956  -0.2946 «0.157 0,146  ~0,1I7
E'._dé-Borel anproxinaats
‘ 4 Z_‘. O.I }. 0.2 %-005 } = 1.0 IB.O
o Al | wiavgl el | arafens ] i) (g froed [T
8| -0.296 098 | ~0.296 078 [-0.ISI 26 | ~0.I50 8L |[0.1767 | 0.1848.| 0,577 | 0.618) I1.50
{10 | ~0.295 087 { ~0.296 070 |-0.I5I 08 | ~0.I50 71 |0.I802 | 0,216 | 0,597 | 0.643] I.75
}12 | ~0.296 088 | -0.296 087 {-0.I51 iI | ~0.I5% 08 {0.1794 { 0.1809 | 0.592 | 0.604} 1.70
-} 14 | -0.296 088 | -0.296 086 |-0,ISI 10 | -0.ISI OI }0.I797 | 0.182 | 0.59% | 0,621} I1.78
115 | -0.296 088 | -0.295 087 |-0.ISI 10 | ~0.ISI 08 |0.I795 | 0.1806 | 0.592 | 0.605| 1.70
116 | -0.296 088 | ~0.296 088 |-0.1I5I I0 | —0.T5I 10 }0.1796 | 0.I798 | 0.593 | 0.5%] I.7%
117} ~0.296 088 | ~0.296 088 | -0.ISL 10 | -0.IS IO | 0.I795| 0.I798 | 0.592} 0,595] I.70
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Figure 'i. Shepe of the potential in (2.1%). For g¢ 0 the poten-

-1/(H+1)

tial has a maximum at the point T, =(=Ng) , and V(ro} A

170N
/ \‘\T+1); T,

(-2) are ;he turning points tor the S states.

s TR
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Pigure 2. Scmningpnra—leter ( }.h)"&e'pendence of A-(-2E)i for
the ground state in the Yukswa potential. Numbers at the curves
indicate the values of N. The curves with § = 18 - 22 coinéide
within the accuracy of the arawing.

- . BN
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Figure 3, Screening parameter () dependence of the binding
energy for the state with lsn-1. The varisbles are e_&zttn,n- v

-

and Jt Per - the curves are caleulsted by means of Pi with N=15,
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Figure 4, Veiues of n‘,« cr for ns states in the Yukawa po-

te:itiax.
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-05

A A 4 Lo .
005 0d o5 ?
Pigure 5, PP polynomigla for the ground level energy in

the funnel-shaped potential, a) N=1, and b) N=2, Curves are
labeled by L , see eq.(4.14).
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Figure 6., PT polynomials'for the ground state in the
Yukowa potantial. The corparison of this figure with fig.2

demonstrates the advantage of PA.



5t
References

1. Batudepr B.M., lozos B.C. - Npemprny HIS§-I7I (IS80).
zo!let-ky V.L., Popov V.S., Veinberg V.ki. - ‘Phys.lett. 84a
(IﬂI) 2353 3879 81 (I%I) 1567. '
3~?rivman V. - Phys.lett. 814 (1961) 326.
’h Dolgov A.d., Popov V.8, - Phys.lett. Z& (1978) 4033 368
(19?9) 185; X379 75 (1975) 2010,
lm AJ., Bxenxal 8.1., Bouos n.c. - npenpxn lm—?Z(1979)
6. Eletsky VL., Popov V.S. - Phys.lett. 94B (1980) 65.
7. 21111uev 5.7., Bleteky VoL.; Popov V.S. - Phys.lett. 73a(1979)
103; allilvev S.P., Eletsky V.l., Popov V.5., Veinberg V.l -
| Pays.lett. 784 (1980) 43;  XoTe 82_ (I%2) 77.
8. sharonov Y., au C.K. - Phys.Rev.Lett. 42 (1979) 1582; 43(1979)
_ 1765 Phys.Rev. 220 (1979) 2245.
9. TypOuaep A.B. - Openpaaz HI90-24 rxsaz)

I0.Hardy G.H. - Divergent Series, Oxford Univ.Press.,L.1973.
1I. Rogers P.J., Grebocke H.C., Harwood D.J. - Fhys.Bev. 41

(1970) 1577.
I2,Eichten B., Gottfried K., Kinoghita T., Lane K.D, end Yan.T.l.

Phyz:.nev. ___‘[ (1978‘ 3090.
13- lanaay a.24., Jn{mn B.M; - Esamrozan nexam:a. mazrna,

MGT963; | \
Is, Grant i, Lai C.S. - Phys.Rev. 420 (1979) 718.

I5; Lei C.S., Suen B, - Fhys.Rev. A2} (1980) 1100.

15, Iafrate G.J., Uendelsohn L.B. - Phys.Rev. 182 (1969) 244.
Ppameﬁn l.C.. Pan.. !-!- Tadmms nn'rerpa.nnx, cymt
P8Zo3 E npouszezesnil, oﬂsuarrns, !.1962.



25a.Marnaos ¥.C., Honos B.C, -

52
Pligge S. - Practical Quantum Mechanics, 1. Springer, I8?1

Bicktan B., Gottfried K. et al., - Cormell preprint CLNS«-

425 (1979).

Qui‘gg C., Rosner J. - Phys.Repts. 56 (1979) 169.

Typougep A.5. - lxcpua 3 X970 30 (xsqs). X310 79 ' (1930j1719;
Joxaron Aﬁn.. Brenuuil B.l., Houon B.C. - XBT@ 73 (1980)170#.

Dolgov A.D., Purbiner ..V, - Phys.lett. T7A (1080) ¢5.
Bender C.il., ¥u P.T. - Phys.Rev.Iett. 27 (21971) 461;

Phju.ReVQ _I \1973) 16201

Yurpen.A.B. = HauecTseHade MeTOAN KBAHTOBOX TEOp3H. 'Hayxa c
¥.1975.
E9T@ 57 (1974) 1250; Journ.Phys.

A8 (1975) 1978,

26. BaftuGepr B.M., Dlomos B.C. JAH CCCP, 264 (1982) 330,

~ry
~ie

1;8'

Bnker G.h. - Socentials of Pade Approximats .. Academic
Press, N.Y. 1975. o

Ceprees A.B., Hepcrok A.d. - E3TQ 82 (I982j IO?O;_

Exenxuk B.X., Donos B.C. - A0 28 (I978) 268, 1109,

Kazaxos 7.%., Tapacos 0.B., mnpxoi‘H.B. - T 38(1979j I15;
Kagaxos /.M., Oupxos A.B. - mpenpuar O{HT P2-8 -462 (1980).

. Popov V.S., Eletsky V.L., Turbiner A.V. - Phys.lett. 7ZB

{1977) 99; KuT@ i (I9?B) 445,
Avron J.E. ~ Arn.Pan. 131 (1981} 73.

Eegge) Functions, 3 (Zeroes and asaccioted values).Univer-

sity Preuu, Combridee, 1960,

34+ Bunaros 1.H. - ¥3T9 71 (19765 20103 _?2._ (1977) 41T,



35.Bogomolny E.B. ~ Phys.Lett, 67B (1977) 193;
Borowossruft E.B., Ryduuna D.A. - 0 34 (I9BI) I535; 2_11982)
202,
36. Brezin E., Le Guillou J.C., Zinn-Justin J. - Phys.Rev, D15
. (1977) 1544, 1558.
37. Brezin E., Parisi G., Zinn-Justin J. ~ Phys.Rev.D16(1977)408,
38; Zimn-Justin J. - Phys.Reports 70 (181) 110.
39 Intern.J.GQuant.Chem. 21 (1982) No 1.
40, Bexszopea .5, - X910 3I (I956) II0I.
41. Bass A.H,, Beapnonuy f.B., ﬂepenonon A l. - Paoceﬂale. peex~
. DB@ X pacilafy B HOPeARTUBMCTCKOR KBagTOBOR mexagxne ,"Hayxa®,
¥.1966.
42, Noauxanom B.C. X579 52 {1967) 1326; TMO 2# (1975) 230.
43, Wmxafivor A.M., Boamkasos B.C. - xa'm 54 (1968) 7.
4§.Simon.B. Ann. of FPhys. 58 (1970) 76.

B.C.[onos, B.M.Bajudepr

Bucume NODAIKYM TGOEHE BOBMyUCHRY ¥ CyMMMDOBAHME DANOB reopnn BO3~-
myueHnli B KBaHTOBOR MeXaHWKe

PaGore roctymmas B OHTM I8,06.82

TNommacaro x newarm I.07,.82 TI3393 Popmat 60x90 1/16
OgceTH, ney, Ycur.-new. 1. 3,25. y9,-w31.7.2,4, Trmpax 290 sks,
3axas IOI Urpexc 3624 llens 36 rom.

OrnevaTano B UT3D, II7259: Mockma, V.YepemymruHckasa, 25



MHOEKC 3624

M., NPETMPUHT T3, 1982, N 101, c.1-53



