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ABSTRACT

We propose a physical picture and a non-perturbative definition of con-
finement in lattice gauge theoriez with matter fields. We argue that in the
thermodynamical limit the fractional (barycr) charges become unobservable in
the confinement phase for all local measurements. As an illustration we have
tested Lhe criterion in three of the possible phases of the Z(N) matter-gauge
sy stem by means of perturbation theory. We have found that the usual confine-
ment and Higgs phases show confinement, while the free phase contains frac-
tionally charged states contributing to local physical quantitites.

- AHHOTALUA

Mpennoxenn ¢H3IHYECKAA KapTHHA H HenepTypOGaTHPHOEe onpenefieHMe HepnUieTaHHS
KBapKOB B paMkax KaMHUOPOBOYHHX TEOpPHAl HAa peuleTKe, B3aAHMONEACTBYOWMX C MOLAMH
peweTcpa. [loka’saHo, YTO B TepMOOMHAMHMYECKOM fipenesie NPOUHHE /LapHoHHHe/ 3a-
PALH CTa:.OBATCA HeHAaLJIWZaeMMH B 3aMuikavmeR dale IIA BCeX JIOKANbHHX HaMmepe-
HHR. V1A npuMepa Hauml KPHTEPHA NPOBEepPAETCA Ha Tpex M3 BO3MOXHNMX ¢a3 Z (N) cu-
CTEeMH PBeluleCTBO-KAJIHUPOBOYHOE MOJI€E MeTOOOM TeOpHH BO3MYymeHHf., HaRmewo, YTO
ovHYHHe ¢a’n HePpHsIeTAHHMA H ¢a3za XHrrca BenyT K HeBHJIETAHHI, a cBoloxHas ¢dala
COJEPXHT COCTOAHMA C NPOULHHMH 3apaAflaMi, BJHANLHE HAa NoKaNIbHHe (H3HYeCKHe Be-
JINYHHH,

KIVONAT

A kvarkbeziris egy nemperturbativ definiciéjat javasoljuk olyan racs
mértékelméleteknél, amelyekben anyagtér is jelen van. Megmutatjuk, hogy ter-
modinamikai limeszben a t8rt (barion) tbltés megfigyelhetetlenné v&lik lo-
kalis mérések szamira, ha a bez&r6 fazisban vagyunk. A kritériumot a Z(N)
gauge-spin modell harom fazis&ban ellendriztik perturb8cibszémit&ssal. A
confinement, Higgs és « szabad f&zisokat megvizsgilva azt tal&ltuk, hogy a
tért tBltés csak a szabad fazisban ad lokalisan is megfigyelhetd jérulékot.



1. INTRODUCTION

In pure gauge theories one can distinguish between confining and decon-
fining phases by measuring the expectation vzlue of the Wilson-loop {1]. The
Wilson-loop is an order parameter of the 4-dimensional statistical system and
it is also related to a simple physical picture in terms of the 3+1 demension-
al quantum theory. Namely, the gauge field develops a straight flux tube be-
tween the external cclor sources producing a linear force law, as it was ex-
plaine@ by Kogut and Susskind in the Hamiltonian formalism [2]. Unfortunately,
if dynamical quark fields or any matter field is coupled to the gauge field,
both the above-mentioned properties of the Wilson-loop are destroyed. The
flux tube picture fails because of pair creation, and the Wilson-loop is not
an order parameter any more: it behaves according to the perimeter law on
both sides of the phase transition line. On the other hand the Wilson-loop
still measures the force law between external color sources. However, the
main problem is that we are interested in the confinement of dynamical quarks,
not of the ~xternal ones, and the Wilson-loop doesn’t yield a starting point
to attack this problem.

The phase structure of several coupled matter-gauge systems is exten-
sively studied in the literature. The phase transitions are usually revealed
by thermodynamical considerations (singular behaviour in the correlation func-
tions). However, if one wishes to answer to such questions as in what sense
the ’'confinement’ phase is confining, it is unavoidable to bring in the as-
pect of quantum field theory. It was explained in ref. [3] that in perturba-
tion theory the space of states of the continement-Higgs and the free phases
of Abelian matter-gauge systems are very different: the latter contains frac-
tionally charged states while the former doesn’t. That seems to be a paradox
from the nonperturbative point of view because the Hilbert space of states
must ve the same for all values of the coupling constants at least for finite
volumes. So one needs to understand what happens in the Hilbert space while
taking the thermodynamical limit.

The aim of this paper is to investigate the qualitative and quantitative
behaviour of the thermodynamical 1limit of both confining and deconfining
matter-gauge systems. In this way we shall be able to define non-perturba-



tively what the confinement means in the presence of dynamical quarks. We
restrict ourselves to lattice theories with fixed lattice spacing and will
not study the possibility that the infinite volume system with finite ultra-
violet cutoff still ~ontains fractional barion charges but a certain con-
tinuum 1i..4dt kills them.

Though it is the space of states where one can fornulate the physical
requirements of confinement, from the computational point »f view, it would
be very convenient to use a 3+1 dimensional quantum field theory which has a
transcription to a 4-dimensional Euclidean statistical system. A few methods
are known in the literature which construct such discrete iime quantum field
theories (4,5,6]. We will employ essentially the Osterwalder and Seiler’s
method, though a particular representation will be chosen for the Hilbert
space instead of using the zbstract factor space of [5].

In section 2 we outline the physical picture what will lead in sect. 3
to the formulation of a confinement criterion. In sect. 3 it will be proven
that the confinement criterion generally holds in all orders of perturbation
theory in the inverse coupling constant l/g2 and in the hopping paraneter K.
In the remaining sections we shall apply our definition to the confining,
Higgs and free-charge phases of the Z(N) matter-gauge system in perturbation
theory.

2. THE PHYSICAL PICTURE

Consider a 3+1 dimensional quantum gauge theory with matter fields, de-
fined in a finite box { of the three dimensional space. Let the Lagrangian
have a global Abelian symmetry group 93 acting only on the matter fi-:1lds. The
generator of %B is called baryon charge. The largest subgroup of 98 the ac-
tion of which is the same as that of a certain subgroup of the global gauge
group is den-ted by? and called the symmetry group of fractional (baryon)
charges. In the physically interesting examples (QED, QCD) £ is the center
of the global gauge group. The group ¥ has a crucial role in Mack’s formula-
tion of confinement [7]. After quantization our system may include states with
integer baryon charge transforming trivially under L as well as states with
fractional charges. Mack speaks of confinement when the latter states don’t
exist,

Since we want the dynamics to choose between confinement and deconfine-
ment, we have to allcocw our system to contain fractionally charged states in
both cases. This can be brought into harmony with local gauge invariance even
in a finite volume system if we demand the Gauss-law to operate only in
points inside 4/ and not on the boundary 3. In this way we have a state as
physical state which for instance consists of one quark at the point x4/
and of a string of color flux starting from x and ending at yedVU. Thus the
fractionally charged sector of the physical Hilbert space is not empty. But
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since our Hamiltonian commutes with the baryon charge, this means at the same
time that there will be fractionally charged energy eigenstates too. Conse-
quen :1ly the confinement can not be absolute as long as the volume is finite.
However there must be some difference in the shape of the l-quark eigenfunc-
tions comparing the free and the confinement regimes what will leaa to a
qualitative change in the V = |4+ = limit.

If the fractional charge is free, then the one-particle eigenstates of
the fractionally charged sector will look like standing waves. Their energy
spectrum doesn’t change essentially when V + «_ It only becomes more and more
dense but remains bcunded from above due to the ultraviolet cutofi. There-
fore the energy expectation value <W|R|W> in a wave packet state |W> of frac-
tional baryon charge depends only on the size of the wave packet and goes to
a finite 1imit when V + =,

On the contrary, if there is confinement the occurenc: of a long string
in any low energy eigenstate has a very small amplitude. Ther=fore the eigen-
states in the fractionally charged sector resemble very much to an appropriate
eigenstate of integer baryon charge in the middle of 4%, while the ‘valence
quark’ carrying the fractionai charge can be found with large probability
only in a layer of finite width around 3V. As we go to higher and higher en-
ergy eigenvalues this width becomes larger and larger. So the largest eigen-
value in the one-particle spectrum of the fractionally charged sector depends
on the size of {¥ and we expect an unbounded spectrum in the thermoldynamical
limit. Accordingly 1lim <w|ﬁ|w> = = degpite of the fixed size of the wave
packed |[w>. Ve

To use more definit formulae, instead of wave packets we can speak about
the expectation values of local, gauge invariant operators F in the canonical
ensemble defined on the states of baryon charge having a fixed fractional
part. The picture described above involves that in the confinement phase the
local quantity ﬁ feels always as if the charge were an integer, and doesn’t
feel the fractional charge concentrated at the boundary 34 far away from F.
In this sense car We say that the fractional baryon charge disappears from
our system in the V + «» limit. More precisely the difference between expecta-
tion values in the fractional and in the integer sector comes from the states
which have energy going to infinity with some size of the volume 4J.

Thus

i tr FeW/T 1 F e H/T

’oyb
= g (e ) (2.1)
zfrac frac int int ©

where a and 4 are positive numbers, T is the temperature, and 7, are

Zfrac int

the partjtion functions of a certain fractional and the integer sectors re-
spectively. We see that no local observation can measure the fractional part
of the baryon charge if the volume is infinite. Hence a class of states with
baryon charge of different fractional part looks being the same, what points
to that the unitary operators representing the symmetry group f, on the Hilbert

space can not exist in the thermodynamical limit.
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Let us now turn to the case what we would call the free phase. The low
temperature expectation value of F computed in the sector where 3=%+(1nteger}
(for QCD) is dominated by the lowest energy l-quark state |1>. The free propa-
gation of quarks means also that they are momentum eigenstates in the infinite
volume limit. So |1> is translation invariant. Because F is local, <ll§|1>
differs from the vacuum expectation value <0|F|0> by a term of cn%). Hence
for low T at least

] b

tr Fe 7z tr Fe /T . <1|F|1>-<O}F|0> = Eﬂ%)
frac frac int int
(2.2)

Comparing (2.1) and (2.2) one sees that the local measurement registers
the confinement as a very fine effect Asamatter of fact it has to make dis-
tinction between Cﬂe ) and Cﬂ ). The fact that the difference is so small
can be explained in the language of statistical mechanics. We will see in
sect. 3 that the expectation values in the fractional and in the integer sec-
tors can be expressed by the same path integral if one disregards certain
boundary terms. Theese boundary terms give zero contribution in the V + =
limit. This is why the r. h. s. of (2.1) and (2.2) must go to zero in the
thermodynamical limit. In other words the fractional and the integer sectors
have the same bulk properties. One cannot differentiate between them by study-
ing only infinite volume expectation values. So the question of confinement
is reduced to the question how theese two types of expectation values approach
their common thermodynamicql limit.

3. FORMULATION OF THE CONFINEMENT CRITERION

Let 4 be a finite box of the 3-dimensional cubic lattice. Consider a
gauge theory with the Wilson-action [8] whose fermion fields y and ¥ are
defined on the sites of 4 and whose gauge field U is defined on the links of
U. The (Euclidean) Lagrangian corresponding to the Wilson-action is the sum
of the kinetic energy K containing the couplings between two neighbouring
time slices and of the potential energy V containing the couplings in one
time slice. In the UO = 1 gauge they are

L(xo) = K(xo,x + 1) +‘V(x°)

o
1 3 +
Kix ,xy + 1) = ~-=, I b {trUj(xo,l()Uj(xo +1,x) + c.c.] = (3.1)

° 92 €U j=1

2K E [X(x,,x)x(x, + 1,%) + 8(x, + 1,%)8(x,,%)]
Xelr N



1 +  + -
Vi(x.) = - = L L (tr0.0, 0.0 + c,c_] + L pix_,x)p(x_,x)
° g2 x€r 1<j<k<3 DS A B S x€ o'% o'

3 1-1. ~ ~ 1+Y-
- L v . | 2 ry . + _]
n;eor jill’(’o"."uj("o"." T V(%o x¥3) 49 (X, X43) UL (x,x) 5~ w(x ,x) ]

where Yo is the standard Yo = diag(l,1,-1,-1) and we have introduced the
upper and lower two-component spinor x and ® of y. This is a classical
(Buclidean) field theory with discrete time which can not be quantized in a
ratural way by specifying canonical commutation relations. However, following
the method of (5] one gets the Hilbert space and the transfer matrix without
using any canonical commutation relations. The Hilbart space £ can be re-
presented®* by functionals ¢ which depend on *he 3-dimensional lattice fields
U, x and 8. The scalar product on & is

0,19, = [9010021&03(05)3 exp(l‘ £ [truij(’f)UZj(’f) + c.c.]

9 x,3
+ 2K L [XO)xix) + BO)8I]) 9,(0,,x,8) ¢,(8,,x,8) (3.2)
x
where is the antihomomorphysm on the Grassm..nn algebra generated by

X,3,X and 8 (that is it is antilinear and reverses the order of multiplicands)
which gives identity when squared and

5 (x) = X*F (x) .

(r = 1,2; o = color index) (3.3)

8 (x) =0T (x)

The transfer matrix T which develops the states by one unit in the
Euclidean time is given by the following integral operator:

;O(U'X's) #U'S.)Oﬁ’x r"&' e‘V(U:W!") e‘x (UIX le7U;X:3')¢(U;x;§,)

where v (é), V= (X 8. (3.4)

It is easy to see that tr ';T (T i8 integer) can be performed as a
4-dimensional lattice Feynman path integral with the Wilson-action in the
Uo = 1 gauge on the lattice which is the direct product of {/and the 1-dimen-
sional periodic lattice of t sites ¥.

[ 3
The proof, that the Hilbert space, scalar product and transfer matrix given here are
equivalent to the ones defined by Osterwalder and Seiler, will be published elsewhere.

s r— ———————- ... —



trtt =0 3 Idu.(x) n Idi(z)d.(x) e S (3.5)
x€rxY j=1 J x€ WY uoal
(3.5) is meant of course with antiperiodic boundary conditions for the
fermions what is equivalent to a small modification of the Wilson-action on
the links connecting the slices x, =T - 1 and x, = o.

In calculating physical quantities however, we need traces taken over
*‘phys C £ which is the subspace of locally gauge invariant states. The time
independent classical gauge transforlation Q acting as U » Un, X - XQ,

5 + 5 nas a unitary operator counterpart ﬂ which acts as

20 (0,x,3 = o0 5,5 (3.6)
Obviously @ commutes with T in (3.4). The operator which projects om;od(,phy5
is

n= n Idﬂ(g) 2 . (3.7;
)560'\31.?

Since we didn’t require gauge invariance on the boundary there will be frac-
tionally charged states in "phys . "
Let us consider now the gquantity tril T = to(nm) 'L Using the formulae

(3.4) and (3.7) one finds that the variable 2(x) in the n'" factor of (IT)°
plays the role of a timelike link variable Uo(n,)j) on the lattice UxT. There-
fore we can write

z=trnr' = I':bu Inii Dy e Sz i3.8)
3 - -5
ER | n IdU-(X) n IdUo(x) fl Idwx)dwx)e
xctrxT j=1 X€ (Ur\3U) xv x€UxT

This is the usual path integral with the Wilson-action without gauge fixing
apart from the fact that the timelike U’s on the boindary of4#rxJ, that is to
say on 3WxY are frozen to be 1. The prime above the integral in (3.8)' refers
to that specification (See Fig. 1).
If the gauge group is SU(N) or U(N) the baryon charge 3 is defined to be
3@
R, W)

e1®By(u,x,8) = s(u,e Ny, e (3.9)

The baryon symmetry group is now the U(1l) group (’B = {eiws}ifz . The group
of fractional baryon charges is the subgroup Z of s whish is the intersec-
tion of c!'B with the global gauge group. By definition a B-eigenst.te has

integer charge if it is invariant under ¥£. In the opposite case its charge

in2ng, N1
is called fractional. If the gauge group is SU(N) then Z = {e }
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which is isomorphic to 2(N). In this case the B = B sector has integer {(frac-
tional) charge if and only if B is integer (fractional) in the usual sense.
1f, however, the gauge group is U(N), thenitin and any B # O is a fractiomal
charge in the sense defined above. For instance, in QED the confinement of
fractional charges means that only neutral states can propagate.

wWe shall need the following projection operator:

1 M1 o-i2mme a2mne for SU(N)
~ N n=0
Py = , (3.10)
2NN
ﬁ I -ieB ioB for U(N)
o

In both cases 33 projects onto the subspace of f{where B = B + ({integer}. The
partition function taken on the physical states with baryon number B+{integer}
is

z, = tr ﬁf»;f-‘ = [ar(r")¥Bs (R) (3.11)
’ - -SR
where Z(R) = J.DU JIN' JDW e
1 -
and S, = - E(tr U + c.c) + L pix){wix) ~
R ;i P 2P . x
3 §,05x% 3 -5 8.0 -
K I =y U, 0oR "® X Opxen) - KT (ay ol or PO % Qpix-ul)
u=0 b =0

To give the things told in the previous section a precise meaning we
have to settle the notion of an observable. It is clear that the whole op-~
erator algebra is generated by the Heisenberg-operators U (x) (3=1,2,3),
W(x) and ¥ (x). They can be considered as insertionc of U, (x). v(x) and ¥(x)
in (3.8) or in (3.11} as far as they are alone. If more than one U’s, ¢'s
and y’s in the same lattice site are multiplied in the insertion it means
the time ordering and a suitah'e norma; ordering of the corresponding product
of the Heisenberg operators Uj(x), W(x) and w(x) (See ref. [3] for a similar
situation.) An operator F will be called an internal observable if 1) it is
local that is to say it is a function of finitely many operators Uj(x), a(x)
W(x), 2) it doesn’t lead out from kphys even for one lattice unit of time.
The expection value of the time ordered product of such an operator F in the
canonical ensemble (3.8) is

tr fl:f"f_r(r

<F> = s 150 I .% I'j)uj’g;gw e S p (3.12)
r

where F is local, invariant under time dependent gauge transformations and
" depends only on the fields Usr ¥ and ¢ and not on Uge




Let us study for a while the quantities F which are local, gauge in-
variant and do depend on Uo. What opera:ors do they correspond to? Let ﬁx
project onto states which are gauge invariant at points y # x, but transforms
as a quark at y = x (x€0\v).

mo= ]'dmg) 2 2(x) (3.13)
= yev\ae

If now F is such that it depends on exactly one Uo among the Uo's in the
hyperplane of time L namely on Uo(xo,x), then this U0 can be considered as
part of an operator ﬁ‘ (substitute Q(y) = Uo(xo,y) in (3.13)). That means
that an external color Source is put into our system between the moments x,
and x, *+ 1 in the point x. Generally we can say that the Uo dependent quanti-
ties F test the system in the presence of several time dependent external
color charge distributions. Therefore the time evolution leads out from
‘%hys' For this reason a quant .ty F will be called an external observable, if
it is local, invariant to time dependent gauge transformations and does depend
on Uo. For example <J(0.9)U0(0.9) ce- Uo(xo-l,g)v(xo,9)> describes the fol-
lowing process: One quark is created at the origin together with an external
antiquark. The latter remains in the origin but the motion of the dynwmic
quark is not controlled. x, units of time later both quarks are annihilated.
Obvicusly this correlation function is dominated by the lowest energy bound
state of the gquark in the field of the external antiquark whether we are in
the confinement phase or in the free one. Another important example is the
thermal Wilson-loop expectation value of which <tr U,(0,x) ... Uo(t-l,x)> is .
nothing but the partition function on the subspace determined by the projec-
tion ﬁx' The third example is a rectangular Wilson-loop in a timelike plane.
One caii see now why the Wilson-loop measures the force law between external
cources even in the presence of dynamic fermions.

We are now ready to formulate our requirements for confinement in ac-
cordance with the picture described in section 2. Let <F>B(I,V) denote the
expectation value of the (internal or external) observable F in the canonical
ensemble of states with baryon charge S = B + {integer} of the system of
volume V at temperature 1/1. Then

v -S
- - R
<Fogl1,V) = 3 IdR R~NB Inu}nwnv S (3.14)
B
4
where Fpe similarly to SR' is made from F by the substitution Uo(0,§)+RU°(0,§)
for all x in¥.
We will say tiiat the theory confines for all fractional charges if for

all B and arbitrary observable F there exist q and ¢ positive numbers such
that

- 'r
<Frp(1,V) = “F> (1,V) = ag(e”™V) (3.15)




whereas if there exist an cbservable F such that for the fractiomal
charge B

<P (1,V) - <B>_(1,V) =@ 3.16)

holds, we wvill say that the B-charges are free.

It is possible to formulate the criterion in terms of vclume ‘integrals’
of local observables. But we have to be careful not to violate the primciple
that we are never allowed to measure guantitites what extend to the whole
volume U. Let ¥, C{be a box of volume W',l = pV (O<p<l) with center common
with that of U, and define

F = I F (3.17M

where F  is the translation of F by x. The average volume ‘inteyral’ of F
for the infinite volume must be calculated in this way:

1im lim <F >(t,V) (3.18)
p*l Vom e

Following that principle the confinement criterion (3.15) can be written
equivalently as

:{: ‘1,: |<F°>n(r,V) - <rp>°(t,V)l = 0 (3.19)

while (3.16) is equivalent to

‘1,1: ‘1'1: (<Fy>glt,V) - <Pp>°(t,VH 7y 0 (3.20}

with the same F and B as in (3.16).

Though these criteria contain the temperature we expect that if t is
large enough they will not depend on 1t giving informa.ion only about the
Hamiltonian of the system

Closing this section we show that (%.15) and (3.19) are fulfilled in
any order of perturbation theory vith respect to 1/92 and K. Introducing
the new integraticon variable U",(O,g) = RU,(0,x) in (3.14) and also in (3.11)
{(remember that R is a centrum element of the gauge grrup) P. will be P again
and $g changes to s"‘. s"! is nearly the same action as § is in (3.8) except
that the frozen links in the hyperplane X, : O and the plaguettes touching
these frozen links are multiplieu by R or R . $0 the functional

-8s un - (S52-8)
B-In"'e R ar (3.21)

[:
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depends non-trivially only on variables being at most one lattice spacing
distance from 3U. By means of SSB (3.14) can be written in the following
way:
- }
<« GSBF)
= « <PF> (3.22)
-85y
<e ><F>

<F>g(1,V) =

Here the expectation <.> is taken with respect to the measure (3.12). The
first term in the r.h.s. of (3.22) is equal to 1 up to the order of

a-1
(l4 + K2) . where d is the distance of F from 34r. Thus up tc¢ an arbitrary
g
large order term

-1
14 + x2) } (3.23)
g H

1/3 % In(

<F>p(1,V) = <F> = ©(1) x exp{-v

if V is larcve enough. Therefore (3.15) holds for all values of the temperature
1/t.
Summing up on X in Ub in (3.23) with F replaced by Fx, we get

~

<F ot V) - <Fo>(1,v) =@xov expl-(1-p/ )V $md, 4 k) )
g
(3.24)

what vanishes in the thermodynamical limit. So (3.19) is verified in all
orders of perturbation theory.
To justify that (3.15) and (3.19) hold also non-perturbatively in the

neighbourhood of the point 12 = K = O needs a sophisticated proof because
g -68
the usual bounds for the cluster decomposition of e B and F available in

the literature are not strong eanough for this purpose. (See ref. 9 and the
references therein.)

L. THE HIGH TEMPERATURE PHASE OF THE Z(N) MODEL

In this section we wish to discuss in detail why (3.15) is true in the
high temperature (i.e, large g small K) phase of the Z(N) matter-gauge model.
Let Oy be the matter field Uy the gauge field both having values in Z(N) =

i 21 N-1
ﬁ—-n

{e }p=o+ The action is

§=-21 (Ugo(a) +c.el -8 1 (uap) + cuc) (4.1)
L

P
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i 21
The ’baryon’ symmetry transformations o, * e Ne o, are identical to the
global gauge transformations. Therefore we expect that in the case of con-
finement the observable ’baryon’ charge is zero.
An arbitrary observable quantity is a linear combination of the quanti-
ties F(r) = U(l')o(ol'), where I' is a mod N integer valued function on links

(i.e. a 1-chain) and we have introduced the notation

r
vy =nu, * for any l-chain T
L
Yx
and aly) = 2 Oy for any O-chain y.

The allowed T'’s have finite support, that is: Z(l-sr °) = finite. Let Rl be
§ 68 0O 2 L
the Rl = R A= R MO X0 configuration what we have been used in the pre-

vicus section. Then the index R in (3.14) concerning the quantity F = F(r)
means: F\) = R(r)u(r)a(an.

Let us transform the path integral- (3.14) from variables (U,g) to vari-
ables (u,v) where y and v are mod N integer valued 2-chain and l-chain vari-
ables respectively. The transformation is the same as if we wanted to do a
duality transformation like in ref. {10]. We get

1 -NB
<U(ryo(ar)>_(r,v) = I R b I I [vix,lu] x
B 2y Rez(N) vy} {up) @ B
P
(4.2)
x I’ I U(v+ou+T)o (3v+aT')R(v+T)

(U} {o,)

L]
l I -V %(v+v ) .
where Ia[vl =0 I, (a) and I (a) = § VvV e
% [ VEZ(N)
and a similar expression for IB[u]. The crucial point is now the prime above
the U-sum in (4,2) what means that we don’t sum up over the Uz's with L from
the set of frozen links¥ . This is why, performing the sums on the U’s and .

the 0’'s, we get Kronecker-delta constraints on the v having the general solution
v = =T =3y +¢ (4.3)

where ¢ is8 an arbitrary l-cycle (i.e. 3¢ = O) which differs from zero only on
links in¥ . In this way we reduced (4.2) to
§I R DL I T (-T-0ute R6) .
U(Mo(ar)>gly,V) = L @8 (4.4)

§ LR L r eI (-3ute R(e)
R ®u

where use was made of the identity R(=-3u+y) = R(p). (4.4) is the suitable form
for doing high temperature expansion. The graphs will be labelled by the (u,¢)
confignrations.
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The following step is to decompose every configuration g in a unique way
in the form u = u. + u’ where all connected cor—onert of lurl (=support of
ur) are connected to |I'| which is the support of I'. Two sets Q, and Q, formed
from links and plaquettes are called to be connected if for i = 1,2 there
exist a 1link £ such that: 1.) either EEQI 2.) or there is a plaquette Ps€Q;
possessing L as a boundary link. Keeping up fixed the sum on p’ is just like
as if we were calculating Zy on A\IEFTGTFT instead of A at least for |u|
which is not connected to Y. Here Q is the closure of Q and A is the lattice
UxT. Hence we can write

ZB(A\|PlU|ur|)
<U(f)o(ar)>p(t,v) =L I [-dup-Tilglurl T () +
B B
+6((%)‘“|”'q’) (4.5)

where d(|T|,¥) is the distance of |I'| from¥ which determines the minimal size
of Iurl which connects T' to ¢, or in other words the minimal order when the
factorization Ia[-au-r+w]/1a[ol= Ia[—aur-r]/Iu[O]x Iu[-au'+¢]/1°[01 breakes

down. 1/T is a certain polinomial in a and B8 : % = (%)2 g + (g-)4 » which

comes from the two types of building minimal order diagram extending over a
distance d.

Let Q be an arbitrary set of links and plagquettes from A. Then ZB(A\Q)
has an expansion similar to (4.5):

1

=1 -NB -
25(A\Q) =T I R I R(o) L I au,,wllalu,‘l x

R @ Wy

(4.6)

where 2 denotes the partition function on the whole #
analog). It can be shown that for any 01,02 c A

phys® (See (3.8) as an

Z(A\Q,\Q,) Z(A\Q,) Z(A\Q,) d(Q,,Q,)
zul\) 2) _ Z(A)l x 2, (& 1, (4.7)

Z(A) T
Substituting Q, = TF[UTu T and Q, = Tu;[U¥ 2f follows from (4.7) and (4.6)
that

2 (WNJTTUTW T

- 1.d(|r|,»
25(A\ r[u url) =3 N + O 7y, (4.8)
Comparing (4.8) and (4.5) we get
<U(r)a(dr)>5 = <U(r)o(ar)> +a((%)d‘”|'””’) (4.9)

Thus the confinement criterion (3.15) is satisfied in the perturbation thcory
with respect to a and 8 in the following sense. Let a positive integer m be

W a4 e kb
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given. Then there exist a volume V such that for any box (" with folume |U|>V
(3.15) holds up to terms of order g"a™. The (3.19) -type property for rsr(r’
is realized as a trivial consequence of (4.9). One finds that the r.h.s. of

(3.19) vanishes in any finite order of the high temperature expansion.

5. THE FREE PHASE OF THE Z (M) MODEL

The eigenstates of the system (4.1) calculated in the perturbation theory
around 8 = », a = O contain globally non-Z(N)-invariant, that is to say frac-
tionally charged states. These states are present neither in the high tem-
perature expansion nor in the perturbation theory around B = », @ = =, §.e.
in the Higgs pﬁase. (The other possible phases, if N>4, are not discussed
here.) We have to show that the non-perturbative criterion de;cribed in sec-
tion 3 1is consistent with this perturbative pi~ture. In this section we will
show that (3.16) and (3.20) are satisfied if they are calculated in lowest
order perturbation theory in the large 8, small a phase.

If 8 = », only pure gauge U-configurations remain in the system, or in
other words IB[u] becomes independent of yu. Thus

L RVB 1 R(g) I I _[-T-3p+o)
R_ "~ ¢ y °
<U(F)G(3F)>B =

(5.1)

Zi | 2

f=a

IR L R() I I (-3ute]
R o w @
Here Ja[v] stands for Ia[v]/IGIO]. In lowest order in a the sum on y and ¢
can be written ac a sum over oriented curves having winding numbers on the
torus UxY precisely equal to NB and having the same end points than that of I.
Let [ be the straight line connecting the point (0,...,0,r) to the origin

and B = % . Then the perturbative expansion of the denumerator of (5.1) starts
with diagrams shown in Fig. 2.a and the diagrams of the denominator are shown
in Fig. 2.b. We get

r
<U(T) o(aT) >, (1,V) =@ + 0™ )@+ ™ (5.2)
B gameo 2 v 2
Because the first term in the r.h.s of (5.2) is just the average in the B=0
sector, we arrive at an expression fulfilling the condition (3.16):

r
<U(F)o(ar)>g = <UM o>y =& ¢ ((FIF) - r-1] (5.3)

This implies that (3.20) is valid with a r.h.s, what is V times the r.h.s.
of (5.3). Though these expressions blow up in the zero temperature limit
(1+2), it must be the feature of the perturbation theory, because U(l)o(3T)
corresponds to a unitary operator and therefore its expectation value is
always bounded.

C emeAv e s e e i—
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6. THE HIGGS PHASE

s the Higgs phase it is convenient to use th: original (U,0) represen-
tation of the path integral. If B = =

£ I exp (3 [RUG(M) +c.c) + £ 1 (uap) + c.e.IR(MU(MIG () =
U o L P (6.1)
= const. x [ exp {% £[Rla(al) + c.c.]}IR(T)a(3T)
] L

If R =1, that is to say R! =1 for all links, then the action (i.e. the

exponent in the r.*.s. of (6.1)) is minimal at = const. In this case the
action is -oVtD, where $ is the number of spacetime dimensions. If Ry¥l, the
minimal action is larger than (-aV1®) with the quantity uV(l—coa%ﬂ). Indeed

1-1

) - (-av?) > V(-3 I (o

20
I on nn+1%n+1 * ©-¢-2) 2 aV(l-cosg™) (6.2)

SR#I(O

Consequently, the B dependent contributions which come from the Ry¥1 terms
-av(l-cos%ﬂ)

are suppressed by the factor e relative to the R = 1 term which

gives a B independent contribution. Therefore

-aV(l—cos%ﬂ)
<F>B(1.V) = <F>(1,V) + O(e ) (6.3)

We see that (3.15) is true alsc in .the Higgs phase although with numbers a
and {r different from those in the confinement phase. This is in accordance
with the well known fact that the Higgs and confinement ’‘phases’ form a single
phase if the matter field is in the fundamental representation.

Summarizing, the high temperature and the Higgs regions don’t show ob-
servable fractional charges while the free phase does in the sense of (3.15)
and (3.16). Although the number of spacetime dimensions were not specified
we tacitly assumed that the phase under consideration does exist. For in-
stance in a two-dimensional spacetime and with N = 2 the results of the sec-
tions 5 and 6 have no relevance because the free and the Higgs pahses do not exist.

7. CONCLUSION AND OUTLOOK

We have derived a criterion how to distinguish a phase which confines
the fractional (baryon) charges from a phase which doesn’t. Although the
criterion was defined non-perturbatively ve were able to check it only in
perturbation theory. The phase structure determined by the criterion wais
congistent with the presence or absence of fractionally charged states in
the perturbative spectrum. We restricted our attention to the expectation
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values of local quantities. We could not derive a necessary sinqgular be-
haviour of the infinite volume expectation values at the deconfining tran-
sitio: . Instead, we found that there is a difference in the volume dependence
of the finite volume averages between the confining and the free phases.

In other words the boundary condition has an important role: one must keep
track of the volume dependence in case of various boundary conditions (cor-
responding to various total baryon charges) in order to get a signal of con-
finement.

These results raise three questions. I. What would have happened if we
have suppressed the Gauss-law for example only in one point of the boundary
3y? This is enough for having fractionally charged states but the boundary
condition is changed. The answer is probably that in that case, too, we
could Jderive the same criterion for confinement except that for example the
exponent &rin (3.15) is not necessarily the same. In this paper we have chosen
the most symmetric boundary condition. II. A more difficult question is:
should not the free fractional charges have given a signal in the infinite
volume expectations if we had not restricted ourselves to local quantities?
One ccijectures a positive answer because the operator creating a free guark
eigenstate mus be such a non-local quantity. III. The third problem is that
we have not shown - although it should be true - that the phase structure
determined by this criterion is the same as that which follows from the bulk
properties of the system (i.e. from the singularities of the infinite volume
expectations).

As far as the finite temperature phenomena are concerned, equations
(3.15) and (3.16) - since they contain the temperature 1/t - can be considered
fbrmally as the definition of the finite temperature deconfining phase tran-
sition in the presence of dynamic quarks. However, there are two (perhaps
weak) arguments for not to do so. 1) We have shown at the end of section 3
that (3.15) is satisfied in the strong coupling, small K region for any
temperature 1/1. That would mean, that there is no deconfining phase even
at very high temperature in this region of the couplings, what contradicts
"to the usual expectations. 2) In deriving the criteria (3.15) and (3.16) we
used a physical picture which we feel not to be compatible with the existence
of a heath reservoir.

The author wishes to thank T. Margaritisz for many helpful discussions.
He is grateful to A. Frenkel and A. Patkds for their critical comments on the
manuscript.
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Fig. 1. The boundary condition for the 2+1 -dimensional
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Fig, 2. Lowest order diagrams for a/ the denumerator, b/ the denomi-
nator of /6.1/
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