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1. Introduction. 

1.2, The path integral approach has been used in former works *• ) 

in the description of large amplitude motion to derive friction and dif­

fusion coefficients arising from the coupling between the collective and 

intrinsic subspaces characterized by the variables {q> and {£}• Vie now 

show that the same formalism can also be used to generate mass parameters 

corresponding to the presence of conservative forces. They are derived in 

the framework of a fixed and an adiabatic basis of intrinsic states. 

2. Equation of motion in the collective subspace. 

In the path integral formalism, the average probability amplitu­
de to go from an initial intrinsic state a> at to an ensemble of final 
states |b> at t can be written as a double path Integral ) : 

- [S(q)-SW)] 

*q » * e h Ï P b . ( q , , ) ( 2 J ) l ""b/- II 
where the two paths q(t ' ) and Jj(t') both start at q « q(t ) and end at 
q » q(t) and S(q) 1s the collective action integral. 

I f the Influence functiona' 

p(q.3) = I ph,(q.q") ba* 

is cast 1n the form 
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i /dtjnttjJFttj)- J L /dtjntt^/dtgnJtgJGttj.tgî+etn3) 
o(q^)=e 1 i a (2.2) 

with n * q-q 

the application of the stationary phase approximation to the integrand of 

(2.1) leads to the classical equation of motion 

« I f 'W • F « t > - ° C2.3) 

where F is a force generated by the coupling between q and £ and G can be 

interpreted as a diffusion coefficient ) . 

3. Mass parameters. 

In the limit of slow collective motion (q small) and high tempe­

rature, the expression of F can be worked out explicitly by introducing 

statistical assumptions on the relevant matrix elements 4 ) . These are sup­

posed to be Gaussian distributed quantities with zero mean. 

The generalized influence functional 

P(T.T) - I e V 5^(1+ \ , T - \) (3.1) 

where e b are the intrinsic energies and p the average of p over the random 

distribution of matrix elements obeys an integro-differential equation 1 ) . 

Seeking a solution of P in the form 

p ( T » - 0 - p

e q ( V O e / T d T ' L ( T , , T ) 

where P obeys 3Peo/3T » 0 when T goes to », we can show that 

n 2 3 
L(T,0) »invq- inMb> J - Df 9 ( q . O (3.2) 

This formula is obtained by Taylor expanding q around T. The first and 
1 2 third term in (3.2) were worked in refs. ' ) . 

The derivation of M can be performed for weak and strong cou­

pling. The calculations are done 1n a fixed basis of intrin­

sic states as well as in the adiabatic basis. 

In the adiabatic basis and the strong coupling limit one gets : 
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M» 2n 
77 | dT*< 

> 2 * 22âî ,.2 

sinfii'- 6hq< dTT , 2e 
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where a, is the correlation length in q, r* the spreading width of the 
intrinsic states over a Slater determinant basis, B the inverse temperature. 

Hence the influence functional approach allows for the deriva­
tion of collective inertia parameters whatever the strength of the cou­
pling between intrinsic and collective degrees of freedom. The mass pa­
rameters can be worked out analytically and used in conjunction with the 
friction and diffusion coefficient in order to construct a Fokker-Planck 
equation for the classical distribution function of the variable q. 
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