ИФВЭ 81-159

Sec. And Sec. Sec.

ОЭИПК SERP-E-78

И.В.Ажиненко, Ю.А.Белокопытов, А.А.Боровиков, А.П.Воробьев, В.В.Князев, А.И.Курносенко, В.Н.Рядовиков, В.А.Уваров, В.Ф.Чунихин, П.В.Шляпников

Институт физики высоких энергий, Серпухов, СССР

М.Ван Иммерсель, М.Гисен, Ж.Ж.Дюмон

Межуниверситетский институт высоких энергий, Брюссель, Бельгия

ОБРАЗОВАНИЕ ЧАСТИЦ И РЕЗОНАНСОВ В ШЕСТИЧАСТИЧНОЙ РЕАКЦИИ $K^+p \rightarrow K^+p K^+K^-\pi^+\pi^-$ ПРИ 32 ГэВ/с

Серпухов 1981

И.В.Ажиненко, Ю.А.Белокопытов, А.А.Боровиков, А.П.Воробьев, В.В.Князев, А.И.Курносенко, В.Н.Радовиков, В.А.Уваров, В.Ф.Чунихин^ж), П.В.Шлялников

Институт физики высоких энергий, Серпухов, СССР

М.Ван Иммерсель, М.Гисен, Ж.Ж.Дюмон

Межуниверситетский институт высоких энергий, Брюссель, Бельгия

ОБРАЗОВАНИЕ ЧАСТИЦ И РЕЗОНАНСОВ В ШЕСТИЧАСТИНОЙ РЕАКЦИИ $K^+p \rightarrow K^+p K^+K^-\pi^+\pi^-$ ПРИ 32 ГэВ/с

Направлено в ЯФ

*) Институт физили высоких энергий при ТГУ, Тбилиси

Annotanes

Ажиненко И.В., Белоколытов Ю.А., Боровиков А.А., Воробьев А.П., Гисни М., Димон Ж.Ж., Инлеер-сель Ван М., Князев В.В., Курносенко А.И., Рядовиков В.Н., Уверов В.А., Чушкин В.Ф., Шляпников П.В.

Образование частиц и резонансов в шестичастичной реакции К⁺р - К⁺р К⁺К^{*} * ⁺ ири 32 ГеВ/с. Серпухов, 1981.

(ИФВЭ ОЭИПК 81-156 (КАР-Е-78). 19 стр. с рыс.

Библиогр. 11.

Преставлены эксператментальные данные по образованню частии и резонансов в ранее неиссаедо-ванной шестичастичной реакция К⁺р - К⁺рК⁺К⁻π⁺π⁻ при 32 ГеВ/с, идушей с сечением 40,6 <u>+</u> 3 мкб, которые интерпретируются в свете кварк-партонных представлений.

Abstract Ajinenko I.V., Belokopitov Y.A., Borovikov A.A., Chliapnikov P.V., Dumont J.J., Gysen M., Immerseel M.Van, Kniazev V.V., Kurnosenko A.I., Riadovikov V.W., Tchunikhin V.Y., Uvarov V.A., Vorobjev A.P.

Particle and Resonance Production in Six-Body Reaction K*p + K*pK*K * * * at 32 GeV/c. Serpukhov, 1981.

p. 19. (IHEP 81-159 SERP-E-78).

Refs. 11.

Experimental data on particle and resonance production in so far uninvestigated reaction K+p -K+pK+K #+ #- at 32 GeV/c with cross section of 40.6+ 3.0 µb are presented and discussed in terms of quark-parton approach.

1. ВВЕДЕНИЕ

Целью настоящей работы является исследование общих свойств реакции

$$\mathbf{K}^{+}\mathbf{p} \rightarrow \mathbf{K}^{+}\mathbf{p} \mathbf{K}^{+}\mathbf{K}^{-}\pi^{+}\pi^{-} \tag{1}$$

при 32 ГэВ/с в эксперименте, проведенном на пузырьковой камере "Мирабель". Иэ-за трудностей в изучении шестичастичных реакций подобного типа с тремя (в пучках каонов) или двумя (в пучках нестранных частиц) каонами в конечном состоянии и их небольших сечений какая-либо эксперимента]льная информация о реакции (1) вообще отсутствует. В К p_1/2, pp_2/2, π^+ p_3/2 экспериментах при 32 ГэВ/с в К p-эксперименте /4/ при 14,3 ГэВ/с измерены лишь сечения соответствующих реакций.

Статья построена следующим образом. После краткого описания экспериментальной выборки и методики определения сечения реакции (1) анализируются распределения вторичных частиц по продольным и поперечным импульсам. Обсуждаются корреляции между продольными и поперечными импульсами, приводятся сечения образования основных резонансов в реакции (1). Обнаруженные закономерности обсуждаются в свете современных кварк-партонных представлений.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ВЫБОРКА И СЕЧЕНИЕ РЕАКЦИИ $K^+p \rightarrow K^+p K^+K^-\pi^+\pi^-$

Представленные в настоящей работе экспериментальные данные получены при облучении 4,7-м водородной пузырьковой камеры "Мирабель" в пучке ВЧ сепарированных К⁺-мезонов с импульсом 32,1 ± 0,2 ГэВ/с ускорителя ИФВЭ в Серпухове. Чувствительность эксперимента, в котором получено 400 тыс. фотоснимков, составляет около 7 соб./мкб.

Подробные сведения об эксперименте и деталях обработки данных содержатся в наших предыдущих публикациях⁵⁷, посвященных анализу эксклюзивных каналов. Экспериментальная выборка, соответствующая реакции (1), получена при фитировании всех полностью измеренных 6-лучевых событий без ассоциированных у-квантов и V^c-частиц в кинематической программе к гипотезе (1) и гипотезам

$$K^{\dagger}p \rightarrow K^{\dagger}p \hat{2}\pi^{\dagger}2\pi^{-}, \qquad (2)$$

$$\mathbf{K}^{+}\mathbf{p} \to \mathbf{K}^{+}\mathbf{p}\mathbf{p}\mathbf{\bar{p}}\pi^{+}\pi^{-}.$$
 (3)

Событие относилось к 4С-фит каналу реакции, если вероятность этого канала $P(\chi^2) > 10^{-3}$ и при условии его совместимости с наблюдаемой илотнофтью ионизации. Из-за невозможности идентификации всех вторичных заряженных частчи^{ж)} одно и то же событие могло одновременно удовлетворить нескольким кинематическим гипотезам. Это могли быть либо внешние неоднозначности между конкурирующими каналами (1) - (3), либо внутренние неоднозначности из-за перестановок типа $\pi^+/K^+/p$ или $\pi^-/K^-/p$ в одном из каналов (либо оба типа неоднозначностей).

Полное число событий, удовлетворяющих гипотезе (1) с максимальной $P(\chi^2)$ -вероятностью, составило 291. Из них 146 событий однозначно удовлетворяли только гипотезе (1) и не имели внутренних неоднозначностей. Остальные 145 событий имели внешние и(или) внутренние неоднозначности, характер которых иллюстрирует табл. 1. Наибольшее число внешних неоднозначностей

⁹¹⁾Однозначное разделение р/я⁺ по плотности конизации возможно жиль при импульса Р_{ЛАБ} < 1,2 ГэВ/с. обусловлено конкуренцией только между двумя каналами (1) и (2) или (1) и (3). Наибольшее число внутренних неоднозначностей связано с 98 перестановками π^+/K^+ и 89 перестановками $\pi^-/K^{-\pi}$.

Для определения сечения реакции (1) мы использовали три следующих метода разделения внешних неоднозначностей:

1) для каждого события отбиралась только одна гипотеза с максимальной $\mathsf{P}(\chi^2)$ -вероятностью;

 отбирались все внешние гипотезы, но каждой из них приписывался вес, обратно пропорциональный числу конкурирующих гипотез в данном событии (т.е. 1/2 или 1/3);

3) неоднозначно разделенные между реакциями (1) – (3) события распределялись по этим реакциям с весами, пропорциональными отношениям чисел однозначно разделенных событий.

Как видно из табл. 2, все три метода приводят к согласующимся в пределах ошибок оценкам сечений, а их среднее значение составляет 40,6 ± 3 мкб^{лич}).

Во всех представленных ниже результатах для разделения как внешних, так и внутренних неоднозначностей использовался выбор гипотез с максимальной вероятностью. Использование других методов практически не влияет на полученные нами результаты.

3. ОБРАЗОВАНИЕ ВТОРИЧНЫХ ЧАСТИЦ В РЕАКЦИИ $K^+p \rightarrow K^+pK^+K^-\pi^+\pi^-$

Значения параметра асимметрии $\mathbf{A} = (\sigma_{\mathbf{F}} - \sigma_{\mathbf{B}})/(\sigma_{\mathbf{F}} + \sigma_{\mathbf{B}})$, где $\sigma_{\mathbf{F}}(\sigma_{\mathbf{B}})$ – сечения рождения частицы в переднюю (заднюю) полусферу в с.ц.м., вместе со средними значениями приведенного продольного импульса

^{ж)} Заметим, что суммарное число этих перестановок превышает число событий в реакции (1) с внутренными неоднозначностями (62 соб., см. табл.1), так как в одном события может быть весколько перестановок одновременно.

^{жж)}Ошнбки здесь и далее статистические. Систематические ошибки, как следует уже из табл. 2, составляют не меньше 10%. Полученное значение сечених реакции (1) можно сравнить с сечениями реакции (2) и (3), определенными третьим способом, которые соответственно равны 163±5 и 18 ± 2 мкб^{/5}ж[/].

 $x = p_L^* / p_{max}^*$, быстроты у в с.ц.м., поперечного импульса p_T и квадрата псперечного импульса p_T^2 для вторичных частиц в реакции (1) представлены в табл. 3. dŃ / dx -распределения вторичных частиц приведены на рис.1.

Мы видим, что протоны доминирующим образом рождаются в задней полусфере в с.ц.м. ($\mathbf{A} = -0.57 \pm 0.07$), тогда как все остальные частицы в основном образуются в центральной области с небольшой положительной асим-метрией для \mathbf{K}^+ , \mathbf{K}^- , π^- и отрицательной асимметрией для π^+ .

Достаточно широкий х-спектр K^+ -мезонов (рис. 1 а) наводит на мысль, что в действительности значительная часть K^+ в реакции (1) образуется за счет двух механизмов фрагментации пучка и мишени. Разделение этих процессов должно быть намного лучше в пространстве быстрот, и мы в самом деле наблюдаем, что распределение K^+ -мезонов по быстротам в с.ц.м. (рис. 2a) характеризуется двугорбой структурой, которая отсутствует для K^- -мезонов (рис. 26). Отличие в механизмах образования K^+ и $K^$ отчетливо проявляется в разности их спектров по быстротам (рис. 2в), где наличие характерной двугорбой структуры не вызывает никаких сомнений, Такая же структура намечается и в разности х-спектров K^+ и K^- (заштрихованная гистограмма на рис. 1а). Качественно этот эффект легко объясним на кварк-партонном языке.

Действительно, K^+ в реакции (1) может быть образован при фрагментации любого из валентных кварков начального каона или одного из и-кварков протона. K^- -мезон не содержит валентных кварков, рождается только на морских партонах и поэтому должен характеризоваться более центральным распределением по продольным импульсам^{**}). Конечно, часть K^+ -мезонов также образуется на морских партонах. В качестве грубой оценки можно предположить, что число таких K^+ сравнимо с полным числом K^- . Тогда разность спектров K^+ и K^- по быстротам должна характеризовать распределение по

^{**)}Строго говоря, эти рассуждения применным только к "приморожденным" каонам. На самам деле, источником К⁻ могут быть распады Ф-мезона или страинаю берионных резонаясов в системе рК, в основном образуемых при фрагментации валентных кварков (дикварка). Двугорбая структура в сшетерах К⁺ от распада резонансов должна быть менее зыражева, чом в сшектрах "приморожденных" К⁺.

быстротам K^+ -мезонов, образованных при фрагментации валентных кварков начальных частиц, тем самым объясняя характерную структуру спектра на рис. 2в. Заметим, что в реакции (1) валентный \bar{s} -кварк начального каона обязан либо фрагментировать в один (быстрейший) K^+ , либо переходить в "центральный" K^+ за счет механизма слипания с одним из валентных и-кварков протона. В последнем случае второй K^+ может быть образован в сбластях фрагментации при фрагментации одного из оставшихся и-кварков либо каона, либо протона. Из этих простых соображений следует, что отношение чисел событий в переднем и заднем пиках на рис. 2в должно быть порядка 2, что не противоречит экспериментальному значению 1,64 ± 0,20 этого отношения,

В распределении π^+ -мезонов по быстротам (не приведено) имеется только небольшое указание на наличие двугорбой структуры. Это и неудивительно, так как π^+ -мезоны могут образовываться в области фрагментации пучка лишь при рекомбинации валентного U-кварка, в среднем вдвое более медленного, чам \bar{s} -кварк^{/6/}.

Средние значения $\langle p_T \rangle$ и $\langle p_T^2 \rangle$ (см. табл. 3) примерно совпадают для К, π^+ и π^- , но оказываются заметно выше для К⁺ и р. Большие значения $\langle p_T \rangle$ и $\langle p_T^2 \rangle$ для К⁺, чем для К⁻, могут быть опять-таки объяснены вкладом образованных на валентных кварках пряморожденных К⁺, спектр вторых по p_T^2 имеет заметный "хвост" при больших значениях p_T^2 в отличие от каонов, образовавшихся при распаде резонансов. Об этом же свидетельствуют результаты аппроксимации распределений вторичных частиц по квадрату поперечного импульса экспоненциальной зависимостью $d\sigma/dp_T^2 = Aexp(-Bp_T^2)$ (табл. 4). Она хуже всего воспроизводит спектр К⁺ из-за вклада событий с большими p_T^2 , приводящих к меньшему значению "эффективного" параметра экспоненциального наклона, чем для других частиц.

Разница в поведеним $K^+ - и K^-$ -мезонов в реакции (1), по-видимому, связанная с прямым образованием K^+ на валентных кварках, проявляется прежде всего при больших продольных и поперечных импульсах каонов. Поэтому интересно проанализировать зависимости $\langle P_{T} \rangle$ от X для вторичных час-

тиц в реакции (1), представленные на рис. 3. Они характеризуются следующимы закономерностями. Мы видим, что в центральной области при x = 0средние значения поперечных импульсов примерно одинаковы для всёх частиц и составляют около 0,4 ГэВ/с. В то же время в областях фрагментации первичных частиц при $|x| = 0.5 < p_T > = 0.6$ для K^+ и π^+ (а также для рассеянных назад протонов) и намного меньше для K^- ч π^- . По-прежнему, максимальное отличие в характере этих зависимостей наблюдается для K^+ и K^-

Эти закономерности подтверждают предположение о том. что К⁺ в "+ в областях фрагментации первичных частиц являются пряморожденными частицами, образованными на валентных кварках. Небольшие значения - при х = 0 для всех частиц обусловлены либо образованием этих частиц на морских партонах, либо тем, что они нвляются продуктами распада резонансов. $\Lambda^{++}(1232)$ на зависимость < p_{π} > от x для π^{+} Влияние, например, изобары иллюстрируется рис. Зв, где черными точками показан вклад п⁺-мезонов от распада этой изобары (определенной полосой масс М(Р "+) < 1.4 ГэВ). С другой стороны, значения <p,>=0,6 ГэВ/с при |x| = 0,5 для К⁺ реакции (1) совпадают с примерно такими же значениями , при этих х для векторных мезонных резонансов $K^{*+}(890), K^{*\circ}(890), \phi \mu \rho^{\circ \pi}$ инклюзивных К⁺р-реакциях при 32 ГэВ/с^{/7,8/*} . Зависимость > от x для ф-мезона в реакции (1), показанная на рис. За черными точками, также совместима со значениями ,> для K⁺ в области каонной фрагментации.

Если наша интерпретация справедлива и K⁺ в области протонной фрагментации действительно образуются на валентном и-кварке протона, то это должно означать серьезную встряску протона. Поэтому можно ожидать, что в событиях с такими K⁺-мезонами вторичные протоны, образовавшиеся на оставшемся ud-дикварке начального протона (или даже тольке на одном из

²⁾ К^{++,+}(990) и ф определению, а ^р с больной вероитностью образуютой в премессих фрагманталии (ракомбаналии) валентных кверков (см.⁷⁷,⁸/).

Ŀ

^{як)}Единственным исключением из этой закономерности являются срамительно небольшле значения (хотя и несколько больше, чем для К⁻) для рассеянных назад т⁻мезонов, которые могии бы образовываться при фрагментания d-кварка протока и, следовательно, характеризоваться больщами значенными ,>.

и- или **d**-кварков), будут концентрироваться в центральной области и в передней полусфере в с.ц.м. Двумерный график н. рис. 4а, на котором показана зависимость $x(K^+)$ от x(p), подтверждает это предположение. Особенно характерной эта зависимость становится для таких событий реакции (1), когда K^+ -мезоны образуются с большими поперечными имульсами $p_T > 0.8$ ГэВ/с (рис. 46). Об этом же свидетельствует и рис. 5, демонстрирующий, что K^+ -мезоны в области протонной фрагментации ассоцияруются с вторичными протонами с большими значениями квадрата четырэхмерного переданного импульса $|t_{np}|$.

4. OBPASOBAHUE PESOHAHCOB B PEAKIIUU $K^+p \rightarrow K^+pK^+K^-\pi^+\pi^-$

Спектры эффективных масс систем K^+K^- , $p\pi^+$, $K^+\pi^-$, $K^-\pi^+$, $pK^$ и $\pi^+\pi^-$ (рис. 6) демонстрируют заметное образование в реакции (1) резонансов ϕ , $\overline{K^*}^{\circ}(890)$, $K^{*}^{\circ}(890)$ и $\Delta^{++}(1232)$. В системе pK^- пик около 1,68 ГэВ может быть связан с общирным семейством $\Lambda^* - \mu \Sigma^*$ -резонансов с близкими массами ^{/9/}. В спектре эффективных масс $\pi^+\pi^-$ мы не наблюдаем сколь-нибудь заметного указания на образование ρ° -мезона (верхняя оценка его сечения составляет меньше 2 мкб).

Для определения сечений хорошо наблюдаемых резонансных сигналов на рис. 6 а-г спектры эффективных масс аппроксимировались обычной формулой (о подробностях см., например, ^{/7,8/})

$$d_{\sigma}/dM = BG(1 + a_{1}BW), \qquad (4)$$

где **BG** – фон, а **BW** – релятивистская функция Брейта-Вигнера, в которой значения масс и ширин (с учетом экспериментального разрешения) фиксировались при средних мировых значениях ^{/9/}. Приведенные в табл. 5 сечения резонансов получены при двух следующих параметризациях фона:

$$BG = a_2 (M - M_o)^{\alpha_3} \exp(-a_4 M), \qquad (5a)$$

$$BG = a_{2} + a_{3} (M - M_{o}) + a_{4} (M - M_{o})^{2} + a_{5} (M - M_{o})^{3}, \qquad (56)$$

где M_0 – пороговое значение соответствующей массы системы двух частии. Качество аппроксимации с фоном в виде (5а) иллюстрируют кривые на рис. 6а- г. Как видно из табл. 5, оба способа параметризации фона дают согласующиеся в пределах ошибок опенки сечений. В этой же таблице приведены и средние значения этих двух оценок.

Хорошее отношение сигнала к фону позволяет более подробно исследовать образование ϕ -мезона в реакции (1), несмотря на небольшую статистику, выделив его с помощью простого вырезання полосы масс 1,01 < $M(K^+K^-)$ < 1,03 ГэВ. Распределение ϕ по быстроте в с.п.м.^{*}) (рис. 7а) показывает, что ϕ в реакции (1) главным образом рождаются в области фрагментации начального каона на его валентном **і**-кварке. Сравнение распределения по быстротам K^+ от распада ϕ (сплошная гистограмма на рис. 7б) и ассоциированного с ным второго K^+ -мезона (пунктирная гистограмма) показывает, что последний определенно является более медленным и, следовательно, рождается либо при фрагментации **u**-кварка начального каона, либо на морских кварках.

Распределение эффективных масс $K^{+}K^{-}$ в зависимости от массы $P\pi^{+}$ в реакции (1) (рис. 8а) демонстрирует отчетливую концентрацию событий при пересечении полос масс $\phi \equiv \Delta^{++}$. В области 1,01< $M(K^{+}K^{-})$ < 1,03 ГэВ в $M(p\pi^{+})$ < 1,4 ГэВ заключено 19 событий, оценка фона составляет ~5 событий, так что 14 событий с сечением 2,0 ± 0,7 мкб могут быть отнесены к реакции

$$\mathbf{K}^{+}\mathbf{p} \to \phi \, \mathbf{K}^{+} \pi^{-} \Delta^{++} (\mathbf{1232}). \tag{6}$$

На кварковом языке реакция (6) соответствует процессу одновременной фрагментации каонного **š**-кварка и протонного **uu**-дикварка в ϕ и Δ^{++} . На реджевском языке она описывается диаграммой, представленной на рис. 9. Из известных свойств $K^+\pi^-$ -рассеяния при низких энергиях /10/ можно ожидать, что заметный вклад в реакцию (6) вносит квазитрехчастичный канал

$$K^{+}p \rightarrow \phi K^{*''}(890) \Delta^{++}(1232).$$
 (7)

π)Это распределение подобно соотаэтствующему распределению φ в мнклюзивной реакции К р → φ X при 32 ГэВ/с/8/ (что, впрочем, нсудивительно, так как средняя м.эжественность вторичпых заряженных частиц в последней реакции близика к 6).

Двумерное распределение эффективных масс $K_1^+K^-$ в зависимости от массы $K_2^+\pi^-$ при условии $M(p \pi^+) < 1,4$ ГэВ (рис. 86) действительно указывает на некоторую концентрацию событий при пересечении полос ϕ и $K^{*o}(890)$.

Заметим, что высокостатистическая экспериментальная информация о реакциях типа (6) и (7), которая, в принципе, может быть получена в электронных экспериментах, представляла бы богатейший материал для проверхи различных теоретических моделей и детального исследования свойств К⁺ л⁻ -рассеяния.

5. ВЫВОДЫ

В настоящей работе мы представили экспериментальные результаты по общим характеристикам образования частиц и резонансов в ранее неисследованной шестичастичной реакции К⁺р → K⁺pK⁺K⁻π⁺π⁻ при 32 ГэВ/с. Преплонятые попытки интерпретации обнаруженных закономерностей на языке кваркпартонных представлений являются, конечно, сугубо качественными, хотя бы потому, что на сегодня отсутствуют теоретические модели, которые бы претендовали на количественное описание эксклюзивных реакций в "мягких" адрон-адронных столкновениях. Тем не менее тот факт. что кварк-партонная аргументация. Ныне широко используемая при интерпретации результатов по инклюзивному образованию частиц, также хорошо объясняет большинство обнаруженных закономерностей в эксклюзивном многочастичном процессе, представляется поучительным и, как нам кажется, должен стимулировать разработку соответствующих теоретических моделей, которые к тому же MOLAT быть подвергнуты существенно более критической проверке в эксклюзивных реакциях.

В заключение нам приятно поблагодарить персонал отделов пучков ИФВЭ, ускорителя, пузырьковой камеры "Мирабель", а также вычислительных и измерительных лабораторий наших институтов и наших коллег из Сакле и Парижского университета за их вклад в проведение этого эксперимента.

and the second second

1.6.11

 $[\]pi$) Хотя уже взвестны попытки описания эксклюзивных адровных реалий при больших p_T в рамках КХД (см., например,/11/).

Таблица 1

Характер кинематических неоднозначностей в событиях реакции (1)

Тип неоднозначностей		Число событий
Внешний	Между гипотезами	A
	(1) и (2)	49
	(1) и (3)	25
•	(1),(2) и (3)	9
	Bcero	83
Внутренний ^{ж)}		62
Bcero	•	145

*)При наличии одновременно и внутренных и внешных неоднозначноотей последние разрещались в пользу гипотезы с максимальной вероятностью.

Таблица 2

Сечения реакции (1) при 32 ГэВ/с при трех резличных методах учета внешних неоднозначностей (см. текст)

Способ учета внешних неоднозначностей	Сечение, мкб
. Метод 1)	41,6 ± 3
Метод 2)	42,5 ± 3
Метод 3)	37,8 ± 3
Среднее зна зние	40,6 ± 3

Таблица 3

Параметр асимметрии **А** и средние значения <x>, <y>, <p₁> и <p₁²> для вторичных частиц в реакции (1) при 32 ГэВ/с

Частица	A	<x></x>	<y></y>	<р _Т э, МэВ/с	< p ² _T >, (M∋B/c) ²
<u>K</u> +	0,20±0,06	0,11±0,01	$0,35 \pm 0,05$	428 ± 11	244 ± 12
к_	$0,19 \pm 0,06$	0,07±0,02	0 ,27±0, 07	374 ± 13	187 ± 13
π^+	-0,22±0,06	$-0,01 \pm 0,02$	-0,25±0,08	358 ± 15	178 ± 14
π-	$0,08 \pm 0,06$	0,04±0,01	0,18±0,08	350 ± 12	168 ± 12
Ρ	-0,57±0,07	-0,31±0,03	0,79±0,07	413 ± 15	232 ± 17

Таблица 4

Частица	Интервал p_T^2 , (ГэВ/с) ²	▲, 	В, (ГэВ/с) ⁻²	Ρ(χ ²), %
K ⁺	0 - 2,4	354 ± 27	4,34 ± 0,27	0,04
́ К ⁻	0 - 2,0	236 ± 2 3	5,61 ± 0,42	40
π ⁺	0 - 2,4	271 ± 31	6,30 ± 0,54	0,4
π	0 - 1,8	265 ± 27	6,34 ± 0,50	11
. P	0 - 2,4	205 ± 20	5,08 ± 0,37	2

Результаты анпроксимации дифференциальных сечений do/dp² горичных частиц в реакции (1) экспоненциальной функцией A exp(-Bp₂

Теблица 5

Сечения образования основны езонансов в реакции $K^+ p \rightarrow K^+ p K^+ K^- \pi^+$ при 32 ГэВ/с при двух сп. собах параметризации фона (5а) и (56) и их средние значения

Резонанс <u>Се</u> Фон (5а)	Сечение, мкб		
	Фон (5б)	Среднее	
φ(1020)	5,7 ± 1,9	6,8 ± 3,3	6,3±3
K*°(890)	10,3 ± 2,8	14,1 ± 1,7	12,2 ± 3
K [*] (890)	$5,2 \pm 1,8$	6,8 ± 2,3	6,0 ± 2,5
Δ ^{+ +} (1232)	4,5 ± 2,6	$6,9 \pm 2,3$	5,7 ± 2,5

Рис. 1. Распределения вторячных частии в реакими (1) при 32 ГъВ/с по приведенному продольному импульсу X = p*/p*. Заштрихованная гистограмма (а) представляет разность X-спектров K* x K^{*}.

Рис. 2. Распределения по быстротам в с.и.м. K⁺ (a), K⁻ (б) в реакции (1) при 32 ГэВ/с и их разность (в).

Centermon

PEC. 4. SABACHMOCTS $\times(K^+)$ or $\times(\rho)$ B peakman (1) mpm 32 FeB/c; are construct (a); construct c $p_{\gamma}(K^+) > 0.8$ FeB/c (6).

Рис. 5. Зависимость $x(K^+)$ от $-t_{pp}$ в реакции (1) при 32 ГэВ/с.

16

122.24

Ряс. 8. Завясимость эффективных масс К⁺К⁻ от 9^{#+} (a) к К⁺₁К⁻ от К⁺₂^{#--} при М(р^{#+}) < 1,4 ГэВ (6) в реакции (1) при 32 ГэВ/с.

Рис. 9. Реджевская диаграмма реакции $K^+ p \rightarrow \phi K^+ \pi^- \Delta^{++}$.

. . .

1. A.Givernaud et al. Nucl. Phys., B160, 445 (1979).

- 2. M.Jabiol et al. Nucl. Phys., <u>B183</u>, 330 (1981).
- 3. И.В.Ажиненкс и др. Препринт ИФВЭ 81-31, Серпухов, 1981.

4. C. Loudec et al. Nuovo Cim., 41A, 166 (1977).

5. a) P.Granet et al. Phys. Lett., 62B, 350 (1976);

6) C.Lewin et al. Z. Phys., C3, 275 (1980);

- B) I.V.Ajinenko et al. Nucl. Phys., <u>B135</u>, 365 (1978);
- r) E.A.De Wolf et al. Phys. Rev., <u>D19</u>, 1336 (1979);
- g) A.Givernaud et al. Nucl. Phys., <u>B153</u>, 280 (1979);
- е) И.В.Ажиненко и др. ЯФ, <u>32</u>, 1305 (1980);
- ж) И.В.Ажиненко и др. Препринт ИФВЭ 81-16, Серпухов, 1981;
- 3) A.Givernaud et al. Z. Phys., <u>C8</u>, 291 (1981).
- 8. P.V. Chliapnikov et al. Nucl. Phys., B148, 400 (1979).
- 7. I.V.Ajinenko et al. Z. Phy ., C5, 177 (1980).
- 8. P.V. Chliapnikov et al. Nucl. Phys., B176, 303 (1930).
- 9. C.Bricman et al. Rev. Mod. Phys., 52 (1980).
- 10. P.V.Chliapnikov et al. Phys. Lett., <u>55B</u>, 237 (1975); Nucl. Phys., <u>B91</u>, 413 (1975); <u>B164</u>, 189 (1980).
- S.J.Brodsky, G.P.Lepage. Proceed of the XI International Symp. on Multiparticle Dynamics, Bruges (Belgium), 1980; Editors E.De Wolf, F.Verbeure, p. 715.

Рукопись поступила в издательскую группу 26 августа 1981 года. Цена 10 коп.

С - Институт физики высоких энергий, 1981. Издательская группа И Ф В Э Заказ 859. Тираж 270. 0,8 уч.-изд.л. Т-25271. Сентябрь 1981. Редактор М.Л. Фоломешкина.

- Wines

~ . .