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THE INTERACTION OF AN ELECTROMAGNETIC VAVE WITH AN INHOMOGENBOUS PLASMA 

SLAB 

J. Lacina, J. Preinhaelter 

Institute of Plasma Physics, Czechosl. Acad. Sci., Prague 

In the connection with the problem of the plasma heating by hlgh-

-frequency waves we have developed the numerical code which makes possible 

to study the Incidence of an electromagnetic wave on an inhomogeneous 

plasma slab. In our one dimensional model we describe non-magnetized 

plasma by means of the two-fluid equations with a finite electron pre­

ssure and with the adiabatlc condition for all processes. 

It is shown, that at the normal incedence of a wave on a cold plasma, 

the wave is reflected from the region of the plasma resenance. A standing 

wave is arising which generates an electrostatic standing wave with twofold 

frequency. At the sane time density gradient is sharply steepening in this 

region. In a warm plasma the incident wave again creates a standing wave, 

but the nonlinear perturbations propagate from the region of plasma 

resonance with the ion sound velocity to the whole volume of plasma. 

In this case the density gradient does not change very much. In the 

region of plasma resonance the ion sound waves are also generated. 
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1. INTRODUCTION 

In recent years a great attention is paid to the etudy of the 
interaction of electromagnetic waves with a plasma. The understanding 
of physical processes which take place in plaama, and t!ieir quantitative 
evaluation are important both for the explanation of some effects In 
astrophysics and for the study of controlled fusion. In the last case tho 
interaction of laser beams with dense plasma target and the rf beating 
of a rarefied magnetically confined plasma are subjects of considerable 
interest. In all these cases the interaction of intensive electromagnetic 
waves with a plasma take* place and the nonlinear effects play a dominant 
role. Thus, from the theoretical point of view it is possible to inves­
tigate these effects only by means of numerical methods. 

The aim of our paper is to investigate the interaction of an electro­
magnetic wave with an inhomogeneous plasma using a simple numerical 
code which describes the most important nonlinear effects. The particle 
simulation codes give the most complete but very complicated description 
of these processes (see. e.g. Г1J, in relativistic case see [2 J ), However, 
the demands on the storage and speed of a computer are enormous; 10J 

particles for the two-dimensional model, 10^ - time steps. Another 
posibility is offered by the numerical solution of simple phenomenologicaJ 
equations - e.g. of the nonlinear Schrodinger equation for the averaged 
wave amplitude (see Гз] ). Because, these are usually derived for the 
electrostatic waves and the linear density profile, their applications 
are limited. In the small amplitude limit the starting equations (e.g. the 
kinetic equations or the fluid equations otc.) may be expanded with 
respect to the wave amplitude, eventually time averaged. From such 
equations we obtain expressions for ponderomotive forces (see [h] ), 
the equations for second harmonic generation (see e.g. Г5] ), or equations 
for parametrio decay of waves (see fój ), In mathematical formulation 
this problem is usually reduces to the solution of a set of ordinary 

differential equations or even to the set of algebraic equations (see [7] ), 

There are, however, difficulties to describe the self-consistent Interac­

tion of electromagnetic waves with a plaama in these madels. 

In our paper we have chosen the mean course between the complicated 

particle code and between rather simplified theories using model or 

averaged equations. We have started from the Maxwell equations and from 
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the equations of tvo-fluid hydrodynamics. Using this description we 
lost some nonlinear kinetic effects (e.g. th«* particle trapping in a 
strong wave), but as it was already shown in tno first wave-particle 
simulations, the macroscopic quantities have approximately the same 
values as those obtained from mild simulations [l]. There Is a failure 
of this model, namely, the absence of the collosionless damping. This 
can be overcome by the introduction of a phenomenological damping to 
the momentum transport equations. Tne great advantage ofthis model is 
the fact that it deals with the electromagnetic wave directly and the 
initial and boundary conditions of our problem can be tasily determined. 
Thus, we are able to investigate the time development of the system 
from the initial transient state till the state when the plasma parameters 
are strongly changed by nonlinear effects. 

In this paper we use this model to study the interesting case of 
normal incidence c." an electromagnetic wave on the inhomogeneous plasma 
slab. The main attention is paid to the effect of the electron temperature 
upon this process, 

2. STARTING EQUATIONS 

Investigating the interaction of an electromagnetic wave with an 
inhomogeneous plasma we shall start from the two-fluid equations and 
from the Maxwell equations, lie shall study only the norami incidence 
of an electromagnetic wave on an inhomogeneous plasma slab. We shall 
supose that the slab is parallel to the ( У Z ) - plane and the 
electric field of incident w<»vo is directed along the Z. - axis. When 
the electron pressure p is difforent from zero (ians are always treated 
as cold) we shall assume that the plasma is confined in the direction 
of л - axis (i.e. in the direction, of the inhomogeneity) by the gravi­
tational field. The potential U(x) of this field have been chosen in 
the form of a well. This gravitational field supports the stationary 
state of warm plasma. The relation between density, pressure and velocity 
is given by the adlabatic state equation, 

Ve shall suppose that the plasma is stationary, prior to the 
incidence of an electromagnetic wave. In this stationary state we ehall 
put electron and i«jn velocities equal to zero. Thus, no magnetic field 
is present in the slab at the initial state. Ve introduce 
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(1) 
Й Л * Я « ,P*P*fi, £>£*•£« / <* = ' .«, 

where fle /2£ are the electron and ion density, respectively, L% is 

the X - component of alectric field. The stationary quantites ly^ , 

P , Ett fulfil the following equations 

d? 
dx 

(2) 

dx ' d* 

Here ffle Щ^лхъ the electron and ion mess respectively, ^ is the 
elementary charge (e> 0), T is the electron temperature. If we 
introduce the particle flows 77. = fl^ V^ we can write the starting 
set of dynamic equations in the form 

+ 
dl Í;{JT'*Ve*+ík)=-lk ("e Е<*-Лег h) 

dl дк 

%~hb>*.n<-r),% 

dt е-, Vе* **) 



5 

Here L-- l-> u represenv the electromagnetic fields of a wave in plasca, 

•t and £ «re permeability and permitivity of free space, respectively, 

is a ratio of the specific heats for the electron fluid, У is the r 
potential of an artifleal gravitational field having the shape of a well. 
This form of starting equation is suitable for the numerical solution by 
means of a finite-diference scheme. 

3. Initial and boundary conditions 

The stationary state is described by the quantities r E U . N^ 

and possibly by / . Two of these quantities не may choose arbitrarily 
and the other can be determined from the set (2), In our case we have 
supposed Ne (x) and T (X) in the form 

J 

/í = /V0{{[l-ca(2jrx/L)}} f *e< 0,1 > 

eo 

Here N , I. • -_-e the density and the temperature of electrons in 

the middle of the slab, respectively. /_ is the thicluiess of the slab, 

A and Ъ are the relative grandient of the temperature and the 
density of electrons in the point X — L IIf , respectively. Our staionary 
•tate is fully determined by means of five coretants /V0 I- П D , L , 
The profiles of the density, of the pressure and of the gravitlonal field 
are depicted in Fig. 1 for one special choise of these parameters. The 
difference between the electron and ion density is so email, that curves 

N: and Ne merge. Let us note that all physical quantities and their 
derivative with respect to thexare equal to zero on the boundaries of the 
interval Č 0. L / . It is also important that the force —•— 
acting on electrons Is equal zero at X = U,L and changes here continuously. 

The initial conditions of dynamioal quantities have been determined 
in such a way that in starting moment the plasma is In the stationary 
state, i.e. the quantities 711JL f JJ / ̂  / E 1% f E z f 3 у have 
been set to zero at { =. 0 for a l l X £ < 0,L > . The boundary oondition 

splits into boundary conditions for the plasma quantities including the 

electrio field £" and Into boundary conditions for the electromagnetic 
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wave. Ve have supposed that the quantities Ц TT fO E. «re 
equal to zero for all Г ^ 0 on the plasma boundaries, i.e. at the points 
X = 0 and X = I . 

The boundary conditions for the electromagnetic wave call for a more 
detaiLed discussion. Our task consists In ane formulation of the boundary 
conditions at the point X-Otxná X = L which can be easily transformed 

into a finite difference scheme and which correspond to the fre«» propaga­

tion of outgoing and incident waves. Actually we suppose that the plane 

wave with given amplitude and phase is incident on our slab froi the 

point X = - oo . Further, we suppose, that the frnxt of incacent wave 

reaches the point Л = U at i =0 . Becouse there are no surface charges 
and no surface current»at X sI/ and X — L the waves reflected from the 
plasma and the waves outgoing behind the plasma leave the slab freely. 

The boundary conditions can be easily formulated only In free space. 
Ve introduce the auxiliary quantities 

(5) Еж-7(£.-'3г), £*<с-Т{£,+ <%) • 
L....» and U^- are in fact the intensities of electric field of the 

INC ЛЕС 

waves propagating In the direction of the increasing X and decreasing 
X , respectively. The boundary condition can be thus written as foliová: 

on the left-hand side of plasma, i.e, at X = 0 'в put for all t ^ 0 

(«•) r , e,n d£*« - с gE'" = Q 
LINC ó(£) ' di J* U' 

on the right-hand side of plasma, i.e. at Hs L we put for all 

LD£C u> dt dx 

The source w has been chosen in the form 

(7) where b0 (tol) = Í, { 1 ~ С* (awl)) 116 ' « U < 0 , f ^ > 

SE л» i >, — 
uo * aw 

The nvinber CU i s pos i t ive and fr g ives the number of time periods 

T (Г* Z1[Iw)curing which the amplitude of wave a t ta ins i t s maximum £a 
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The amplitude of wave must grow slowly in numerical simulations and thus 

we have put Л ~ 0. OS 

h. The physical parameters of our problem 

Seven parameters, namely Л D 1ф f Ne f L , t-0 UJ occur 

in our model of the interact ion of electromagnetic wave with the plasma 

s lab . FMm the discussion of the physical s imilarity i t fol lows that our 

problem i s fu l ly determined only by s i x dlmmnsionles> parameters. Ve have 

chosen these parameters 

(8) 

A = L_ 
T 

áL 
dx h = Ll 

, В 
L JN* 

V-I/*, 
L-L/A , 

L-
mecw 

. e'N t- T-mcr 

where 
A = wl (Zfc) , с ,(€,/*,)'* . 

The numerical values of the parameters (8) determine the chare с tor of 

the solved problem. If N У I the plasma i s dense and the waves are r e f l e ­

cted from the s l ab . For N « / the waves penetrate the plasma. The 

parameter L g ives the ra t io of the wave length to the length of inhomogeneity. 

If Te I Ee « 1 the plasma beha'-is as cold. At Tp I Eg ^s 7 we 

are studying processes in warm plasma. Because our equations (3) are 

nonre la t i v i s t i c we can study only cases for which Ef ^ l and ) « 1 . 

Usually, we have chosen 10 £ E£Z x 10* and 0 < Tp < Sx/O'* . Jr. 

cases which are depicted on Figs . 1 •• 11 we have put л " 7 , 3 ш 7 , L ~ Z 

Nt
s Z . I n Addition to the parameters (8) we have two other constants in 

our problem, namely, the r a t i o of the ion mass to the electron mass Щ' J Mg 

and the parameter f . Al l resul ts which are shown in Figs , 1 - 9 , 11 

were obtained for fflj Jme » W and / * " - J . 

Before the numerical solut ion tor set of equations have been transformed 

into the new dloansionises ; variables 

(9 ) ť-ué , f - tic 
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(?) E'mlŽzrE. ^'-ibr-i, u'"^ 

Let us note that an arbitrary equation or an expression i n tbe dlmenitn-

n less variables can be obtained i f «c put €.ф ~ f*m ~ е. ~ УЛе =- ítf — 1 

and subst i tute Itlj /ffts for fflj i n the dimension express ions , 

j . The numerical code 

The set of equations (3) is hyperbolic and its equations have • 

general form 

Fvrnn many well known finite difference schemes which are applicable to the 

solution of (10) we Have usod the leapfrog method described in (8). Ve 

have modified this method to be able to solve the nonconservative equations 

(lO). 'This numerical technique consists of discretizing the space and 

Mute variables in steps A X and Л с respectively. Introducing the 
usual notation 

where / —Л/.../fsmd fl - Dt 1, .2.-.we can express 
the solution of (lO) in a form 

« m 

(11) uj =u, *[П,* iůX )i*t . 

The solution is numerically stable If . The numerically 
acceptable values of X and r\ are 0,9 and 10O-200, respectively. 
The numerical accuracy of our solution has been checked on the fulfilment 
of the physical conservation laws: conservation of particles, of total 
energy and of total momentum. Using the prescription (ll) we are able 
to calculate all values U.- from Uy and Uj , The 

•*' •»/ exception forms the boundary values U0 , Un which must be determined 
from the boundary conditions. 

The boundary conditions (6m,b) mrm valid only In free space. Thus, 
we hmwe shifted the rlaeom boundary on both sides of the slab about one 



9 

lattice point inward. For Л ^ , Т1Ы ; t)4 and EtJ[ the boundary conditions 
must be written 

(12) 4 = U4 = Ult = U» = 0 

for all 71 . Using the boundary conditions (6a,b) we can determine the 
boundary values of E, Jiy . To be able to express these conditions 
sufficiently precisely' in a difference form we have introduced the new 
variables 

(13) QX - i - f OK + Í - /П f О = Д i JД X 

From e q u a t i o n s ( 6 a , b) and ( l 3 ) we o b t a i n 

ЭЕЯ£С 

7 
ďO ('-H-7Í^{^r)=^ 

INC (,.;е).*ш..(,-г).0. 

In th»ae equations we can express the derivatives with respect to /П and 
by means of the central diference» 

3U 
Ц 

LL- — U- 3U 
I Д ' By & 

where Д = ( (&X) + (At ) ) . For the values t . 

I 

,nt< *ecto and 

(15). 

we then obtain from the equations (l**) 

E* - Ея" f , 

'INC. M 'IMC. П'1 
£ -E 

INC, M 

**1 

lffčtn-1 Ť , 

where f ( * - e f ) i ( f + £f>) 

From ( 5 ) , (15) end from two r ema in ing c o n d i t i o n s i n (6a„b) we g e t t h e 

boundary value» f o r £g f £y 
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(1б) £*"" = E"' • Г " # " ' = Ем" - S"' 
L- г,о '-see, о u -"у, о 9£t,o 

If СР К 1, the equations (l5), (l6) give a numerically stable generation 
of the electromagnetic wave in the interval \ 0 , L ̂ . 

Our boundary conditions are more precisely than the conditions which 
are usually used , see e.g. f^J» Their main advantage consists in half 
ntimbcr of the difference conoitions which must be solved and in the direct 
introduction of the source function О • This was attained by our 
separation of the electric field of wave in E and E. . 

DtC IMC 

6. xyia^ussion of our results 

To be able to discuss our numerical results in detail it is necessary 
to mention an approximate anlytic solution of our problem. As far as the 
amplitude of the incident wave is small it is possible to develop the 
solution of the set of equations (3) to the series in powers of L. .At 
the same time we confine ourselves to the quadratic terms, Ve аввише that 
the plasma slab is opaque (i,e, fi У 1 ) and we study the solutions 
only for i > JL J (aw) .At this time the standing wave ie fully developed 
from the incident wave. As well, we confine ourselves to the case when 

t-Q-

In l inear approximation we obtain 

(17) г Г 

V = -SJz- coif. I/. -- - ^ - (fit?, 
whereas #// +• Ж and P^ is an initial phase. The other quantities 
are equal to. the stationary values. The profile of depends on the 
density profile and can be determined as the solution of the equation 
(18) ^^ffP- -*.?.(»-*>'.)Е-ЛА-0, 
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where &Л. i s the local plasma frequency given by 

Ш =• 
ezN„M 

о е (<*f-) 
E1 must fulfil the boundary conditions mentined in paragraph J. For the 

quadratic quantities «e obtain easily from (3) 

£1Х*Я(х)- Í1- %r) + Q(x) M*f +v4ix)*n,a,é + vg(x) cot шв1 f 

ь•&•* * 
e(t-Q) Awf £f 

V4 

meu>0 

сея wl ~ 

e V 
- - T - ^ — . Am W, I + V. (X) , 

' я, ш m/ 

+ ~г— ллт, out + V, (x) 

со) at 

* * — 
e(K-Q) 

7{-. 
- Ц - Cos шЛ + v.(x)i\\ + V„ 

Ш tf e. V, 
mec*>; 

T aim/ wA + i о 

(X) 

*~37 { 
m. 

N.it) 2*п; 4 си тг 
Col Z(f -

* vs (x) 

- r e tlx)___ * _*£ tu _**!<_£) 
Ые ш" dx ' шв-Ью \ frit I , 

and /f i Уг / V3 f V4 ; Vf can be determined from the initial conditions , The 
quadratic terms in £ z J} / y g i f y ^ are equal to 7ero, The formulaя 
/ \ / \ lone »• J 

U 7 ) , (19) are valid only for a limited time asfthe changes of the stationary 
values of plasma parameters caused by the secular terms of (19) are «mall. 
This time tc can be determined from the expressions for 71 . or #. 
We can see that %t^ngi.t t ~ éc , where t£ (ť ~(тП{ /^€ ) / £', 

The solution (17) desrcibes • standing electromagnetic «ave in a 

plasma. The expressions (19) describe three processes. The first one is the 

ft 
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deceleration of plasma causud by the radiation pressure. The second and 
the third processes aro the generation of the forced oscillations on the 
second harmonic and the generation of the electrostatic oscillations of 
the cold plasma with the local plasma frequency U)0 , respectively. 
The stationary terra in E fx is caused by the difference in the elee-
tron and ion velocities ( уg2 and Vt2 ), 

Our results of the numerical investigations of wave incidence on a 
cold plasma slab can be easily compared with the expressions (17), (19). 
If the amplitude of the incident wavo is small ( £" << 10 ) the 

numerical results are in a good agreement with our theory for whole time of 

the simulation ( t ^ HOOT ), A standing wave is created from the 

incident wave. The position of nodes and antinodes does not change with 

time. The same is valid about the oscillations of the electrons and ions 

in the field of this wave. Figure 2 shows a typical profile of E z Зу, 

Уег Vtz . The electric field L z is sketched at a time which is appro­
ximately equal to an even nultiple of T and in the antinode reaches its 
maximum value. The quantities jby , Vei f Vl2 are sketched in time which 
is about Tib later. Figure 3 shows the instantaneous profiles of the 
ion density perturbation •?! f{ , of the X - component of ion velocity 

Vtx and of the perturbation of the electrostatic field E /jr , 
The electrostatic field L 1X has two nodes, the first one at -he plasma 
boundary, the second one at the antinode of the field t- t . The irregular 
shape of E1f near the left plasma boundary is caused by the presence 
of cold plasma oscillations. The perturbation of ion density Ay(- has 
three aodes. The first one at the plasma boundary, the next one is in the 
region before the antinode of Ei and the third i one is in the point of 
inflection of EL , The ion velocity И/х has a similar profile as E^ 

Doth these quantities show small time oscillations around the sketchend 
profiles. For the perturbation of electron density it holder?.. 0СЛл^е^аль 

yet irregular shape at £ £ 100 T .This is caused by the strong oscil'?tions 

of this quantity both at the second harmonic and at the plasma frequency. 

Fig, h shows the time dependence of the ion density perturbation 7lij in 

the point corresponding to the second antinode. In the same picture we 

can also see the time dependence of if* , where /.g
M /Я2/ Tlj% d.% , 

From this picture it is clear that 71^ grew» quadratieally with tine and 
that the plasma as a whole gains a constant acceleration in the direction 
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of X -axis. The excellent agreement between the results of our simulations 

and the expreeaions (17), (19) follows from the fact that i£ » ZOOT for 

f = iff'3 . 
0 

If the wave amplitude t. } 10 , strong nonlinear effects are develo­

ped and the stationary parameters of plasma are changeJ substantially a s time 

t grows (see Fie. 5). However, from the results of our simulations 

it ̂ follows that the equations (l6) - Í1?) are valid if the stationary 

density Ni is replaced by the instantaneous density 7? . From the 

figure 5 we can also see that the density gradient is sharply increased 

in the region of plasma resonance and a hock wave is developed here. 

The bulk on density profile at the left boundary hf slab is caused by 

our boundary conditions for plasma quantities. Both these effects prevent 

the suocesful application of our model for long times if E > 5x 10 

When the plasma temperature is different from zero we confine ourse­

lves only to the discussion of the numerical solution of eqs. (3). It 

follows from this solution that the electromagnetic wave is again reflected 

from the plasma (for Np У i ) and forms a standing wave. The profile 
of this wave is practically tha same as that of cold plasma (see Fig, 2). 
The finite plaaraa temperature changes substantiously the space-time 
development of the quadratic quantities £1j( f vif f ViX , 17 n- f TL le . 

These quantities and also the pressure perturbation ft are never more loca­

lized in the .region where the amplitude of tha standing electromagnetic 

wave is large. These perturbations spread out in the whole vobme of plasma 

slab (see figs, 6 - 8 ) . If we compare Fig, 3 with Fig, 6 we see that at 

the beginning of this process there is not a great difference between the 

cold and warm plasma in this point. For longer times the thermal motion 

of electrons transports these perturbations from the region of plasma 

resonance to the both plasma boundaries (see Figs, 6 - 8 ) , Due to the 

requirement of quasineutrality these perturbation propagate with the ion . 

sound velocity V. SS/((ji' Te))P7t'Jг , From the discussion of our numerical re-
. suits it follows that the perturbations fl1g , ft1t- f Vexf Vty and Л are 
composed from two components»The main component is и wave of compression which 
propagates with the ion sound velocity from the region of plasma resonance. 
This wave originates from the initial compression of plasma produced by the 
ponderomotive force corresponding to the reflected electromagnetic wave. 
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•Пг 

In cold plasma this compression is described by secular terms in (19). 
Because it holds that Я „ л* П4в and Vtt ca Vex (for i > Г/л) 

no electric field is coupled to this wave. The perturbation of electric 
field E. 1t corresponds to the ion sound wave which modulates the main 
perturbation of densities, velocities and pressure. To determine the group 
velocity V6 of this wave we have plotted the position of a local maximum 
of E in dependence on time. This is done for several values of /„ ,/*"/ , 
ffl- I trim i» Fie 9» From this figure it follows that the local group velocity 
coincide very well with the local ion sound velocity V* s where V{ = 

T(XI)(MÍ) . For the group velocity in the middle of the slab we obtain 

V - ižfttlP for upper curve in Fig. 9 (the theoretical value of 
С 
у'-- У 21жЮ\т |£ = &.М ж 10' for lower curve К ч\ ~ i.66 ж fO'3 ). 

The time development of global parameters characterising the intera­
ction of an electromagnetic wave with a warm plasma is given in Fig. 10. 
Here the perturbation of total thermal energy is given by 

л£™ mf[~rr)d* 
9 

and the perturbation of total potential energy of a plasma in the gravi-
tional field is given by 

L 

AEnT'fU(x)(me n1e+ m{ nfi)dx . 

At the beginning of the process the plasma is accelerated - the X - compo­

nent of total ion momentum * fa grows. At the same time the total thermal 

energy grows and the total potential energy decreases. After some time 

the gravitational force and the force given by the pressure gradient overcome 

the penderomotive foroe of electromagnetic wave. Now, the plasma is elown 

down, the total thermal energy decreases and the total potential energy 

grows. From the results of our numerical simulations it follows that the 

increase in one type of these energies is approximately compensated by 

the decrease in the other type so that 

When the incident wave has a large amplitude ( t p > 10 f the 

profiles of the density and the pressure change gradually a* time grows 
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(see Fig. ll). In vans plasma the de.isity gradient does not grow in the 
region of plasma resonance to such extent as it does in cold plasma. This may 
be explained by the fact, that the density and pressure perturbations 
are transported by the thermal motion from the rlnsn» resonance region to 
the whole volume of a plasma (compere Fig, 5 and Fig, ll). 
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Fig. 3: Profiles of Е. fX П li 
at t = 4£5". i T. 
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гх f o r Е'0 = 40'\ Тс = О 
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F i g . kt Time dependence of the ion d e n s i t y p e r t u r b a t i o n and of t'*-e X-c°np°-

nent of the t o t a l i on momentum f o r L ш 10 Tp - 0 . 
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FiC. 5' distortion of the plasma density profile and the self-consistent 
profile of the standing electromagnetic wave for 

t » /30 Г . E\-t*10'*, I -o 

10'6-

x/A 

Fie. 6; Préfiiee of E'u f riu and *i> 
at i - 36 T 

for £ > /0'J T'=f» 10 -3 
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Fig. 7: Prof i les of £ nf • 

at ^ = Хб.ЬГ 
and Л for E'9 = 10~\ TD = f* 10'* 

Fig, 8s Prof i les of £n , Л „ and /0f for £ , - 10 , Г, = f X 10 

at t = tf£*r. 
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2H 

Д • 

И X 

О • 

х/л| 
о-

50 t/r 200 

Fie» 9: T r a j e c t o r i e s of a l o c a l maximum of the e l e c t r o s t a t i c f i e l d t-tx 

the ion sound vave f o r the fol lowing parameters : t-0
 m 10 ( a l l 

curves ) , Hfi. corresponds to Tt " ž.f xf0/ir
mJ ЛГ,- f tfle » 100 

A corresponds to Тф ъ 5t 10 J f = 1.f ; til f- /fBe = 400, 

Xcorresi?onds to £"'= 40'3 f - J , ™г /f»e '10, 

Ocorresponds to T$ = S% /0'3 f*3 / ГП-/Ме = /ДО. 

of 

10-Ц 

Fig. 10: Ti"» dependence of &ETH , й E ?0J 

T'- f* 10 '3 . 

P;g torEi- 10 \ 
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-05-

Tíe, 11: Dlatortion of tho plasám donaity p r o f i l e and tho •e l f -conaiat«nt 

prof i l* of tho standIng •lectroangiiatio «•«• for £ m 2 ж 10 -г 
ť- Z л 10' 
* / 

i • 130Г . 


