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ABSTRACT 

We propose a physical picture and a non-perturbative definition of con­
finement in lattice gauge theories with matter fields. We argue that in the 
thermodynamical limit the fractional (berycr.) charges become unobservable in 
the confinement phase for all local measurements. As an illustration we have 
tested the criterion in three of the possible phases of the Z(N) matter-gauge 
system by means of perturbation theory. We have found that the usual confine­
ment and Higgs phases shov confinement, »hile the free phase contains frac­
tionally charged states contributing to local physical quantitites. 

АННОТАЦИЯ 

Предложены физическая картина и непертурбативное определение невылетания 
кварков в рамках калибровочных теорий на решетке, взаимодействующих с полями 
вешетсва- Показано, что в термодинамическом пределе дробные /оарионные/ за­
ряды становятся ненаблюдаемыми в замыкающей фазе для всех локальных измере­
ний. Для примера наш критерий проверяется на трех из возможных фаз Z (N) си­
стемы вещество-калибровочное поле методом теории возмущений. Найдено, что 
обычные фазы невылетания и фаза Хиггса ведут к невылетанию, а свободная фаза 
содержит состояния с дробными зарядами, влияющие на локальные физические ве­
личины. 

KIVONAT 

A kvarkbezárás egy nemperturbativ definícióját javasoljuk olyan rács 
mértékelméleteknél, amelyekben anyagtér is jelen van. Megmutatjuk, hogy ter­
modinamikai limeszben a tört (barion) töltés megfigyelhetetlenné válik lo­
kális mérések számára, ha a bezáró fázisban vagyunk. A kritériumot a Z(N) 
gauge-spin modell három fázisában ellenőriztük perturbációszámitással. A 
confinement, Higgs és •* szabad fázisokat megvizsgálva azt találtuk, hogy a 
tört töltés csak a szabad fázisban ad lokálisan is megfigyelhető járulékot. 



I. INTRODUCTION 

In pure gauge theories one can distinguish between confining and decon-
fining phases by measuring the expectation value of the Wilson-loop [1]. The 
Wilson-loop is an order parameter of the 4-dimensionai statistical system and 
it is also related to a simple physical picture in terms of the 3+1 demension-
al quantum theory. Namely, the gauge field develops a straight flux tube be­
tween the external color sources producing a linear force law, as it was ex­
plained by Kogut and Susskind in the Hamiltonian formalism [2]. Unfortunately, 
if dynamical quark fields or any matter field is coupled to the gauge field, 
both the above-mentioned properties of the Wilson-loop are destroyed. The 
flux tube picture fails because of pair creation, and the Wilson-loop is not 
an order parameter any more: it behaves according to the perimeter law on 
both sides of the phase transition line. On the other hand the Wilson-loop 
still measures the force law between external color sources. However, the 
main problem is that we are interested in the confinement of dynamical quarks, 
not of the external ones, and the Wilson-loop doesn't yield a starting point 
to attack this problem. 

The phase structure of several coupled matter-gauge systems is exten­
sively studied in the literature. The phase transitions are usually revealed 
by thermodynamical considerations (singular behaviour in the correlation func­
tions) . However, if one wishes to answer to such questions as in what sense 
the 'confinement' phase is confining, it is unavoidable to bring in the as­
pect of quantum field theory. It was explained in ref. [3] that in perturba­
tion theory the space of states of the confinement-Higgs and the free phases 
of Abelian matter-gauge systems are very different: the latter contains frac­
tionally charged states while the former doesn't. That seems to be a paradox 
from the nonperturbative point of view because the Hilbert space of states 
must be the same for all values of the coupling constants at least for finite 
volumes. So one needs to understand what happens in the Hilbert space while 
taking the thermodynamical limit. 

The aim of this paper is to investigate the qualitative and quantitative 
behaviour of the thermodynamical limit of both confining and deconfining 
matter-gauge systems. In this way we shall be able to define non-perturba-
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tively wh?t the confinement means in the presence of dynamical quarks. We 
restrict ourselves to lattice theories with fixtd lattice spacing and will 
not study the possibility that the infinite volume system with finite ultra­
violet cutoff still f-ontains fractional barion charges but a certain con­
tinuum Unit kills them. 

Though it is the space of states where one can formulate the physical 
requirements of confinement, from the computational point of view, it would 
be very convenient to use a 3+1 dimensional quantum field theory which has a 
transcription to a 4-dimensional Euclidean statistical system. A few methods 
are known in the literature which construct such discrete t.ime quantum field 
theories 14,5,6]. We will employ essentially the Osterwalder and Seller's 
method, though a particular representation will be chosen for the Hilbert 
space instead of using the abstract factor space of [5]. 

In section 2 we outline the physical picture what will lead in sect. 3 
to the formulation of a confinement criterion. In sect. 3 it will be proven 
that the confinement criterion generally holds in all orders of perturbation 2 theory in the inverse coupling constant 1/g and in the hopping parameter K. 
In the remaining sections we shall apply our definition to the confining, 
Higgs and free-charge phases of the Z(N) matter-gaage system in perturbation 
theory. 

2. THE PHYSICAL PICTURE 

Consider a 3+1 dimensional quantum gauge theory with matter fields, de­
fined in a finite box if of the three dimensional space. Let the Lagrangian 
have a global Abelian symmetry group u„ acting only on the matter fields. The 
generator of C„ is called baryon charge. The largest subgroup of C„ the ac­
tion of which is the same as that of a certain subgroup of the global gauge 
group is denited byX and called the symmetry group of fractional (baryon) 
charges. In the physically interesting examples (QED, QCD) I is the center 
of the global gauge group. The group? has a crucial role in Mack's formula­
tion of confinement [7]. After quantization our system may include states with 
integer baryon charge transforming trivially under 1 as well as states with 
fractional charges. Mack speaks of confinement when the latter states don't 
exist. 

Since we want the dynamics to choose between confinement and deconfine-
ment, we have to allow our system to contain fractionally charged states in 
both cases. This can be brought into harmony with local gauge invar iance even 
in a finite volume system if we demand the Gauss-law to operate only in 
points inside ЧГ and not on the boundary Э1Г. In this way we have a state as 
physical state which for instance consists of one quark at the point xc.if 
and of a string of color flux starting from x and ending at ve3V. Thus the 
fractionally charged sector of the physical Hilbert space is not empty. But 
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since our Hamiltonian connutes with the baryon charge, this means at the same 
time that there will be fractionally charged energy eigenstates too. Conse­
quently the confinement can not be absolute as long as the volume is finite. 
However there must be some difference in the shape of the 1-quark eigenfunc-
tlons comparing the free and the confinement regimes what will lead to a 
qualitative change in the V E \^J\* » limit. 

If the fractional charge is free, then the one-particle eigenstates of 
the fractionally charged sector will look like standing waves. Their energy 
spectrum doesn't change essentially when V -» «•>. It only becomes more and more 
dense but remains bounded from above due to the ultraviolet cutoff. There­
fore the energy expectation value <W|H|W> in a wave packet state |W> of frac­
tional baryon charge depends only on the size of the wave packet and goes to 
a finite limit when V •+ ». 

On the contrary, if there is confinement the occurence of a long string 
in any low energy eigenstate has a very small amplitude. Therefore the eigen­
states in the fractionally charged sector resemble very much to an appropriate 
eigenstate of integer baryon charge in the middle of V , while the 'valence 
quark' carrying the fractional charge can be found with large probability 
only in a layer of finite width around ZV. As we go to higher and higher en­
ergy eigenvalues this width becomes larger and larger. So the largest eigen­
value in the one-particle spectrum of the fractionally charged sector depends 
on the size of О" and we expect an unbounded spectrum in the thermoJynamical 
limit. Accordingly lim <W|H|W> = <* despite of the fixed size of the wave 

, V-«° 
packed \W>. 

To use more definit formulae, instead of wave packets we can speak about 
che expectation values of local, gauge invariant operators F in the canonical 
ensemble defined on the states of baryon charge having a fixed fractional 
part. The picture described above involves that in the confinement phase the 
local quantity F feels always as if the chaige were an integer, and doesn't 
feel the fractional charge concentrated at the boundary Э\Гfar away from F. 
In this sense can we say that the fractional baryon charge disappears from 
our system in the V •*• *> limit. More precisely the difference between expecta­
tion values in the fractional and in the integer sector comes from the states 
which have energy going to infinity with some size of the volume if. 
Thus 

frac 
л -U/T I » -им ..V* 
F е н / - - 4 tr 

frac int 
F e " H / T = er(e* a V ) (2.1) 

int 

where a, and b~ are positive numbers, T is the temperature, l c and Z. are 
r frac m t 

the partition functions of a certain fractional and the integer sectors re­
spectively. We see that no local observation can measure the fractional part 
of the baryon charge if the volume is infinite. Hence a class of states with 
baryon charge of different fractional part looks being the same, what points 
to that the unitary operators representing the symmetry group % on the H ü b e n 
space can not exist in the thermodynamical limit. 
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Let us now turn to the case what we would call the free phase. The low 
temperature expectation value of P computed in the sector where B=—+{integer) 
(for QCD) is dominated by the lowest energy 1-quark state |1>. The free propa­
gation of quarks means also that they are momenturt elgenstates in the infinite 
volume limit. So |1> is translation invariant. Because F is local, <1|F|1> 
differs from the vacuum expectation value <<E)|F|C» by a term of &(rj) . Hence 
for low T at least 

1 z t r 

frac 
F e H/T _ i t r , ~ е-н/т a < 1 | F | 1 > _ < O | F | O > = е ф 

frac int Iint 
(2.2) 

Comparing (2.1) and (2.2) one sees that the local measurement registers 
the confinement as a very fine effect. As a matter of fact it has to make dis-

-oV* 1 tinction between <У(е ) and C(^). The fact that the difference is so small 
can be explained in the language of statistical mechanics. We will see in 
sect. 3 that the expectation values in the fractional and in the integer sec­
tors can be expressed by the same path integral if one disregards certain 
boundary terms. Theese boundary terms give zero contribution in the V -> °° 
limit. This is why the r. h. s. of (2.1) and (2.2) must go to zero in the 
thermodynamical limit. In other words the fractional and the integer sectors 
have the same bulk properties. One cannot differentiate between them by study­
ing only infinite volume expectation values. So the question of confinement 
is reduced to the question how theese two types of expectation values approach 
their common thermodynamical limit. 

3. FORMULATION OF THE CONFINEMENT CRITERION 

Let V be a finite box of the 3-dimensional cubic lattice. Consider a 
gauge theory with the Wilson-action [8] whose fermion fields ф and í are 
defined on the sites of <T and whose gauge field U is defined on the links of 
IT. The (Euclidean) Lagrangian corresponding to the Wilson-action is the sum 
of the kinetic energy К containing the couplings between two neighbouring 
time slices and of the potential energy V containing the couplings in one 
time slice. In the U = 1 gauge they are 

L(x o ) - K ( x 0 , x 0 + 1) + V ( x 0 ) 

1 3 + 
K(x ,x + 1) - - ± l Z [ t ruT(x 0 , x )U , (x„ + l , x ) + c . c ] - (3.1) 

0 0 q х€(Г j= l 3 0 . 3 0 

2K I [ x U 0 , x ) x ( x 0 + l»x) + G<x 0 + l , x ) ö ( x o , x ) 
X F V 
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V(x o) - - -, I I [trU.U.U*U* + c.c] + Z t(x ,x)*(x .x) 
° a* x6v- Kj<k<3 J * J * х е 1 г ° - © -

-2K Z 
xetr 

g x6v- l_<j< 

3 .- 1 _ , | fi - - - + 1+"Yi 
L [•(xo,x)Oj(xo.x) - — I (r(xo,x+j)+t(x0,x+j)Uj(x0,x) — ^ ( x ^ x ) ] 

where у is the standard Y * diagd, 1,-1,-1) and we have introduced the 
upper and lower two-component sp.'nor x and 9 of •• This is a classical 
(Euclidean) field theory with discrete tine which can not be quantized in a 
natural way by specifying canonical commutation relations. However, following 
the Method of [5] one gets the Hilbert space and the transfer Matrix without 
using any canonical commutation relations. The Hilb-̂ rt space Ц can be re­
presented* by functionals f which depend on *he 3-dimensional lattice fields 
U, x and Э. The scalar product on £ is 

«•Х|Ф2> = [»UjHU^Oxex»»»» exp{^ Z [trU* (x)U2.(x 
1 9 x,j J - J 

x) + c.c] 

+ 2K I (x(x)xix) + Э(х)Э(х)]} ф (и,,х,Э) Ф 2(и 2, Х,Э) (3.2) 
x 

where is the antihomoroorphysm on the Grassm«..nn algebra generated by 
Х,Э,х and 9 (that is it is antilinear and reverses the order of multiplicands) 
which gives identity when squared and 

X a r(x) = x"ar(x) 
(r = 1,2; a = color index) (3.3) 

ö a r(x) =-Öor(x) 

The transfer matrix T which develops the states by one unit in the 
Euclidean time is given by the following integral operator: 

T*(u,x,ä> = |íü*5»e»x^'e-V(ü'*'*> m-*v*'*>WUwixl*') 

where ф = (X), jjj , (£ §) . ( 3 , 4 ) 

I t i s easy t o see that t r T (т i s integer) can be performed as a 
4-dimenslonal l a t t i c e Feynman path integra l with the Wilson-action in the 
UQ * 1 gauge on the l a t t i c e which i s the d irec t product of if and the 1-dimen-
s iona l per iodic l a t t i c e of т s i t e s Of. 

The proof, that the Hilbert space, scalar product and transfer matrix given here are 
equivalent to the ones defined by Osterwalder and Seiler, will be published elsewhere. 
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tr T T * П П fdU.(x) П fd*(x)d+(x) e~ S| (3.5) 
j » l * •> хеШк-í ' | U -1 x€JW . _ -

' о 
(3.5) is meant of course with antiperiodic boundary conditions for the 
fermions what is equivalent to a small modification of the Wilson-action on 
the links connecting the slices x = т - 1 and x = O. 

In calculating physical quantities however, we need traces taken over 
fi h С Jl which is the subspace of locally gauge invariant states. The time 
independent classical gauge transformation ft acting as U + 

has a unitary operator counterpart ft which acts as 
п<ии,х.э) = •(и й,х й.э й) (3.6) 

O b v i o u s l y ft commutes w i t h T i n ( 3 . 4 ) . The o p e r a t o r which p r o j e c t s onto-ft 
i s 

П = П |dft(x) ft . ( 3 . 7 ) 
x€tr\air' 

Since we didn't require gauge invariance on the boundary there will be frac­
tionally charged states in jt h,_. 

pnys л л
 я л т 

Let us consider now the quantity trll T = t.i (ПТ) . Using the formulae 
(3.4) and (3.7) one finds that the variable ft(x) in the n t h factor of (ПТ)Т 

plays the role of a timelike link variable U (n,x) on the latticeVxT. There­
fore we can write 

Z = tr ПТ Т = j 3>U Ш*Ф¥> e~ S = (3.8) 

П П idU.(x) П i d Un ( x> n [d*(x)diMx). tevxJj=i > J xe«r\W)xi J xevx7J 

This is the usual path integral with the Wilson-action without gauge fixing 
apart from the fact that the timelike U's on the boundary ofVx7, that is to 
say on bVxT are frozen to be 1. The prime above the integral in (3.6) refers 
to that specification (See Fig. 1). 

If the gauge group is SU(N) or U(N) the baryon charge В is defined to be 

е1<рВфШ,х,5> = Ф<и,еЛ, e _ l í í5) (3.9) 

i<oB 2 П М 

The baryon symmetry group is now the U(l) group<^„ = {e ф )фял • The group 
of fractional baryon charges is the subgroup Z of <*„ which is the intersec­
tion of Q-B with the global gauge group. By definition a B-eigenst^te has 
integer charge if it is invariant under TL. In the opposite case its charge 

iIT2nR 
is called fractional. If the gauge group is SU(N) then I - {e } Q 



- 7 -

which is isomorphic to Z(N). In this case the В « В sector has integer (frac­
tional) charge if and only if В is Integer (fractional) in the usual sens*. 
If, however, the gauge group is U(N), thení-S^ and any В j* О is a fractional 
charge in the sense defined above. For instance, in QED the confinement of 
fractional charges means that only neutral states can propagate. 

We shall need the following projection operator: 

1 "Г 1 -12ПпВ 12ПпВ for SO(M) 
В t e e 
H n=0 

P «< (ЗЛО) 
B l 2ПН 

О 
In both cases P n projects onto the subspace of Я where В » В • (integer). The 
partition function taken on the physical states with baryon number B+{integer) 
is 

ZB = tr ПР ВТ Т = |dR(R )ИИ*(Н) (3.11) 

where Z(R) - j J)U p£ Ш -4 
e 

and S 0 = - kj £(tr U, 0 + с.с) + Z Йх)(*(х) -
9 P . * 

3 eiio f i5f°0 * 3 " ä uo 5 «°0 " 
К £ ( 1 - у ) U , ( X ) R V W*(X+w) - К £ (ln„)U„(x)R V ° X *<X-u)] 

M=O v v v=o v v 

To give the things told in the previous section a precise meaning we 
have to settle the notion of an observable. It is clear that the whole op-
erator algebra is generated by the Heisenberg-Operators U.(x) (j=l,2,3), 
л — 3 _ 
ф(х) and Ф(х). Thoy can be considered as insertion? of U.(x), ф(х) and ф(х) 
in (3.8) or in (3.11) as far as they are alone. If more than one U's, |»'s 
and jl's in the same lattice site are multiplied in the Insertion it means 
the time ordering and a suitab'fc normal ordering of the corresponding product 
of the Heisenberg operators U,(x), <p(x) and f(x) . (See ref. [3] for a similar 
situation.) An operator F will be called an internal observable if 1) it is 
local, that is to say it is a function of finitely many operators U. (x), £(x) 
t|>(x) , 2) it doesn't lead out from ft . _ even for one lattice unit of time. 

Phys 

The expection value of the time ordered product of such an operator F in the 

canonical ensemble (3.8) is 

< F > = ÍLST3\F> . i 1>яМ-т e-s F ( З Л 2 , 
tr ПТ Т ' I * 

where F is local, invariant under time dependent gauge transformations and 
depends only on the fields U., ф and $ and not on U . 
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Let us study for a while the quantities f tihich are local, gauge in-
variant and do depend on U . What operacors do they correspond to? Let П х 

project onto states which are gauge invariant at points у f x, but transforms 
as a quark at у = x (xev"\»v) • 

П = П 
- ye«r\a<r 

dii(y) 0 Q(x) (3.13) 

If now F is such that it depends on exactly one U ашопд the U 's in the 
hyperplane of tine x , namely on U (x ,x), then this U can be considered as 
part of an operator П (substitute Q(y) = U0(x0,y) in (3.13)). That means 
that an external color source is put into our system between the moments x 
and x + 1 in the point x. Generally we can say that the U dependent quanti­
ties F test the system in the presence of several time dependent external 
color charge distributions. Therefore the time evolution leads out from 
it. . For this reason a quant ty F will be called an external observable, if 
it is local, invariant to time dependent gauge transformations and does depend 
on Ü . For example <*(0,0)U0(0,0) ... Uo(xo-l,0)*(xo,0)> describes the fol­
lowing process: One quark is created at the origin together with an external 
antiquark. The latter remains in the origin but the motion of the dynamic 
quark is not controlled, x units of time later both quarks are annihilated. 
Obviously this correlation function is dominated by the lowest energy bound 
state of the quark in the field of the external antiquark whether we are in 
the confinement phase or in the free one. Another important example is the 
thermal Wilson-loop expectation value of which <tr и (0,x) ... и (т-1,х)> is 
nothing but the partition function on the subspace determined by the projec-
tlon П . The third example is a rectangular Wilson-loop in a timelike plane. 
One can see now why the Wilson-loop measures the force law between external 
cources even in the presence of dynamic fermions. 

We are now ready to formulate our requirements for confinement in ac­
cordance with the picture described in section 2. Let <F>R(x,V) denote the 
expectation value of the (internal or external) observable F in the canonical 

A 

ensemble of states with b-тгуоп charge В = В + {integer} of the system of 
volume V at temperature / . Then 

<F>B(T,V) = \- JdR R" N B ГJMJJDWW e R F R (3.14) 
Z 

where F R, similarly to S R, is made from F by the substitution U (0,x)-»RU (0,x) 
for all x in(r. 

We will say t-ndt the theory confines for all fractional charges if for 
all В and arbitrary observable F there exist a. and b- positive numbers such 
that 

<F^ B(T,V) - -F>0(t,V) = er(e"*vfr) (3.15) 
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Whereas if there exist an observable F sech that for the fractional 
charge В 

<F>B(T,V) - <F>0(T.V) « е ф ю л « 

ho lds , we w i l l say that the B-charges are f r e e . 
I t i s poss ib l e t o formulate the c r i t e r i o n in t e n s s of volume ' i n t e g r a l s ' 

of l oca l observable*. But не have t o be careful not t o v i o l a t e the pr inc ip le 
that we are never allowed to Measure g w a n t i t l t e s what extend t o t h e whole 
volumeir. Let <г С Г be a P 
with that of <T, and d e f i i 

F„ « I F_ 0 . 1 7 Í 
х€Г ? 
- P 

where F i s the t r a n s l a t i o n o f P by x . The average volume ' i n t e g r a l ' o f F 
for the" in f in i t e volume must be ca lcu lated in t h i s way: 

list l im <F\ > ( T , V ) ( З . Ш 
0*1 V— P 

Following that principle the confinement criterion (3.15) can be written 
equIvalently as 

lim lim í<F~>_(T,V) - <F > (T,V)J - О O.l»! 
p-1 у — p B p ° 

while (3.16) is equivalent to 

lim lim [<F >_(T,V) - <F > (T,V)J 1 О (3.20) 
p-1 V — p B p ° 

with the sane F and В as in ( 3 . 1 6 ) . 
Though these c r i t e r i a contain the temperature we expect that I f т i s 

large enough they w i l l not depend on т g iv ing information only about the 
Hamiltonian of the system 

Closing t h i s s ec t ion we show that П.15) and (3.19) are f u l f i l l e d i n 
any order of perturbation theory »4th respect t o 1/g and K. Introducing 
the new Integration var iable U Q (0 ,x) - RUo<0,x) in (3.14) and a l s o in (3.11) 
(remember that R 1* a centrum element of the gauge group) P_ w i l l be F again 
ind S R changes t o S ' . Si i s nearly the same act ion as S i s in (Э.В) except 
that the frozen l i n k s In the hyperplane xQ * о and the plaquettes touching 
these frozen l inks are mul t ip l i ec by R or R . So the funct ional 

"*SB f -ив ~ ( S * - S > e B * | R M B e R dR (3.21) Í 
с 
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depends non-trivially only on variables being at most one lattice spacing 
disti 
way: 
distance from 3u". By means of 5S„ (3.14) can be written in the following 

-6S B 

<F>B(T,V) = < e _ 6 s
 F > • <F> (3.22) 

<e ><F> 
Here the expectation <.> is taken with respect to the measure (3.12). The 
first term in the r.h.s. of (3.22) is equal to 1 up to the order of 

1 2 d _ 1 

(— + К ) , where d is the distance of F from Э4Г. Thus up tv an arbitrary 
g 
large order term 

<F>B(T,V) - <F> = ©-(I) x exp{-V 1 / 3 ^ )п(^ 4 + K 2) ) (3.23) 
g 

if V is lart-e enough. Therefore (3.15) holds for all values of the temperature 
1/T. 

Summing up on x in <r in (3.23) with F replaced by F , we get 
~ p x -1 

<F p> B(t,V) - <F p>U,V) =eU)xpV exp{-(l-p 1 / 3)V 1 / 3 ^ ln(^ 4 + K 2) } 
9 (3.24) 

what vanishes in the thermodynamical limit. So (3.19) is verified in all 
orders of perturbation theory. 

To justify that (3.15) and (3.19) hold also non-perturbatively in the 
neighbourhood of the point —, * к = О needs a sophisticated proof because 

g -«s B 

the usual bounds for the cluster decomposition of e and F available in 
the literature are not strong enough for this purpose. (See ref. 9 and the 
references therein.) 

<t. THE HIGH TEMPERATURE PHASE OF THE Z(N) MODEL 

In this section we wish to discuss in detail why (3.15) is true in the 
high temperature (i.e. large A, small K) phase of the Z(N) matter-gauge model. 
Let o x be the matter field U £ the gauge field both having values in Z(N) = 

i 2П „ N-l 
N~ П 

= le ^n=0* T h e a c t l o n i s 

S - - % Z [U.a(H) + c.c] - 4 £ [U(3p) + c.c] (4.1) 
1 I * z p 
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1 2 П п N~ n 

The 'baryon' symmetry transformations о -»• e о are identical to the 
global gauge transformations. Therefore we expect that in the case of con­
finement the observable 'baryon' charge is zero. 

An arbitrary observable quantity is a linear combination of the quanti-( Г) ties F 5 и(Г)о(ЭГ), where Г is a mod N integer valued function on links 
(i.e. a 1-chain) and we have introduced the notation 

Г. UT) = П U. for any 1-chain Г 
I * 

Y x and <J(Y) = П a for any O-chain y. 
x x 

The allowed I"s have finite support, that is: £(1-б г n ) = finite. Let R f be 
6 6 o 0 Í V * 

the R 5 R .л\- R ̂ ° x configuration what we have been used in the pre-
vious section. Then the index R in (3.14) concerning the quantity F • p* 1' 
means: F R

F ) = R(DU(r)o(3D . 
Let us transform the path integral-(3.14) from variables (U,o) to vari­

ables (u,v) where u and v are mod N integer valued 2-chain and 1-chain vari­
ables respectively. The transformation is the same as if we wanted to do a 
duality transformation like in ref. [10]. We get 

< U ( D O O D > R ( T , V ) = \ Z R _ N B Z Z I n [ v ] I „ M x B Z B R€Z(N) {v A> {y p) a p 

(4.2) 

where 

x Z' Z U(v+ap+DaOv+3r)R(v+r) 
{Ü,} io x > 

n * 
I_[v] = П I (o) and I (a) = £ E v ' v e2 

° I v * v и V 6 Z ( N ) 

and a similar expression for I ß(y]. The crucial point is now the prime above 
the U-sum in (4.2) what means that we don't sum up over the U.'s with ft from 
the set of frozen linked. This is why, performing the sums on the U's and 
the a's, we get Kronecker-delta constraints on the v having the general soluticn 

v = -Г -Эр +ф (4.3) 

where cp is an arbitrary 1-cycle (i.e. Эф • О) which differs from zero only on 
links i n 7 . in this way we reduced (4.2) to 

1 — NA 

<U(r)aOr)> B<T,V) - —* 2Л (4.4) 
i Z R " N B Z Z l „ [ p ) I „ ( - Э Ц + Ф Ж Ф ) 

R (P и Р а 

where use was made of the identity R(-i\t+<fi) • К 1 Ф ) . (4.4) is the suitable form 
for doing high temperature expansion. The graphs will be labelled by the (p,ip) 
configurations. 
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The following step is to decompose every configuration и in a unique way 
in the form u = u„ • u' where all connected coirionent of |wr| (»support of 
И-) are connected to |r| which is the support of Г. Two sets Q, and Q, formed 
from links and plaquettes are called to be connected if for i = 1,2 there 
exist a link С such that: 1.) either l£Q. 2.) or there is a plaquette p.tQ. 
possessing I as a boundary link. Keeping u„ fixed the sum on p' is just like 
as if we were calculating Z on Л\|un|U|Г| instead of A at least for |pr| 
which is not connected to 7°. Here Q is the closure o£ Q and A is the lattice 
<TxT. Hence we can write 

Z (А\ |Г |и |ц |) 
< U ( D O ( 9 D > B ( T , V ) = Z l a [ - 3 p r - r l l ß [ u r J — П л Г — + 

v r в 

+ в г ( ф а ( | г | Д ) ) ( 4 5 ) 

where d(|r|,T) is the distance of |r| fromЭ"which determines the minimal size 
of | Mr. | which connects Г to <p, or in other words the minimal order when the 
factorization Ia[-3n-r+<p]/j [ Qj= 1 а[-Эр г-Г)/ г [ 0jX 1а[-Эц'+ф)/г ^0j breakes 

down. 1/T is a certain polinomial in a and 0 : ̂  = (5[) | + (|) , which 
comes from the two types of building minimal order diagram extending over a 
distance d. 

Let Q be an arbitrary set of links and plaquettes from A. Then Z (A\Q) 
has an expansion similar to (4.5): 

ZB(A\Q) = J [ R~ N B I R(q>) T. V 3 p * + < p ] I e l M T ] X 

R ф \ij 

X Z(A\Q\|pT|U7) 
(4.6) 

where Z denotes the partition function on the whole Л_ п„_. (See (3.8) as an 
analog). It can be shown that for any Qj»Q2

 c л 

ZÍAXQ^Qj) ZUNQ^ Z(A\02) 1 d(Q1,Q2) 
ZlÄj = "ТТЛ) X Z ( A ) — + "f' ' ( 4 # 7 ) 

Subst i tut ing Q 1 = | Г | U | и г | and Q 2 = TiJTJTPy i f fol lows from (4.7) and (4.6) 
that 

V T _ T _ 1 . Z ( Л \ | Г | U | M r I i d ( | - i T) 
z B ( A \ | r | u | u r | ) = 2TÄ)— Z B ( A ) + е , < ф ' ' >• l 4 - 8 > 

Comparing (4.8) and (4.5) we get 

< U ( D o ( 3 D > B = <и(Г)о(ЭГ)> + 0 r ( ( | ) d ( ' r ' ' * ' ) (4.4) 

Thus the confinement criterion (3.15) is satisfied in the perturbation theory 
with respect to a and ß in the following sense. Let a positive integer m be 
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given. Then there exist a volume V such that for any box If with folume |U"|>V 
(3.15) holds up to terms of order ß ma m. The (3.19)-type property for F*F < r' 
is realized as a trivial consequence of (4.9). One finds that the r.h.s. of 
(3.19/ vanishes in any finite order of the high temperature expansion. 

5. THE FREE PHASE OF THE Z(M) MODEL 

The elgenstates of the system (4.1) calculated in the perturbation theory 
around ß - «>, a = О contain globally non-Z(N)-invariant, that is to say frac­
tionally charged states. These states are present neither in the high tem­
perature expansion nor in the perturbation theory around ß = •*>, a * », i.e. 
in the Higgs phase. (The other possible phases, if N>4, are not discussed 
here.) We have to show that the non-perturbative criterion described in sec­
tion 3 is consistent with this perturbative picture. In this section we will 
show that (3.16) and (3.20) are satisfied if they are calculated in lowest 
order perturbation theory in the large ß, small о phase. 

If 6 = °°f only pure gauge U-cbnfigurations remain in the system, or in 
other words 1„[р] becomes independent of \\. Thus 

p 

< U ( D o ( 3 D > B 

i I R _ N B I R(<p) T. J [-Г-Эу+ф) 
• R ' » ^ (5.1, 

в«, я z R " N B z R W E V-3p+<pJ 
R ф v 

Here J [v] stands for I [v]/I [0]. In lowest order in a the sum on у and Ф 
can be written ac a sum over oriented curves having winding numbers on the 
torusVxT precisely equal to NB and having the same end points than that of Г. 
Let Г be the straight line connecting the point (0,...,0,r) to the origin 
and В = и . Then the perturbative expansion of the denumerator of (5.1) starts 
with diagrams shown in Fig. 2.a and the diagrams of the denominator are shown 
in Fig. 2.b. We get 

< U ( D O O D > B ( T , V ) 
ß=00 - Ф* + V [ ( Т г Г ) " r" 1J<l' r + frle1*2) (5.2) 

Because the first term in the r.h.s of (5.2) is just the average in the B=0 
sector, we arrive at an expression fulfilling the condition (3.16)t 

<U(DoOD> B - <U(DaOD> 0 - J (|) [ ( T * r ) - r-1] (5.3) 

This implies that (3.20) is valid with a r.h.s. what is V times the r.h.s. 
of (5.3). Though these expressions blow up In the zero temperature limit 
(T *•<*>), it must be the feature of the perturbation theory, because U(Dа(ЭГ) 
corresponds to a unitary operator and therefore its expectation value is 
always bounded. 
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6. THE HIGGS PHASE 

Sn the Higgs phase it is convenient to use thj original (U,o) represen­
tation of the path integral. If В - » 

Z' I exp {, Z [R,U,o(H) + c.c] + I I [UOp) + c.c.]}R(DU(DoOr) = 
1 P (6.1, 

= const, x Z exp {7 E[R,o(3l) + c.c. ] }R(Do (ЭГ) 
о I * 

If R = 1, that is to say R, = 1 for all links, then the action (i.e. the 
exponent in the r.!*-s. of (6.1)) is minimal at a = const. In this case the 
action is -OVTD, where JD is the number of spacetime dimensions. If R^l, the 
minimal action is larger than (-aVxTJ) with the quantity OV(I-COSJT-) . Indeed 

r« T * 2П 
S R„(o) - C-aVT»") > V(- |) E ( ° n R n n + 1

0
n + 1

 + c.c-2) > oV(l-cos^) (6.2) 

Consequently, the В dependent contributions which come from the Rf4 terms 

-oV(l-cosjp) 
are suppressed by the factor e relative to the R = 1 term which 
gives а В independent contribution. Therefore 

-aV(l-cosiL2-) 
< F > B ( T , V ) = <F>(T,V) + me N ) (6.3) 

We see that (3.15) is true also in the Higgs phase although with numbers a 
and 4r different from those in the confinement phase. This is in accordance 
with the well known fact that the Higgs and confinement 'phases' form a single 
phase if the matter field is in the fundamental representation. 

Summarizing, the high temperature and the Higgs regions don't show ob­
servable fractional charges while the free phase does in the sense of (3.15) 
and (3.16). Although the number of spacetime dimensions were not specified 
we tacitly assumed that the phase under consideration does exist. For in­
stance in a two-dimensional spacetime and with N * 2 the results of the sec­
tions 5 and 6 have no relevance because the free and the Higgs pahses do not exist. 

7. CONCLUSION AND OUTLOOK 

We have derived a criterion how to distinguish a phase which confines 
the fractional (baryon) charges from a phase which doesn't. Although the 
criterion was defined non-perturbatively ->e were able to check it only in 
perturbation theory. The phase structure determined by the criterion wis 
consistent with the presence or absence of fractionally charged states in 
the perturbative spectrum. We restricted our attention to the expectation 
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values of local quantities. He could not derive a necessary singular be­
haviour of the infinite volume expectation values at the deconflning tran-
sitio: . Instead, we found that there is a difference in the volume dependence 
of the finite volume averages between the confining and the free phases. 
In other words the boundary condition has an important role: one must keep 
track of the volume dependence in case of various boundary conditions (cor­
responding to various total baryon charges) in order to get a signal of con­
finement. 

These results raise three questions. I. What would have happened if we 
have suppressed the Gauss-law for example only in one point of the boundary 
3{f? This is enough for having fractionally charged states but the boundary 
condition is changed. The answer is probably that in that case, too, we 
could derive the same criterion for confinement except that for example the 
exponent *-in (3.15) is not necessarily the same. In this paper we have chosen 
the most symmetric boundary condition. II. A more difficult question 1st 
should not the free fractional charges have given a signal in the infinite 
volume expectations if we had not restricted ourselves to local quantities? 
One conjectures a positive answer because the operator creating a free quark 
eigenstate mus be such a non-local quantity. III. The third problem is that 
we have not shown - although it should be true - that the phase structure 
determined by this criterion is the same as that which follows from the bulk 
properties of the system (i.e. from the singularities of the infinite volume 
expectations). 

As far as the finite temperature phenomena are concerned, equations 
(3.15) and (3.16) - since they contain the temperature 1/x - can be considered 
formally as the definition of the finite temperature deconfining phase tran­
sition in the presence of dynamic quarks. However, there are two (perhaps 
weak) arguments for not to do so. 1) We have shown at the end of section 3 
that (3.15) is satisfied in the strong coupling, small К region for any 
temperature 1/x. That would mean, that there is no deconfining phase even 
at very high temperature in this region of the couplings, what contradicts 
to the usual expectations. 2) In deriving the criteria (3.15) and (3.16) we 
used a physical picture which we feel not to be compatible with the existence 
of a heath reservoir. 

The author wishes to thank T. Nargarltisz for many helpful discussions. 
He is grateful to A. Franke1 and A. Patkós for their critical comments on the 
manuscript. 
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Fig. l. The boundary condition for the 2*1 -dimensional 
lattice of eize 2x2x3: the linke with daehed 

lines are the frozen links 

a. Ь 
fig- 2. Lowest order diagrams for a/ the denumerator, b/ the denomi­

nator of /6.1/ 
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