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THE INTERACTION OF AN ELECTROMAGNETIC WAVE WITH AN INNOMOGENBOUS PIASMA
SLAB
J. Lacina, J. Preinhaelter

Institute of Plasma Physics, Czechosl, Acad, Sci,, Prague

In the comnection with the problem of the plasma heating by high-
-frequency waves we have developed the mumarical code which makes possible
to study the incidence of an electromagnetic wave on an inhomogeneous
plasma slab, In our one dimensional model we describe non-magnetized
plasma by means of the *wo-flulid equations with a finite electron pre-

ssure and with the adiabatic condition for all processes,

It is aho.wn, that at the normal incedence of a wave on a cold rlasma,
the wave is reflected from the region of the plasma resemnance, A standing
wvave is ariiing which generates an electrostatic standing wave with twofold
frequency, At the same time density gradient is sharply steepening in this
region, In a warm plasma the incident wave again creates a standing wave,
but the nonlinear perturbations propagate from the region of riasua
resonance with the ion sound velocilty to the whole volume of plasma,

In this case the density gradient does not change very such, In the

region of plasma resonsnce the ion sound waves are also generated,



1. INTRODUCTION

In recent years a great attention is paid to the study of the
interacition of electiromagnetic waves with a plasma. The understanding
of physical processes which take place in plasma, and thiweir quantitative
evaluation are important both for the explanation of some effects d4n
astrophysics and for the study of controlled fusion. Irn tke last case theo
interaction of laser bsams with dense plasma target and the rf heating
of a rarefied magnetically confined plasma are subjects of considerable
interest, In all these cases the interaction of intemsive electromagnetic
waves with a plasma takes place and the nonlinear effecis play a dominant
roie, Thus, from the theoretical point of view it is possible to inves-

tigate these effects only by means of mumerical methods,

The aim of our paper 1is to investigate the interaction of an electro-
magnetic wave with an inhomogeneous plasma using a simple mumerical
code which describes the most important nonlinear effects, The particle
sirmlation codes give the most complete but very complicated description
of these processes (see, .8, [1], in relativistic case see [2] ). However,
the demands on the storsge and speed of a computer are enormous; 105
particles for the two-dimensional model, 10“ - 105 time steps, Another
posibility is offered by the nmumerical solution of simple phenomenoclogical.
equations -~ e,g, of the nonlinear Schrodinger equation for the averaged
vave amplitude (see [3] ). Because, these are usualiy derived for the
electrostatic waves and the linear density profile, their applications
are limited, In the small amplitude limit the starting equations (e.g. the
kinetic equations or the fluid equations eotc,) may be expanded with
respect to the wave amplitude, eventually time averaged, Fp@m such
equations we obtain expressions for ponderomotive forces (soo '[h] ),
the equations for second harmonic generation (see e.g. [5] ), or equations
for parametrioc decay of waves (see [6] ) In mathematical formulation
this problem is usually reduces to the solution of a set of ordinary
differential equations or even to the set of algebraic equations (see [7] ).
There are, hovevor, difficulties to describe the self-consistent interao~

tion of electromagnetic waves with a plasma in these msdels,

In our paper we have chosen the mean course between the complicated
particle code and between rather simplified theories using model or

averaged equations, We have started from the Maxwell equations and from



the equations of tvo-fluid hydrodynamics, Using this description we

lost some nonlinear kinetic effects (e.g. the particle trapping in a
stroag wave), but as it was already shown in tne first wave-particle
similations, the macroscopic quantities have approximately the same
values as those obtained from mhd simulations [1]. Therc 1s a failure
of this model, namely, the absence of the collosionless damping, This
can be bvercome by the introduction of a phenomenologicel damping to
the momentum transport equations, The great advantage ofthis model is
the fact that it deals with the electromagnetic wave directly and the
initial and boundary conditions of our problem can be ¢asily determined,
Thus, we are abie to investigate the time development of the system
from the initial transient atate till the state when the plasma parameters

are strongly changed by monlinear effects,

In this paper we use this model to study the interesting case of
normal incidencz ¢.° an electromagnetic wave on the inhomogeneous plasma
slab, The main attention is paid to the offect of the electron temperature

upon this process,

2, STARTING EQUATIONS

Investigating the interaction of an clectromagnetic wave with an
inhomogeneous plasma we shall start from the two-fluid equations and
from the Maxwell equations, We shall study only the normsl incidence
of an electromagnetic wave on an inhomogeneous plasma slab, We shall
supose that the slab is parallel to the ( Y’ Z ) - plane and the
olectpic field of incident wave 1s directed along the Z - axis, When
the electron pressure /7 is difforent from zero (iens are always treated
as cold) we shall assume that the plasma is confined in the direction
of X - axis (i.e. in the direction of the inhomogeneity) by the gravi-
tational field, The potential L/(X) of this field have been chosen in
the form of a well, This gravitational field supports the stationary
state of warm plasma, The relation between density, pressure and velocity

is given by the adiabatic state equation,

We shall suppose that the plasma is stationary, prior to the
inocidence of an eloctromagnetic wave, In this stationary state we ¢vall
put electron and i.n velocities equal to zero, Thus, no magnetic field

is present in the slab at the iaitial state, We introduce



(1)
n.(zA./c + A, P=p'f’/ / Er:on+£fx ;L= e,

where ”e, /i; are the electron and ion density, respectively, £x
the

is
X - component of alectric field, The statiomary quantites /Vd ’

P . E, fuifil the following equations

4P dU
-t e {e[ox+me;;-]=0 , P=n,T
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di/ d£”= e

eb,+m —=0,

i Ax A x € '(Ni _Ne) :

Here m, ”Il'are the electron and ion mass respectively, €
elementary charge (C > 0) ’ T

is the

is the electron temperature, If we
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introduce the particle flows rL = 1N, V. ve can write the starting

set of dynamic equations in the form
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Here Ez ' 'By rerresen. the electromagnetic fields of a wave in plasca,

, and Eo are permeability and permitivity of free space, respectively,

r/ is a ratio of the specific heats for the electron fluid, v is the
potential of an artifical gravitational field having the shape of a well,
This form of starting equation is suitable for the mumerical sodution by

means of a finite-diference scheme,

3. Initial and boundary conditions

The stationary state is described by the quantities P E, U, N

and possibly by T . Two of these quantiiies we may choose arbitrarily

and the other can be determined from the set (2), In our case we have

supposed Ne (x) ana P (x) in the form
3
! ( ) 0,L
NelN S5|7T—col2axiIL é< 0,L >
e /] 2 /
(&) A
. 1
P2 [ 1rwmtaran)]]
Here /Vo , To . ~.8 the density and the temperature of electrons in
the middle of the slab, respectively, L is the thiclmess of the slab,
A and B are the relative grandient of the temperature and the

density of electrons in the point X = L/4 , Tespectively, Our staionary
atate is fully determined by means of five corestants /Va,7; , /-7, B, [_ o o
The profiles of the density, of the pressure and of the gravitional field
are depicted in Fig, 1 for one special choise of these parameters, The
difference between the electron and ion density is sc amall, that curves
Nl' and /Ve merge, Let us note that all physical quantities and their

der:lv:atiire with respect to thexare equal to zero on the boundaries of the
dpP

Ne dx
acting on electrons is equal zero at X =0,L and changes here contimuousiy,

interval f 0 L « It 1s also important that the force
/

The initial conditions of dynamioal quantities have been determined
.in such a way that in starting moment the plasma is in the stationary
-y
state, 1,e, the quantities 71,‘ ,77‘ , P , E,x P Ez , .By have
been set to zero at £ =( for a11 X € < O,L > ., The boundary condition
splits into boundary conditions for the plasma quantities including the

electrio field E” and into boundary conditions for the electromagnetioc



" t
wave, We have supposed that the quantities ﬂ" , 77; , P, Enr are
equal to zero for all ¢ 2 0 on the plasma boundaries, i.e, at the points

x=0 and X=L.

The boundary conditions for the electromagnetic wave call for a more
detalied Jiscussion, Our task consists in the formulation of the boundary
conditions at the point x=0and X = [_ which can be easily transforwed
into a finite difference scheme and which correspond to the freo propaga-
tion of outgoing and incident waves, Actually we suppose that tlre plane
wave vitﬁ glven amplitude and phase is incident on our slab fros the
point X = — o< , Further, we suppose, that the fr~t of incicent wave
reaches the point X=0 at l = 0 . Becouse there are no surface charges
and no surface currentsat X=() and X = L the waves reflected from the

plasma and the waves outgoing behind the plasma leave the slab freely,

The boundary conditions can be easily formulated only imn free space,
We introduce the auxiliary quantities

(5) £ =%(EZ"CBI)/ Ep“-*--;-(fz"'cﬁ})-

INC

t t t
EIA/L‘ and EIEL‘ are in fact the intensities of electric field of the
waves propagating in the direction of the increasing X and deoreasing

X , respectively, The boundary condition can be thus written as follows:

on the left-hand side of plasma, i,2, at X = 0 e put for all f >/ 0

quc _ 25)[(? -
EJM':'S(H’ 24 ¢ Jx =7,

on the right-hand side of plasma, i,e, at X-”L we put for all £ > 0

(6a)

of JE
(6b) = — e .
£;>£c 0/ It ax .

The source \S has been chosen in the form

St =-5, () aon lwl)
4 I8
(7) where 50 {a,[)= Eo (7"6&1 (dwl)) //5' for £é<0/;i:;

M)
The number @&’ is positive and &’ gives the number of time periods

r(C= lﬂ'/w)c’uring which the amplitude of wave atteins its maximum Eo



The amplitude of wave must grow slowly in mmerical simulations and thus

we have put & = 005 .

4, The physical parameters of our problem

Seven parameters, namely A ; B , ’; , IV, ; L ; [, , w occur
in our model of the interactiom:of electrommgnetic wave with the plasma
slab, Fpom the discussion of the physical similarity it follows that our
problem is fully determined only by six dimensionles: rarameters, We have

chosen thesé parameters

_ L JT = _L__dﬂc '

A'['r‘-degL,,,/B W dx L=L]a,

(8) x=L 4,
4
ool g2l -
“mocw " e, mowt’ * " m ct
where 4
2

A=wl(2ge), c-(€p)

The nmumerical values of the parameters (8) determine the chamacter of
the solved problem, If M' > 1 the plasma is dense and the waves are refle-
cted from the slab, For .",/" <« 1/ the waves penetrate the plasma., The
perameter A gives the raiio of the wave lemgth to the lemgth of inhomogeneity.
Ir 7;' /E? << 71 the plasma behav ss as cold, At 70.' / E'n ~ 7 we
are studying processes in warm plasma, Because our equations (3) are
nonrelativistic we can study only cases for which E,' < 71 and 7:(( 1 .
Usually, we have chosen /0-{( E‘,'(Zx 10 and 0 ¢ 7;" 10 .J. I~
cases which are depicted on Figs, 1 .. 11 we have put A=1 ; B=- ’/, L' =2
N"= £ . In #déition to the parameters (8) we have two other constants in
our problem, namely, the ratio of the ion mass to the electron mass 77 /ﬂIe
and the parameter ," + All results which are shown in Figs, 1 -~ 9, 11
were obtained for 7, /me =) ana p=3 ,

Before the mumerical solution sur set of equations have been transformed
into the new dimensionless. ~variables
J 1 ! - ! w
(9) 4w wt il Ko X

/ /



-, e — -, e - . U
[e® [ F._e .U
(9) m,cw ! me w }l v ct
. 4 z
ﬂd = e

é,mewT o« F-e,m,‘c‘w‘ »

Let us note that an arbitrary equation or an expression in the dimensio-
nless variables can be obtained if we put €, =4, = & =M =w =1

and substitute M /me for frz,- in the limension = expressions,

5. The mamerical code

The set of oquations (3J) is hyperbolic and its equations ave &

general form

dU(x,{) . J
¢ 7x

(10) 6 (uxt)=R(uri).

From many well known finite difference schemes which are applicabdble to the
colution of (10) we have usod the leapfrog method described in (8). ve
have modified this meithod to be able to solve the monconservative equgtions
(10). "his numerical technique consists of discretizing the space and

rime variables in steps A X and Af respectively. Introducing the

usual notation n
X =Jjax , {,=natf | uj=u{xj £ ).
where 7=0,1.. Mand T2 = 0, 1,2...ve can express

the solution of (10) in a form

ar .- G: -‘:
(11)  u; ’:ul. '+(ﬂ;+ ’;A‘;' )ZAl )

The solution is mumerically stable if A[ <AX /C e The mwerically

acceptable values of AI'/A X'and M are 0,9 and 100-200, respectively.

The numerical accuracy of our solution has been checked on the fulfilment

of the physical conservation laws: comservation of particles, of total

energy and of total momentum, Using the prescription (11) we are sble
not n-f

»
5 fr.o'-' 7 s and U j' o The

[
exception forms the boundary values W, , U: which mist be deterwined

to calculate all values u

from the boundary conditions,

The bound&ry conditions (6e,b) are valid only in free space, Thus,

we hmwe shifted the plasma boundary on both sides of the slab about one



—
lattice point iaward, For ,77;“;7, and EIX the boundary conditions

must be written
(12) n . n 7,

for all 71 , Using the boundary conditions (6a,b) we can determine the
boundary values of Ez , .B), . To be able to exprcss these conditions
sufficiently preeisely' in a difference form we have introduced the mcw

v’ariablesl
(13) ?x—tng / Sax+l-7 , QEAi/AX

From equations (6a, b) and (13) we obtain

(14) ﬂ--(f—qyo)- 2L aee -(1+ fc)=0,

> e
iE:;“ .(1+€c)-_i7E§’”c -(1—€c)=0-

In these oquations we can express the derivetives with respect to /7 and§

by means of the central diferences

”n nef zed n
W _ Yy~ U _ Yy — Y4y
== = /
3; A / 3/7 FAN
2 ./ nr!
where A = ((aX) +(at) )[ . For the values E;pz: 0 and
net ”,
E]NCI‘I we then obtain from the equations (14)
I
wed ” + £1 E_nrf .] . 7’
(15). Ezu,a B E.uc, 7 ?€c, 0 2£c,1 J /
not » n Rot
Emc,n " Exw,n-r- {Em:,n Em-,»w .

where 7"(4' Ce)/(/+[(a) .
From (5), (15) and from two remaining conditions in (6a,b) we get the
boundary values for E‘ /By
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(16)

nedf nef ned nr? et nsf

= F + 8

2,0 DEC, 0

apd » Iy} L 124 net
[zn B Elﬂc,n , 'Bym '—Euz,n :

’

If ff < f, the equations (15), (16) give a nmumerically stable generation

of the electromagnetic wave in the interval <0, L >.

Our boundary conditions are more precisely than tho conditisns which
are usually used , see e.g. [9]. Their main agvantage consists in half
mumber of the difference conaitions which nusi be solved and in the direct
introduction of the source function S . This was attained by our

separation of the electric field and E o
P of wave in t;‘c wWe

6, isrussion of our results

To be uable to discuss our numerical results in détail it is necessary
to mention an approximate anlytic solution of our problem, As far as the
amplitude of the incident wave 1is small it is possible to develop the
solution of the set of equations (3) to the series in powers of [0' . At
the same time we confime ourselves to the quadratic terms, We assume that
the plasma slab is opague (i.e, A{' > f ) and we study the solutions
only for £ > J[/(a w) .At this time the standing wave is fully developed
from the incident wave, As well, we confine ourselves to the case when

=0

In linear approximation we obtain

4+ dE,
E,=E () amy By =g P

(17)

V =£_€4_m¢/ V = - e', Cﬂ}p/

ez me w

where y= wl + £ and £ is an initial phase, The other quantities
are equal to, the stationary vdlues, The profile of E, /X) depends on the

density profile and can be determined as the solution of the .equation
diE, (x) 4 2
4 -
(18) e - ./,(w-w,)f, (x) =0,

dx
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where w, is the local plasma frequency given by
. e*N, m_
W, =—=— - [+ —
60 m, !

E, must fulfil the boundaxry conditions mentined in parsgraph 3. For the

quadratic quantities we obtain easily from (3)

E, =Rx) (4- -::f)+0(x) cosdy +V,xi s Wyt + U, (0 ot W, £,

=£ Ay + < wtwt -
—n- A A
Y = B T, Y 7 mew,
_2h w0
me °
M, ’
o~ rk ) [%
[9 4 m ; Z wm/ ,”’. wo
ek : t + V¥, (x)
m w, A w, *h /
d eR ;2 e(R-Q) e v, . y
= - — W2t - =2 iy —— am wyt +
Pre d'x_{-/ve o [Zmii 4 w'm Y m, w} o
eV,
+—E‘7:—Mw‘,£+vjfx){]}+ K,/X)
m,
ﬂ"'-d A/(x)_e_li.ft-e(R#+a) MZ;/-
SRR B A 2% $w'm,
ev, ev,
- -ﬁ;—zfm w, t - P wf w,t * V, (x)f]} + Ve (x)
2 ‘ 42 m
were .. = A gy -2 (g )
: ’/mew‘ Ax w,-/rw i /
and ‘/1, yz, ‘{;, V,,, V, can be determined from the initial conditions , The

quadratic terms in Ez;'Br/ Ves , Vis " are equal to zero, The formulas

(17), (19) are valid only for a limited time lao:fth.e. éhanges of the stationary
values of plasma parameters caused by the secular terms of (19) are small,
This time tc can be determined from the expressions for ﬂ,e or f[”'
We cap see that 7, ,~/,if t ~ £, , where fc [T~ (m; /1, )l /5;
The solution (17) desrcibes a standing electromagnetic wave in a

plasma, The expressions (19) describe three processes, The farst one is the
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ncceleration of plasma causwud by the radiation pressurc, The second and
the third processes aro the generation of the forced oscillations on the
second harmonic and the generation of the electrostatic oscillations of
the cold plasma with the local plasma frequency &, , respectively,

The stationary term in E,x is caused by the difference in the eleus

tron and ion velocities ( Ve, and Vy, ).

Our results of the mwmerical investigations of wave incidence on a
cold plasma slab can be easily compared with the expressions (17), (19),
If the amplitude of the in.ident wave is small (E; << /0‘2 ) the
numerical results are in a good agreecment with our theory for whole time of
the simulation ( £ § /J00T ). A standing wave is created from the
incident wave, The position of nodes and antinodes does not change with
time, The same is valid about tle oscillations of the electrons and ions
in the field of this wave, IFigure 2 shows a typical profile of Ez , _B’,
Vez, Vz’z » The electric field Ez is sketched at a time which is appro-
ximately equal to an even rmltiple of 7 uand in the antinode reaches its
maximum value, The quantities .By, Vez' , ¥y  are sketched in time which
is about 7/4 later, Figure 3 shows the instantaneous profiles of the
ion density perturbation 72,7 , of the X - component of jon velocity
Vix ~and of the perturbation of the eloctrostatic field £,, .

The electrostatic field E,x has two node#, the first one at -he plasma
boundary, the second ome at the antinode of the field E ¢ ¢ The irregular
shape of E” near the left plasma boundary is caused by the presence
‘of cold plasma oscillations, The perturbation of ion demsity 7,; has
three modes, The riist one at the plasma boundary, the next one is in the
region before the antinode of £ z @and the thirdjone is in the point of
inflection of E,_ . The ion velucity v, has a similar profile as E”
Dotlhh these guantities show small time oscillations around the sketchend
profiles, For the perturbation of electron density it holds ﬂ” fx,ﬂ,z.l/”hnl
yot irregular shape at £ §{ 1007 , This is caused by the strong oscil” =tioms
of this quantity both at the second harmonic and at the plasma frequency,
Fig, 4 shows the time dependence of the ion density perturbation 7,, in
the point oorresponding to the second antinode, In the Lanmo picture we
can also sce the time dependence of ?“ , Where sz/m,- 771" dx v
From this picture it is oclear that 72"- Erevws quadra't:lcally with time and

that the plasma as a whole gains a constant acceleration in the direction
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of X -axis, The excellent mgreement between the results of our sirmlations
and the expreesions (17), (19) follows from the fact that z‘c Y R00T for

! -

E'= 107 .
0
! -2
If the wave amplitude Eo 2 fﬂ , Sstrong nonlinear effects are develo-

ped and the stationary parameters of plasma are changed substantially as time

t grows (see Fig., 5). llowever, from the resultis of our simulations
it :follows that the equations (16) - (19) are valid if the stationary

density /Va( is replaced by the instantaneous density 7 From the

<
figure 5 we can also see that the density gradient is sharply increased
in the region of plasma resonance and a ~hock wave is deweloped lhere,

The bulk on density profile at the left boundary hf slab is caused by
our boundary conditions for plasma quantities, Both these effectis preven't

] -2
the succesful application of our model for long times if Eo > 5x /0 .

Then the plasma temperature is different from zero we confine ourse-
lves only to the discussion of the mmerical solution of eqgs. (3), It
follows from this solution that the electromagnetic vave is again reflected
from the plasma (for /Va’ P 1 ) and forms a standing wave, The profil®
of this uav: is praét:l.cally the same as that of cold plasma (see Fig. 2).
The finite plaama temperature changes substantiously the space-time
development of the quadratic quantities £, v. , Vo, , R, , M, .
These quantities and also the pressure perturbation p, are never more loca-

lized in the region where the amplitude of the standing electromagnetic
wave is large. These perturbations spread out in the whole vdume of plasma
slab (see figs, 6 - 8), If we compare Fig, 3 with Fig, 6 we see that at
the begm of this process there is not a great difference between the
cold and warm plasma in thia'point. For longer times the thermal motion
of electrons transporits these perturbations from the region of plasma
resonance to the both plasma boundaries (see Figs, 6 - 8), Due to the
requirement of quasineutrality ‘theae perturbation propagate with the ion .
sound velocity }f’ N((r L)/m,-);. From the discussion of our numerical re-

. sults it follows that the perturbations 7, , 7, V,, Vy end g, are
composed from two components,The main component is & wave of compression which
propagates with the ion sound velocity from the region of plasma resonance,
This wave originates from the initial compression of plalma'produoed by the

ponderomotive force oorreaponding to the reflected electromagnefic wave,



:h

In cold plasma this compression is described by secular terms in (19).
Because it holds that %, a 7, eand V;, = Vy (for ¢ > T/a)
no clectric field is coupled to this wave, The perturbation of electric
field £” corresponds to the ion sound wave which modulates the main
perturbation of densities, velocities and pressure, To determine the group
velocity Vc of this wave we have plotted the posrtion of a local maximum
of E” in dependence on time, This is done for several values of 7;1//“, .
m‘- /mc in Fig 9, From this figure it follows that the local group velocity
coincide very well with the local ion sound velocity l{f ; whare V, =
=V-(r Tm)(m,—). For the group velocity in the middle of the slab we obtain
lé "= 1352107 for upper curve in Fig, 9 (the theoretival value of

- 1.22x10%x v/ =834 x W07  for lower curve (v, =866 x 07 ).

The time development of global parameters characterising the intera-
ction of an electromagnetic wave with a warm plasmma is €iven in Fig. 10,

Here the perturbation of total thermal emergy is given by

L

AL, =0/(7,?_'—;—) dx

and the perturbatiom of total potential energy of a plasma in the gravi-

tional field is given by
L
A[mr=/Ulﬂ'(m¢ n,+tm; n;)dx
’ .

At the beginning of the process the plasma is accelerated - the X - compo-
nent of total ion momentum '?I'X ' grows, At the same time the total thermal
energy grows and the total potential enwrgy decreases, After some time

the gravitational force and the force given by the pressure gradient overcome
the poenderomotive force of electromagnetic wave, Now, the plasma is slown
down, the total thermal energy decreases and the total potential emergy
grows, From the results of our nmumericz2l simulations it follows that the
increase in one type of these energies is approximately compensated bY

the decrease in the other type so that

AET” tak,, =0 )
' -
When the ircident wave has a large amplitude ( E 0 > 10 ) the

profiles of the density and the pressure change gradaally as time grows
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(see Fig. 11). In warm plasma the de.usity gradient does not grow in the
rcgion of plasma resonance to such extent as it does in cold plasma, This may
be explained by the fact, that the density and pressure perturbations

are transported by the thermal motion from the rlasma resonance region to

the whole volume of a plasma (compare Fig, 5 and Fig, 11).
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Fig. 3: Profiles of £,  n a for £, =40" T =0
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Fig, 4: Time dependence of the ion density perturbation and of t e X-compo-
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Fig., 5: Listertion of the plasma density profile and the self-consistent

profile of the standing electromagnetic wave for

E=2x0*, T'=0  t= 107,
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at f =37
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Fig, 7: Profiles of E,', , n
t = f6.4T
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and ﬁ,' for E,'= /0-5/ 7;‘= J x /0"
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Fig, 8: Profiles oi E” p N, and ﬂ; for E, = 1) , 7; = 5x/
at E = /27 ‘r N
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Fig. 9: Trajectories of a local maximum of the clectwostatic field E,, of
the ion sound wave for the following parameters: E; = 10 - (a1l
cnrves), ¥ corresponds to 7:"Z.f x /0-’, r'-J , m,-/me =/00,

A corresponds to 70-’3 5 70.3/ [’= /.J'/ m, /me = 100,
Xcorresnonds to 1, = W7 p=J , m; /M =20,
Ocorresponds to ], = Sx 107 poe3  m;/ M, = 100.
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Fig. 10: Time depmmdence of AE;” , 8 E'mr and P,-x for E, « 10 ,
T'=5.107.



21

Fig, 11; Distortiom of the plasma density profile and the self-consistent
) N
profile of the standing electromagnetic wave for f" 2x /ﬂli
T'= 2107 ¢ 0T.



