ԵՐԵՎԱՆԻ ՖԻԶԻԿԱՅԻ ԻՆՍՏԻՏՈՒՏ ЕРЕВАНСКИЙ ФИЗИЧЕСКИЙ ИНСТИТУТ

EΦH-506(49)-81

Р.О.АВАКЯН, З.О.АВАКЯН, А.Э.АВЕТИСЯН, Н.З.АКОПОВ, А.А.АРМАГАНЯН, Ю.А.ГАРИБЯН, С.Г.ГИНДОЯН, С.С. ДАНАГУЛЯН, В.С.ЕГ. НОВ, И.Х.КОСАКОВ, Г.О.МАРУКЯН, Р.М. МИРЗОЯН, А.А.ОГАНЕСЯН, М.А.ОГАНЕСЯН, Ж.В.ПЕТРОСЯН, Р.Ц.САРКИСЯН, Е.М.СХТОРЯН, С.П.ТАРОЯН, Г.М.ЭЛБАКЯН

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ПОЛЯРИЗАЦИИ ПРОТОНОВ В РЕАКЦИЯХ ФОТОРОЖ ДЕНИЯ

ԵՐԵՎԱՆ 1981 ЕРЕВАН

N.Z.AKOPOV, A.A.ARMAGANYAN, E.O.AVAKYAN, R.O.AVAKYAN, A.E.AVETISYAN, S.S.DANAGULYAN, G.M.ELBAKYAN, YU.A.GARIBYAN, S.G.GINDOYAN, I.KH.KOSAKOV, G.O.MARUKYAN, R.R.MIRZOYAN, A.A.OGANESYAN, ZH.V.PETROSYAN, R.TS.SARKISYAN, E.M.SKHTORYAN, S.P.TAROYAN, V.S.YEGANOV

EXPERIMENTAL SETUP FOR MEASURING PROTON POLARIZATION IN PHOTOPRODUCTION REACTIONS

A two-arm experimental setup for the investigation of polarization phenomena in photoproduction reactions on hydrogen and nuclei is described. By means of the described setup the energy dependence of $P_X^{45^\circ}$ -component of the recoil protons polarization vector is measured in the reaction $\delta P \rightarrow P \overline{\Pi}^\circ$ in the range $E_{\delta} = (0.8 + 1.50)$ GeV for the pion angle in C system $\Theta_{5}^{*} = 60^\circ$, when the δ -quanta polarization vector composes with the reaction plane 45°.

> Yerevan Physics Institute Yerevan 1981

удк.539.172.3:001.5

Р.О.АВАКЯН, З.О.АВАКЯН, А.Э.АВЕТИСЯН, Н.З.АКОПОВ,
А.А.АРМАГАНЯН, Ю.А.ГАРИБЯН, С.Г.ГИНДОЯН, С.С.ДАНАГУЛЯН,
В.С.ЕГАНОВ, И.Х.КОСАКОВ, Г.О.МАРУКЯН, Р.М.МИРЗОЯН,
А.А.ОГАНЕСЯН, М.А.ОГАНЕСЯН, Ж.В.ПЕТРОСЯН, Р.Ц.САРКИСЯН,
Е.М.СХТОРЯН, С.П.ТАРОЯН, Г.М.ЭЛЕАКЯН

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ПОЛЯРИЗАЦИИ ПРОТОНОВ В РЕАКЦИЯХ ФОТОРОЖЛЕНИЯ

Описана двухилечевая экспериментальная установка для исследования поляризационных явлений в реакциях фоторождения на водороде и ядрах. С помощью описываемой установки была измерена энергетическая зависимость $P_{\chi_{\overline{d}}}^{45^{\circ}}$ - составляющей вектора поляризации: протонов отдачи в реакции $g\rho - \rho n^{\circ}$ в области $E_{g} =$ = (0,8 + 1,50) ГэВ для угла пиона в Ц-системе $\theta_{\overline{m}}^{*} = 60^{\circ}$, когда вектор поляризации χ -квантов составляет с плоскостью реакили 45[°].

Ереванский физический институт

Ереван 1981

ЕФИ-506(49)-81

Р.О.АВАКЯН, З.О.АВАКЯН, А.Э.АВЕТИСЯН, Н.З.АКОПОВ,
А.А.АРМАГАНЯН, Ю.А.ГАРИЕЯН, С.Г.ГИНДОЯН, С.С. ДАНАТУЛЯН,
В.С.ЕГАНОВ, И.Х.КОСАКОВ, Г.О.МАРУКЯН, Р.М.МИРЗОЯН,
А.А.ОГАНЕСЯН, М.А.ОГАНЕСЯН, Ж.В.ПЕТРОСЯН, Р.Ц.САРКИСЯН,
Е.М.СХТОРЯН, С.П. ТАРОЯН, Г.М. ЭЛБАКЯН

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ПОЛЯРИЗАЦИИ ПРОТОНОВ В РЕАКЦИЯХ ФОТОРОЖДЕНИЯ

Ереван 1981

C Ереванский физический институт, 1981 ċ

.

. .

.

.

· .

•••

•

В работе описывается экспериментальная установка, позволяющая одновременное измерение величин P_y и $P_{x'}$ -составляющих вектора поляризации протонов энергии (150 + 230) МэВ. Созданная установка имеет большие возможности исследования поляризационных явлений во взаимодействиях χN и χA : а) исследования зависимости динамических величин $P_{x'}^{45}$, $P_{x'}^{x'}$, $P_{x'}^{2}$ от E_{χ} и Θ_{π}^{*} , для реакции $\chi P - P\pi^{\circ}$ в резонансной области энергий при наличии поляризованного χ -пучка или поляризованной протонной мишени; б) исследование зависимости P_y и $P_{x'}$ -составляющих вектора поляризации кумулятивно рожденных протонов в инклюзивной реакции $\chi A - PX$ от величин E_{χ}^{max} , Θ_{xP} , A и т.д.

С помощью представляемой установки была измерена зависимость $P_{X'}^{450}$ -составляющей вектора поляризации протонов отдачи в реакции $\chi P \longrightarrow P \pi^{\circ}$ от энергии χ -квантов, когда вектор поляризации χ -квантов составляет с плоскостью реакции 45⁰. Эксперимент был поставлен на пучке линейно-поляризованных фотонов, полученных на Ереванском электронном ускорителе с помо-

цэю когерентного тормозного излучения (К1м) электронов с энергией 4,6 ГэВ на кристалле алмаза. Измерения проводились для угла рождения π^{\bullet} -мезонов $\Theta_{\pi}^{\star} = 60^{\circ}$ и энергетической обласни ги χ -квантов (0.8 + 1.50) ГэВ. Кинематические области исследуемой реакции приведены в табл. I. Эксперикэнтальная установка схематически изображена на рис. I. Она состоит из двух плеч, которые предназначены для регистрации протонов отдачи в совпадении с фотонами от распада π^{\bullet} -мезонов. Установкой было зарегистрировано 400 тысяч (Р π°)-событий, из которых число полезных, для определения величины поляризации протонов, случаев составляло примерно 5,6 тысяч, т.е. I,4%. Измерения проводились при интенсивности χ -пучка, равной (3 + 5) IO⁸ <u>эк6. к6</u>.

Регистрация фотонов от распада П° -мезонов производилась счетчиками полного поглощения (СПП) на основе кристаллов NaI В эксперименте были использованы 16 СПП с конфигурацией их рас+ пределения (4 х 4). Размеры каждого счетчика составляют (130 х 130 x 300) им³, а общий размер годоскопа - (520 x 520 x 300)им⁵ В счетчиках использовались спектрометрические фотоумножители типа ФЗУ-82 и ФЗУ-IIO. Для исключения из регистрации заряженных частиц перед годоскопом была установлена система сцинтилляционных счетчиков (А., ... А.,), полностью перекрывающих поверхность годоскопа и служащих антисчетчиками. Для уменьшения A; перед ними устанавливался поглотитель загрузок счетчиков из легкого вещества (2-х сантимстровый полистирол). Для проведения эксперимента годоскопическая система была калибрована на вторичном электронном пучке Ереванского ускорителя для определения:

а) величины максимального порога дискриминации электронной ап-

паратуры, при которой минимальная энергия (450 МэВ) интересующей нас энергетической области х -квантов регистрируется со IOO% эффективностью;

б) изменение средней задержки в зависимости от энергии χ --квантов при быстром совпадении СПП с пластическими сцинтилл ционными счетчиками. Измерения показали, что величина измерения средней задержки для используемых в СПП фотоумножителей не превыщает \pm 7 нс. Исходя из этого значения определялись длительности выходных импульсов дискриминаторов-формирователей СПП и \bar{A}_i , чтобы на вершине кривых задержанных совпадений величина плато составляла бы 25 \div 30 нс. Амплитудные и временные характеристики годоскопической системы представлены в работе [I]

/

Протонное плечо установки состоит из пробежного спектрометра, поляриметра и координатных детскторов. Это плечо установки служит для измерения углов рождения протонов, их энергий и поляризации. В этом п. установлено 12 сцинтилляционных счетчиков, в которых использовались фотоумножители типа ФЭУ-30. Поперечные размеры и толнина пластических сцинтилляторов этих счетчиков приводятся в табл. 2. Поскольку R, и С -счетчики имеют по вертикали большой линейный размер, то для улучшения однородности эффективности регистрации они состояли из 2 отдельных одинаковых счетчиков. Это обстоятельство позволяло нам в ходе эксперимента набор статистики производить, переставляя вверх-вниз рчетчики R: и Č . Эффективность регистрации всех сцинтилляционных счетчиков протонного плеча исследовалась на калибровочном тракте протонов (пионов) с энергиями Тр = (100 + 300) МэВ (T_{ar} = (50 + 150) МЭВ.) в зависимости от напряжения питания ФЭУ, порога дискриминации и места попадания частицы на Сцинтил-

лятор. Измерения показали, что эффективность регистрации счетчиков составляет 100% и не зависит от места прохождения частиц Телесный угол протонного плеча определяется размерами счетчика C_1 и составляет 2.2 х 10^{-2} ср. Счетчик C_1 установлен от центра жидководородной мишени (ЖЕМ) на расстоянии 80 см, име-ет цилиндрическую форму (диаметр - 5 см, высота - 10 см), по, оси которой падает пучок у -квантов сечением (IO x IO) мм². Сцинтилляционные счетчики R, ÷ R, вместе с поглотителями $\Pi_{1}, \Pi_{2}, \Pi_{3}, Y_{L}$ образуют пробежный спектрометр, с помощыю которого, используя связь пробег-энергия, определяется кинематическая энергия протонов. Данные о поглотителях даются в табл. З. Следует отметить, что толщина данного вещества поглотителя определяется из условия, что суммарная толщина сцинтиллятора и поглотителя обеспечивали шаг по энергии примерно 20 МэВ. Нижний предел энергетической области регистрируемых протонов определяется суммарной толщиной сцинтилляторов С1.2--счетчиков и Удель -углеродных пластинок: Аналогичным образом Ē определяется верхний предел области с помощью -счетчика. Энергетическая область регистрируемых спектрометром протонов составляет $\Delta T_{p} = (150 \div 228)$ МэВ. Характеристики пробежного спектрометра - средняя энергия остановившихся в спектрометре протонов и дисперсия энергии протонов находятся расчетом Монте--Карло [2], и на рис.2 приводятся энергетические спектры для R -спектрометра в виде гистограмм. четырех значений энергий Отделение протонов от сопутствущих П * -мезонов осуществляет. ся с помощых апертурных счетчиков С1 и С2, которые одновременно являлись (dE/dX)-счетчиками. После нахождения порота обрезания П⁻-мезонов в амплитудном спектре мезонов и протонов

6

the second and a second second second

и установления этих порогов на дискриминаторах-формирователях счетчиков C_1 и C_2 , регистрируемый счетчиком $C_1 (dE/dX)$ -снектр протонов с энергиями ΔT_P дается на рис.3.

Елок-схема электроники установки приведена на рис 4. Сригтерный импульс протонного плеча получается совпадательным сигналом от счетчиков C₁, C₂, R₁ и сигналом от антисовпадательного счетчика \tilde{C} . Длительность импульса на выходе формпрователя составляла 20 нс, кроме антисчетчиков \tilde{C} и \tilde{A}_1 , для которых длительность выходного сигнала была установлена 40 нс. Все формирователи управлялись воротным импульсом, открывающим их только на время вывода χ -пучка ускорителя. Стробоскопические совпадения, которые служили для стробирования импульсоь от пробежных счетчиков $R_1 \div R_4$, запускались импульсом совпадения ($\rho \pi$ °). Кривая задержанных совпадений событий ($P\pi$ °) представлена на рис.5.

В протонном плече установки использовались 30 однокоординатных (X , У) искровых проволочных камер с ферритовых съемом информации. Общее количество ферритовых кслец составлило 8500, и оно было разбито на две группы I46 и I25 адресов по 32 кольца в каждой. Размеры рабочих окон камер и их некоторые характеристики даются в табл. 4. Первые I0 искровых камер (ИК)координатные детекторы, служили для измерения углов рождения $\Theta_{\rm XP}$ и $\Psi_{\rm XP}$ протонов. Остальные 20 НК, входящие в состав поляриметра, служили для измерения углов рассеяния протонов $\Theta_{\rm PP'}$, $\Psi_{\rm PP'}$ в рассеивателе. Камеры всех размеров были отлиты из эпоксидной смолы, армированной стеклом. Толщина майларовой плен ки окон камер составляет IO0 микрон.Камеры продувались неоном особой чистоты в режиме циклической чистки. Вопросы, связанные

7.

с газовым питанием ИК -чистотой поступающего в искровые камеры газа, скоростью его продува, контролем давления газа в камерах вредставлены в работе [3]. Высоковольтное импульсное питание всех камер осуществлялось от трех одинаковых генераторов, собранных на водородных тиратронах ТГИІ-1000/25 с кабельной формировкой формы импульса. Стабилизатор высокого напряжения, который служил для питания анода тиратрона, позволя регулировать амплитуду высоковольтных импульсов от 4 до 6 кВт ступенчато через 100 В и запускать генераторы с частотой до 100 Гц при высокой стабильности анодного напряжения на тиратронах. Подробности электрического питания ИК приведены в работе [3].

Средняя эффективность ИК (Ē) составляла 80%. В ходе эксперимента постоянно, примерно через кажлые 10 тысяч случаев регистрации (Pae)-случаев (Run), контролировались с помоных ЭЕМ эффективности всех искровых камер. Из этих панных следует, что максимальный разброс величины ($\hat{\mathcal{E}}$ Run - $\hat{\mathcal{E}}$) по времени измерения для всех камер не превышает 6%. Гистограмма распределения искр относительно трека иллюстрирует рис. 6. Здесь представлены данные 10, 13 и 15-й камер. Наблицается расширение распределений, что обусловлено многократным рассеянием протонов в углеродных пластинках, расположенных перед ИК. Если перед I3- й камерой имеется одна углеродная пластинка Y1 толщиной 2,5 см, то 15-я камера расположена после второй пластинки У. толщиной 2,4 см. Ширина корилоров (внутри которых ищутся искры аля построения трека частипы) пля блоков ИК. распсложенных после каждой углеродной пластинки У;, определялась исходя из бокового смещения траектории протонов, обусловленно-

го их многократным рассеянием в углеродных пластинках. Эти ширины даются в табл.5.

Поляриметр, входящий в состав протонного плеча, представляет из себя распределенную систему рассеивающих пластинок и расположенных непосредственно за ними искровых камер. С помощью поляриметра определяется значение поляризации протонов отдачи, основываясь на явлении рассеяния протонов в этих пластин ках. Выделение случаев рассеяния протонов и определение утловых координат треков ($\theta_{\rho\rho'}$, $\psi_{\rho\rho'}$) производятся с помощьк поляриметра. В качестве рассеивателя был выбран углерод, учиты вая его преимущество относительно других рассеивателей в таких, важных свойствах, какими являются:

- высокая анализирующая способность рассеивателя в сочетании с большим сечением рассеяния;

 слабая функциональная зависимость анализирующей способности от энергии протонов (T_P) и угла рассеяния (θ_{ρp}');
 наличие экспериментальных данных анализирующей способности в интересующей нас области T_P и θ_{ρP}'как для упругих, так и для неупругих рассеяний;

- хорошие конструкционные свойства и т.д.

На рис. 7 приведена зависимость анализирующей способности углерода от угла рассеяния Θ_{PP} , для протонов энергии I80 МэВ. Кривая, соответствующая значению $\Delta E = 0$, представляет собой энализирующую способность (P_c), обусловленную только упругими рассеяниями протонов на углероде, а кривая, соответствующая значению $\Delta E = 50$ МэВ, эффективную анализирующую способность (P_c ^{эфф}), обусловленную упругими и неупругими, с погерей до 50 МэВ включительно, рассеяниями. Поскольку предпола-

галось измерение поляризации протонов в данном эксперименте проводить, используя как упругие, так и неупругие рассеяния протонов в углероде, то для расчетов по определению величины поляризации использовалась эффективная анализирукцая способность. Зависимость Р. эфф от Тр и Орр' бралась нами из работы [4]. На рис.8 приведены зависимости дифференциального поперечного сечения упругого и неупругого взаимодействий про+ тонов с энергией 185 МэВ в углероде от угла рассеяния. Энергетические спектры протонов, рассеянных под углами 5 ÷ 15 градусов в четырех углеродных пластинках энергии Тр, , которые получены расчетом Монте-Карло в интересующих нас условиях реакции хр -- РП°, даны на рис.9. Среднее значение дисперсий энергии протонов, рассеянных в углеродных пластинках, составляет ± 13 МэВ [2], что приводит к ошибкам от $\pm 2,5\%$ до $\pm 12\%$ эффективной энализирующей способности углерода для угла рассеяния протонов $\theta_{pp}' = 10^{\circ}$. Максимальная ошибка $P_c^{\circ \phi \phi}$ соответствует максимальной энергии протонов при рассеянии. Суммарная толщина углеродных пластинок составляет 8,7 см, которая обусловлена тем, что протоны максимальной энергии при рассеянии в углероде долхны иметь энергии не меньше 90 МэВ, поскольку уже при $T_P = 90$ МэВ анализирующая способность $P_c = 0, 1$. Плотность используемых углеродных пластинок составляет 1.93 г/см³, а процентное содержание углерода в этих пластинках по данным спектрального анализа 97,26%. Выбор оптимальной области наблюдения рассеяния протонов определенной энергии для углеродного анализатора производился исходя из зависимости $T_{\mathcal{B}}^{c}(P)$ от полярного угла Θ_{pP}' . Эта зависимость для трех

енергий протона представлена на омс. 10. тле 6²(P) -ощибка в

τn

измерении величины поляризации протонов, а 1 -длительность из мерения. Из рисунка видно, что в случае углеродного рассеивателя требуемое время для измерения величины поляризации заданной точности интересующей нас энергии протонов (I50÷230) МэВ минимальная для области углов наблюдения 5 ÷ I5 градусов. Поля¹ риметр, созданный нами, в сочетании с пробежным спектрометром позволяет регистрировать рассеянные протоны именно под углом 5 ÷ I5 градусов и, что самое главное, под любым азимутальным углом рассеяния в области [0,2 **5**]. Последнее обстоятельство создает возможность одновременно измерить две составляющие вектора поляризации ($P_{\rm u}$, $P_{\rm x}$ ') протонов.

Создан универсальный (одновременное измерение P_y , $P_{x'}$ составляющих вектора поляризации протонов) и светосильный (охват оптимальных углов наблюдения и максимальная толщина углеродного рассеивателя) поляриметр.

Во время эксперимента с помощью протонного плеча описанной установки определяются 6 величин: $\Theta_{\delta P}$, $\Psi_{\delta P}$, N_{Y_j} , $\Theta_{\delta P'}$, $\Psi_{\delta P'}$, N_{R_i} , где N_{Y_j} – номер углеродного рассеивателя, а N_{R_i} –номер счетчика пробежного спектрометра. При обработке экспериментальных данных номера N_{Y_j} и N_{R_i} заменяются соответствующими значениями энергии, которые следуют из данных по расчету Монте-Карло $N_{Y_j} \rightarrow \overline{T}_{P_{Y_j}}$; $N_{R_i} \rightarrow \overline{T}_{P_{R_i}}$. Определение величин P_y и $P_{X'}$ -составляющих вектора поляризации протонов энергии TP_{R_i} , производится ся методом максимального правдоподобия, используя следующую логарифмическую функцию правдоподобия:

 $L = \prod_{i=1}^{n} \left[1 + (P_y \cos \varphi_{PP'}^i - P_{x'} \sin \varphi_{PP'}^i) P_c^{\varphi \varphi \varphi} (\Theta_{PP'}^i, TP_{R_i}) \right] .$

II

Съем и передача информации с экспериментальной установки, т.е. из 30 ИК и 8 пробежных счетчиков, производились с помощью устройства "Искра" [5], которое связано с системой ЭВМ PDP-8, PDP-9 и М-222 в режиме "on-line". Связь устройства "Искра" с системой ЭВМ, после считывания информации с экспериментальной установки осуществляется через I8 разрядное слово, в котором адрес группы занимает II разрядов, а адрес искры -6 разрядов.После запоминания информации в ИК производятся съем и передача данных с пробежных счетчиков к системе ЭВМ.

Обработка физической информации производится по комплексу программ на EC-1022. Для каждого события (Ря°) программа дешифрует координаты искр и показания счетчиков R -спектрометра; отделяет трековые искры от ложных и фоновых, произволит поиск треков двумя методами (струнный и канальный) в плоскостях ХОД 403 с одновременным выделением случаев рассеяния, проверяет пересечения найденного трека с плоскостью мишени и его прохождение через срабатывающий счетчик R -спектрометра, выдает информацию о событиях (Ря °) с углами рассеяния протонов в углеродных пластинках в области $\Delta Q_{pp'} = 5 \div 15$ градусов в виде меуказывающих на рассеиватель ($N\gamma_i$) и поглотитель ($N\rho_i$) TOK , и угловых параметров направления трека до ($\theta_{\chi P}$, $\Psi_{\chi P}$) и после ($\theta_{xP'}, \psi_{xP'}$) рассеяния. Программа позволяет вывести на печать произвольно выбранные события, что дает возможность наглялно и годробно проследить за расотой по фильтрации данных и по нахождению случаев рассеяния. На рис. II в качестве иллострании приведена распечатка результата машинной обработки одного из случаев регистрации (Рд°) события.

Таблица I

$\bar{\theta}_{\mathbf{z}\mathbf{P}}$,град	θ _{χπ} , град	ΔTp ,MƏB	∆E _¶ • ,MəB	ΔEg, ,MaB
55 ⁰	35 ⁰ 18	(I50÷228)	(650÷I222)	(450÷I050)

Таблица 2 .

Счетчи- ки	C1	C٤	·R ₁	Ra	R3	R ₄	Ē	
Размерн СМ ^З	7 x20x0. 5	20 x25xI	25 x 40 x 2	2 5x 40 x 2	50 x 80xI	50 x 80 x I	75 x 90	2
Таблица З						; (

ŧ

æ

Поглотитель	п,	٦s	Π3	Y ₄
Вещество	углерод	углерод	оргстекло	углерод
Толщина СМ	I,I	2,I	3,0	I,7

Таблица 4

Размеры ИК, см2	20 x 25	25 x 40	50 x8 0
Зазор между электродами, мм	8	IO	8.
Шаг намотки, мм	2.	2	3
Кол-во,штук	IO	I2	, 8

Таблица 5

Блоки ИК	I	П	Ш	IY
Ширина коридо- ров в мм	±I0	±15	±20	±20

Экспериментальная установк

Pue.2

Блок-схема электроники установки.

Распределение координат искры в искровых камерах.

Рис. 7 Зависимость анализирующей способности от угла рассеяния протонов в углероде.

Рис.8 Зависимость дифференциального сечения рассеяния протонов в углероде от угла рассеяния.

Энергетические спектры рассеянных протонов.

Рис. IO Зависимость T. G²(р) от угла наблюдения.

СПИСОК ЛИТЕРАТУРЫ

- I. Авакян Р.О., Аветисян А.Э., Вартапетян Г.А. и др. Аппаратура для регистрации электронов и гамма-квантов (АРЭГаК) на основе кристаллов Na J(Tl). Известия АН Арм ССР, Физикај I4, I979.c.50-53.
- Акопов Н.З., Данагулян С.С., Оганесян А.А., Петросян Ж.Е.
 Расчет по методу Монте-Карло энергетических спектров протонов в пробежном спектрометре-поляриметре. Препринт ЕФИ-507(50)-81, Ереван 1981
 - Анакян Р.О., Авакян Э.О., Аветисян А.Э. и др. Двухилечевия установка для исследования фоторождения Л- и 1- мезонов поляризованными фотонами. Препринт , EDM-202(48)-76, Ереван, 1976.
- 4. Peterson V.2. Analysing Power of Carbon for High Energy Polarized Protons. Preprint UCRL, UCRL-10622, California 1963.
- 5. Авакян Р.О., Авакян Э.О., Аветисян А.Э. и др. Экспериментальная установка, работакцая на линии с ЭВМ, по измеренги асимметрии и поляризации протонов отдачи в экспериментах по фоторождению Л -мезонов поляризованными фотонами. Материалы семинара по обработке физической информации. Агверан, 1975, Ереван, 1976, с.107-114.

Рукопись поступила 19-го октября 1981 г.

Редактор Л.П.Мукаян Тех.редактор А.С.Абрамян

3ara3625	Bo_ 11479	Tupar	299		
Препринт	ЕФИ Формат издания 60х84	/16	-1		
Подписано к печатиЗІ/ХІІ-81г. 1,5 уч.изд.л.Ц. 10 к.					

Издано Отделом научно-технической информации Ереванского физического института, Ереван-36, пер.Маркаряна, 2

индекс 3624

•