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TRANSPORT THEORY OF DISSIPATIVE HEAVY-ION COLLISIONS: 
Dynamical treatment of strong coupling within a one-body theory 

*) S. Ayik ' and W. Nbrenberg 
GSI Darmstadt 

The initial stage of a heavy-ion collision is characterized,by the mutual 

approach of the nuclei in their ground states. Because of the long mean free 

path the motion of the nucléons during this f irst stage of the collision 

is expected to be governed by their self-consistent single-particie potential 
-21 which evolves slowly in time (TDHF). Within times of the order 10 s residual 

interactions lead to a local statistical equilibrium where the system occupies 

the total phase space (total configuration space) which is 'locally' available, 

i.e. available for fixed values of the macroscopic (collective) degrees of 

freedom . The close approach to local statistical equilibrium, however, is 

essential for the justification of all current transport theories. Therefore 

these theories are not expected to describe properly the initial stage of 

the collision process. In addition to the assumption of local statistical 

equilibrium, the non-perturbative transport theories suffer from the occurence 

of the strong-coupling limit in the collision kernel. 

2 3 A way out of these difficulties is supplied by the observation ' that 

( i ) the occurence of the strong-coupling limit is essentially due to the 

introduction of many-body states in the formulation and ( i i ) that the strong 

coupling between these states is treated statistically. We have therefore 

developed i transport theory on the basis of a one-body theory. This one-

body transport theory starts out from a dynamical single-particle basis which 

incorporates ^ain parts of the coupling in a coherent way. By deriving transport 

equation-, fo«* one-body quantities i t is p- ̂ 'b le to avoid the strong-coupling 

limit with its apparent drawback due to o ; - iiell contributions. As the 

essential tool in this formulation we app-y •; suitable time-averaging which 
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replaces the usual statistical assumptions ir the derivation of (time-
irreversible) transport equations. 

For the occupation probabilities of the dynamical single-particle states 
we obtain the master equation 

It *«<*> -1 V > "W** " p*a ( t ) ] (1) 

with the transition probability given by 

W Q 6(t) = * f 2 Re J d T {V a 6 (tJV^t-t)}^ (2) 

where {•••},*«. denotes the average over the time interval At around t. The 

quantities V 0 ( t ) denote the time-dependent one-body interaction between the 

dynamical single-particle states. The residual two-body interactions V a -(t) 

modify the master equation (1) by an additional two-body collision term 

' iCl-Pcatt)) ( l - P M ( t ) ) P M ( t ) P M ( t ) (3) 

-<>«<*> «W** (1-Pn(t))((l-P 6 5(D)J 

which differs from usual collision terms in the time average of the 
correlation function. 

The equation of motion for the collective variable q(t) is obtained 
from the conservation of the total energy by considering 

k <H> x q (|U + c q + M q) = 0. (4) 

By ordering d<H>/dt according to terms proportional to qfq and q q" we determine 

the time-dependent potential U(q,t), the friction coefficient Ç(q,t) and the 

mass parameter M(q,t). 
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If we regard the matrix elements <• |3/3qi$s> to be constant we can easily 
perform the average with a Lorentz weight function and obtain in this limit 

Ç(q,t) - 0. (5) 

The vanishing of the friction coefficient reflects the more general 
feature that the collision terms (2) and (3) conserve the energy. Thus energy 
dissipation occurs only in a very specific way, namely by the time-dependent 
potential U(q,t) giving rise to considerable memory effects . The mass para­
meter is given by 

M«,t) = 2h r.P M(t)|<»„(q>Hblti<l)> t|' , j f t U t , m (6) 

where r -«AtjiL s j . This width vanishes for w 8=0 and hence M(q) becomes the 
familiar cranking expression in the limit of uniform translation or rotation. 
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